用户名: 密码: 验证码:
土壤易氧化有机碳对西双版纳热带森林群落演替的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of soil readily oxidizable carbon to community succession of Xishuangbanna tropical forests
  • 作者:张哲 ; 王邵军 ; 李霁航 ; 曹润 ; 陈闽昆 ; 李少辉
  • 英文作者:ZHANG Zhe;WANG Shaojun;LI Jihang;CAO Run;CHEN Minkun;LI Shaohui;College of Ecology and Soil & Water Conservation, Southwest Forestry University;Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University;
  • 关键词:热带森林 ; 易氧化有机碳 ; 土壤理化性质 ; 次生演替
  • 英文关键词:tropical forest;;readily oxidized carbon;;soil phyicochemical properties;;secondary succession
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西南林业大学生态与水土保持学院;南京林业大学南方现代林业协同创新中心;
  • 出版日期:2019-05-31 16:53
  • 出版单位:生态学报
  • 年:2019
  • 期:17
  • 基金:国家自然科学基金项目(31660191,41461052);; 国家林业局“948”项目(2015-4-39);; 云南省教育厅科学研究基金项目(2018Y129)
  • 语种:中文;
  • 页:75-81
  • 页数:7
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.2
摘要
土壤易氧化有机碳(Readily oxidizable carbon,ROC)作为土壤中易被氧化且活性较高的有机碳,能够敏感反映群落植被环境与土壤环境的早期变化。为探明土壤ROC时空变化对热带森林次生演替的响应,以西双版纳热带森林不同次生演替阶段(白背桐群落、野芭蕉群落与崖豆藤群落)为研究对象,采用高锰酸钾氧化法测定并分析土壤ROC时空动态特征,探究这些变化与土壤微生物量碳及理化性质之间的相互关系。结果表明:(1)不同次生演替阶段热带森林土壤ROC含量存在显著差异,其大小顺序为:野芭蕉群落(11.38 mg/g)>崖豆藤群落(10.5 mg/g)>白背桐群落(9.72 mg/g);(2)不同次生演替阶段热带森林土壤ROC含量的月份变化趋势基本一致,均表现为6月显著高于12月,且各月份间差异显著;(3)不同次生演替阶段热带森林土壤ROC含量随着土层深度增加而递减,且不同土层间差异显著;(4)土壤有机碳、微生物量碳、全氮、水解氮和铵态氮显著影响土壤ROC含量的时空变化,而pH值与土壤ROC显著负相关。因此,土壤ROC对西双版纳热带森林群落演替具有敏感的响应,土壤总有机碳、微生物量碳、全氮、水解氮、铵态氮及pH是土壤ROC时空变化的主控因素。
        Readily oxidizable carbon(ROC) is of the most easily oxidized and sensitive carbons in soil, and sensitively responds to early environment changes in plants and soils. This study aimed to understand the spatiotemporal dynamics response of soil ROC to secondary succession in tropical forests. The spatiotemporal variation in soil ROC was measured by potassium permanganate oxidation; the relationship of soil ROC to soil microbial carbon and physiochemical properties in three secondary succession stages(Mallotus paniculatus, Musa acuminata, and Mellettia leptobotrya) of Xishuangbanna tropical forests was also analyzed. The results were as follows:(1) Soil ROC varied significantly across the three succession stages(P < 0.05), in the order of M. leptobotrya > M. acuminatan > M. paniculatus;(2) the ROC concentration had similar monthly variations in the three succession stages, with higher values observed in March and June, and lower values in September and December;(3) the ROC concentration significantly decreased down through the soil profile in the three secondary succession stages.(4) The spatiotemporal variation in soil ROC was positively affected by the soil organic carbon, microbial carbon, total nitrogen, hydrolyzable nitrogen, and NH~+_4-N, whereas the soil ROC was negatively correlated with pH. We can conclude that soil ROC can sensitively respond to community succession in Xishuangbanna tropical forests. The spatiotemporal variation in soil ROC was attributed to the changes in factors(soil organic carbon, microbial carbon, total nitrogen, hydrolyzable nitrogen, ammonium nitrogen and soil pH) during the succession processes in Xishuangbanna tropical forests.
