用户名: 密码: 验证码:
外源性钙对沉积物中生物活性磷赋存形态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Exogenous Calcium on Forms of Bioactive Phosphorus in Sediments
  • 作者:葛长字 ; 曹禹墨 ; 柳文爽 ; 张玉群 ; 刘丽晓
  • 英文作者:Ge Changzi;Cao Yumo;Liu Wenshuang;Zhang Yuqun;Liu Lixiao;Marine College, Shandong University;
  • 关键词:沉积物 ; 钙离子 ; 可交换态磷 ; 无机磷
  • 英文关键词:sediment;;calcium ion;;exchangeable phosphorus;;inorganic phosphorus
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:山东大学(威海)海洋学院;
  • 出版日期:2019-01-25
  • 出版单位:中国农学通报
  • 年:2019
  • 期:03
  • 基金:山东省自然科学基金“牡蛎壳粉对沉积物中氮磷的双向调节机制”(ZR2016CM06);; 山东省科技发展计划“复合污染海域组合式生物修复技术研究”(2014GSF117042)
  • 语种:中文;
  • 页:107-111
  • 页数:5
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:X524
摘要
为了验证外源性Ca~(2+)对沉积物中生物活性磷赋存形态制约的科学假说,在充气的条件下,将沉积物暴露于不同浓度外源性Ca~(2+)中30天,测定并分析其生物活性磷的赋存形态的差异。浓度0、50、200、500 mg/L的外源性Ca~(2+)暴露下的表层沉积物Ex-P含量为0.08±0.02、0.05±0.00、0.05±0.01、0.06±0.01μmol/g,50 mg/L的外源性Ca~(2+)暴露下的表层沉积物Ex-P含量低于0 mg/L的外源性Ca~(2+)暴露下的(P<0.05);相同浓度外源性Ca~(2+)暴露下的表层沉积物IP含量为0.37±0.10、0.46±0.16、0.41±0.06和0.69±0.05μmol/g,0 mg/L的外源性Ca~(2+)暴露下的表层沉积物的IP含量低于500 mg/L的外源性Ca~(2+)暴露下的(P<0.05);底层沉积物Ex-P和IP含量不受外源性Ca~(2+)的影响。故外源性Ca~(2+)影响表层沉积物中生物活性磷含量,对沉积物Ex-P含量有双重阈值作用,并可将水体中的磷转化为可以缓释的沉积物磷。
        To verify the hypothesis that forms of bioactive phosphorus restricting the primary production in sediments can be influenced by exogenous calcium ions, sediments are exposed to calcium ions with different concentrations for 30 days and the differences of bioactive phosphorus forms in sediments was analyzed. The results showed that the Ex-P contents in surface sediments were 0.08±0.02, 0.05±0.00, 0.05±0.01 and 0.06±0.01 μmol/g respectively, when the concentrations of exogenous calcium ion were 0, 50, 200 and 500 mg/L respectively. The Ex-P content in surface sediment exposed to exogenous calcium ion with concentration50 mg/L is less than that in sediment exposed to exogenous calcium ion with concentration 0 mg/L(P< 0.05).Under the same concentration of exogenous calcium ions, the IP contents in surface sediments were 0.37±0.10,0.46±0.16, 0.41±0.06 and 0.69±0.05 μmol/g, respectively. The IP content in surface sediment exposed to exogenous calcium ion with concentration 0 mg/L was less than that in sediment exposed to exogenous calcium ion with concentration 500 mg/L(P< 0.05). Nevertheless, the Ex-P or IP content in bottom sediments was not influenced by exogenous calcium ions. Thus, the content of bioactive phosphorus can be influenced by exogenous calcium ions, and there are double threshold effects of exogenous calcium ions on Ex-P content in surface sediments. Moreover, the phosphorus in water body can be transformed into slow-release phosphorus in sediments by exogenous calcium ions.
引文
[1] Li H M, Zhang C S, Han X R, et al. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980-2012:Sources and seaward gradients[J].Estuarine, Coastal and Shelf Science, 2015, 163(Part A):44-55.
    [2] Lenes J M, Darrow B A, Walsh J J, et al. Saharan dust and phosphatic fidelity:A three-dimensional biogeochemical model of Trichodesmium as a nutrient source for red tides on the West Florida Shelf[J]. Continental Shelf Research, 2008, 28:1091-1115.
    [3]王雪蕾,王新新,朱利,等.巢湖流域氮磷面源污染与水华空间分布遥感解析[J].中国环境科学, 2015,35(5):1511-1519.
    [4] Bowes M J, Gozzard E, Johnson A C, et al. Spatial and temporal changes in chlorophyll-aconcentrations in the River Thames basin,UK:Are phosphorus concentrations beginning to limit phytoplankton biomass[J]? Science of The Total Environment, 2012,426:45-55.
    [5] Ge C Z, Fang J G, Song X F, et al. Response of phytoplankton to multispecies mariculture:a case study on the carrying capacity of shellfish in the Sanggou Bay in China[J]. Acta Oceanologica Sinica,2008,1:102-112.
    [6] Maki A W, Porcella D B, Wendt R H. The impact of detergent phosphorus bans on receiving water quality[J].Water Research,1984,18(7):893-903.