引文
[1] 李斌,程小琴,元晋芳,王泺鑫,韩海荣,康峰峰,桂志宏.模拟硫沉降对华北落叶松人工林土壤有机碳组分的影响.生态学杂志,2018,37(1):82- 88.
    [2] Post W M,Emanuel W R,Zinke P J,Stangenberger A G.Soil carbon pools and world life zones.Nature,1982,298(5870):156- 159.
    [3] 颜安.新疆土壤有机碳/无机碳空间分布特征及储量估算[D].北京:中国农业大学,2015,1.
    [4] 刘留辉,邢世和,高承芳,崔纪超,魏多落,胡争辉,卢超.国内外土壤碳储量研究进展和存在问题及展望.土壤通报,2009,40(3):697- 700.
    [5] 袁知洋,邓邦良,刘宇新,李志,牛德奎,郭晓敏.武功山草甸植被小群落土壤活性有机碳与土壤养分的典型相关分析.中南林业科技大学学报,2016,36(2):84- 90.
    [6] Blair G J,Lefroy R D B,Lisle L.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems.Australian Journal of Agricultural Research,1995,46(7):1459- 1466.
    [7] 王莹,阮宏华,黄亮亮,冯育青,齐艳.围湖造田不同土地利用方式土壤有机碳和易氧化碳.生态环境学报,2010,19(4):913- 918.
    [8] 王艳,杨丽娟,周崇峻,储慧霞.长期施肥对设施蔬菜栽培土壤易氧化有机碳含量及其剖面分布的影响.水土保持通报,2010,30(4):32- 35.
    [9] 史康婕,周怀平,杨振兴,解文艳,程曼.长期施肥下褐土易氧化有机碳及有机碳库的变化特征.中国生态农业学报,2017,25(4):542- 552.
    [10] 刘敏,杨永锋,刘国顺,可钰,陈红丽,何春莉.不同有机物料配施化肥对植烟土壤不同形态有机碳的影响.土壤通报,2017,48(4):901- 907.
    [11] 涂利华,胡庭兴,张健,李仁洪,何远洋,田祥宇,肖银龙,景建飞.模拟氮沉降对华西雨屏区慈竹林土壤活性有机碳库和根生物量的影响.生态学报,2010,30(9):2286- 2294.
    [12] 刘荣杰,吴亚丛,张英,李正才,马少杰,王斌,格日乐图.中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较.植物生态学报,2012,36(5):431- 437.
    [13] 贾重建,刘红宜,卢瑛,陈冲,熊凡,崔启超.土地利用方式对土壤有机碳和团聚体组分特征的影响.热带地理,2014,34(5):681- 689.
    [14] 张玲,张东来,毛子军.小兴安岭阔叶红松林不同演替系列土壤有机碳及各组分特征.林业科学,2017,53(9):11- 17.
    [15] 徐侠,王丰,栾以玲,汪家社,方燕鸿,阮宏华.武夷山不同海拔植被土壤易氧化碳.生态学杂志,2008,27(7):1115- 1121.
    [16] 向成华,栾军伟,骆宗诗,宫渊波.川西沿海拔梯度典型植被类型土壤活性有机碳分布.生态学报,2010,30(4):1025- 1034.
    [17] Zhang M,Zhang X K,Liang W J,Jiang Y,Dai G H,Wang X C,Han S J.Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain,china.Pedosphere,2011,21(5):615- 620.
    [18] 陈果,刘岳燕,姚槐应,黄昌勇.一种测定淹水土壤中微生物生物量碳的方法:液氯熏蒸浸提—水浴法.土壤学报,2006,43(6):981- 988.
    [19] 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1983,08.
    [20] 耿玉清,余新晓,岳永杰,李金海,张国桢,刘松.北京山地针叶林与阔叶林土壤活性有机碳库的研究.北京林业大学学报,2009,31(5):19- 24.
    [21] 张雪,韩士杰,王树起,谷越,岳琳艳,冯月,耿世聪,陈志杰.长白山白桦林不同演替阶段土壤有机碳组分的变化.生态学杂志,2016,35(2):282- 289.