    [7]郭卫东,章小明,杨逸萍,等.中国近岸海域潜在性富营养化程度的评价[J].台湾海峡, 1998,17(1):64-70.
    [8] Filgueira R, Guyondet T, Comeau L A, et al. A fully-spatial ecosystem-DEB model of oyster(Crassostrea virginica)carrying capacity in the Richibucto Estuary, Eastern Canada[J]. Journal of Marine Systems, 2014,136:42-54.
    [9]長谷川夏樹,日向野純也,井上誠章,等.アサリ増殖基質としてのカキ殻加工固形物「ケアシェル」の利用[J].水産技術, 2012,5(1):97-105.
    [10]刘文,李天华,张滕军,等.牡蛎壳中钙的改性及吸附特性的研究[J].材料导报B:研究篇, 2012, 26(9):88-92.
    [11] Rassmann J, lansard B, Gazeau F, et al. Impact of ocean acidification on the biogeochemisry and meiofaunal assessmblage of carbonate-rich sediments:Results from core incubations(Bay of Villefranche, NW Mediterranean Sea)[J]. Marine Chemistry,2018,203:102-119.
    [12] Griffith E M, Fantle M S, Eisenhauer A, et al. Effects of ocean acidification on the marine calcium isotope record at the PaleoceneEocene Thermal Maximum[J].Earth and Planetary Science Lettes,2015,419:81-92.
    [13]周毅,杨红生,张福绥.海水双壳贝类的生物沉积及其生态效应[J].海水双壳贝类的生物沉积及其生态效应[J].海洋科学,2003,27(2):23-26.
    [14]戴纪翠,宋金明,李学刚,等.胶州湾沉积物中的磷及其环境指示意义[J].环境科学,2006, 27(10):1593-1602.
    [15]王秀丽,梁成华,马子惠,等.施用磷酸盐和沸石对土壤镉形态转化的影响[J].环境科学, 2015,36(4):1437-1444.
    [16]熊鑫,柯凡,李勇,等.过氧化钙对水中低浓度磷的去除性能[J].湖泊科学,2015,27(3):493-501.
    [17]张浩纯,陈贤桢,林妙纯.改良钙法处理豆制品废水除磷的实验研究[J].当代化工,2018,47(3):513-516.
    [18] Ge C Z, Zhang F, Xu B D. Phosphorus accumulation in mudflats in bottom-sowing culture for Manila clam Ruditapes philippinarum zone[J]. Indian Journal of Geo Marine Sciences, 2017,46(7):1320-1326.
    [19]李学刚,宋金明,牛丽凤,等.近海沉积物中氮磷的同时测定及其在胶州湾沉积物中的应用[J].岩矿测试,2007,26(2):87-92.
    [20] Ge C Z, Chai Y C, Wang H Q, et al. Ocean acidification:One potential driver of phosphorus eutrophication[J]. Marine Pollution Bulletin, 2017, 115:149-153.
    [21] Xiang S L, Zhou W B. Phosphorus forms and distribution in the sediments of Poyang Lake, China[J]. International Journal of Sediment Research, 2011,26(2):230-238.
    [22] Mlynarcyk N, Bartoszek M, Polak J, et al. Forms of phosphorus in sediments from the Goczalkowice Reservoir[J]. Applied Geochemistry, 2013,37:87093.
    [23] Ute B, Thomas N, Dietfried D, et al.Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. Applied Geochemistry, 2004, 19(11):1759-1771.
    [24]蔡金娟.向水中加入适量硫酸铝可降低磷的污染[J].水土保持应用技术,2006,3:17-18.
    [25]高春梅,朱珠,王功芹,等.海州湾海洋牧场海域表层沉积物磷的形态与环境意义[J].中国环境科学, 2015, 35(11):3437-3444.
    [26]吴应珠,刘嘉裕,蒋晓军,等.曝气加氢氧化钙复合技术抑制底泥磷释放及对底泥微生物多样性的影响[J].环境科学学报,2014, 34(10):2526-2533.
    [27] Fanjul E, Bazterrica M C, Escapa M, et al. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats[J]. Estuarine, Coastal and Shelf Science, 2011, 92(4):629-638.
    [28] He Y, Men B, Yang X F, et al. Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation[J]. Journal of Environmental Sciences,2018, available online.
    [29] Kamaruddin H D, Koros W J. Some observations about the application of Fick's first law for membrane separation of multicomponent mixtures[J]. Journal of Membrane Science, 1997,135(2):147-159.
    [30] Mu D, Yuan D K, Feng H, et al. Nutrient fluxes across sedimentwater interface in Bohai Bay Coastal Zone, China[J]. Marine Pollution Bulletin, 2017, 114:705-714.
    [31]路斌,魏南,余德光,等.添加硝酸钙对池塘沉积物中理化因子的影响研究[J].中国农学通报, 2015,31(26):51-55.
    [32] Kpomblekou A K, Tabatabai M A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils[J]. Agriculture,Ecosystems and Environment, 2003,100:275-284.
    [33]于尚先.有机酸解磷的一般规律及主要影响因素[J].北京师范大学学报, 1978,2:46-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700