    [22] 刘明慧,孙雪,于文杰,秦立武,冯富娟.长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态.南京林业大学学报:自然科学版,2018,42(2):67- 74.
    [23] 石亚攀,陈立新,段文标,张雪,徐非,刘晓锐.红松针阔混交林林隙土壤总有机碳和易氧化有机碳的时空异质性研究.水土保持学报,2013,27(6):186- 192.
    [24] 辜翔,张仕吉,项文化,李雷达,刘兆丹,孙伟军,方晰.中亚热带4种森林类型土壤活性有机碳的季节动态特征.植物生态学报,2016,40(10):1064- 1076.
    [25] 徐秋芳.森林土壤活性有机碳库的研究[D].杭州:浙江大学,2004,36-37.
    [26] 张剑,汪思龙,王清奎,刘燕新.不同森林植被下土壤活性有机碳含量及其季节变化.中国生态农业学报,2009,17(1):41- 47.
    [27] 张海东,于东升,王宁,史学正,宋正姗,顾成军.植被恢复过程中侵蚀红壤有机质变化研究.土壤,2013,45(5):856- 861.
    [28] 朱丽琴,黄荣珍,段洪浪,贾龙,王赫,黄诗华,易志强,张文锋.红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响.生态学报,2017,37(1):249- 257.
    [29] 张俊华,丁维新,孟磊.海南热带橡胶园土壤易氧化有机碳空间变异特征研究.生态环境学报,2010,19(11):2563- 2567.
    [30] 姜培坤.不同林分下土壤活性有机碳库研究.林业科学,2005,41(1):10- 13.
    [31] 王清奎,汪思龙,冯宗炜,黄宇.土壤活性有机质及其与土壤质量的关系.生态学报,2005,25(3):513- 519.
    [32] Wang Y,Ruan H H,Huang L L,Feng Y Q,Qi Y,Zhou J Z,Shen Y L.Soil labile organic carbon with different land uses in reclaimed land area from Taihu Lake.Soil Science,2010,175(12):624- 630.
    [33] Tianna S,Culman S W,Ferris H,Buckley D H,Glover J D.No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass,decreases active carbon stocks,and impacts soil biota.Agriculture,Ecosystems & Environment,2010,137(1/2):25- 32.
    [34] Thorburn P J,Meier E A,Collins K,Robertson F A.Changes in soil carbon sequestration,fractionation and soil fertility in response to sugarcane residue retention are site-specific.Soil and Tillage Research,120(2012):99- 111.
    [35] 田松岩,刘延坤,沃晓棠,李云红,陈瑶.小兴安岭3种原始红松林的土壤有机碳研究.北京林业大学学报,2014,36(5):33- 38.
    [36] Bauhus J,Pare D C,Cote L.Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest.Soil Biology & Biochemistry,1998,30(8):1077- 1089.
    [37] 孙伟军,方晰,项文化,张仕吉,李胜蓝.湘中丘陵区不同演替阶段森林土壤活性有机碳库特征.生态学报,2013,33(24):7765- 7773.
    [38] Chen X M,Li Y L,Mo J M,Otieno D,Tenhunen J,Yan J H,Liu J X,Zhang D Q.Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S China.Journal of Soil Science and Plant Nutrition,2012,175(6):947- 953.
    [39] Chen X M,Liu J X,Deng Q,Yan J H,Zhang D Q.Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest.Plant and Soil,2012,357(1/2):25- 34.
    [40] 梁俭.三峡库区消落带土壤溶解性有机质淹水释放行为与结构表征[D].重庆:西南大学,2016,67-68.
    [41] 王棣,耿增超,佘雕,和文祥,侯琳.秦岭典型林分土壤活性有机碳及碳储量垂直分布特征.应用生态学报,2014,25(6):1569- 1577.
    [42] 马和平,郭其强,刘合满,钱登锋.西藏色季拉山土壤微生物量碳和易氧化态碳沿海拔梯度的变化.水土保持学报,2012,26(4):163- 166,171- 171.
    [43] 王国兵,赵小龙,王明慧,阮宏华,徐长柏,徐亚明.苏北沿海土地利用变化对土壤易氧化碳含量的影响.应用生态学报,2013,24(4):921- 926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700