用户名: 密码: 验证码:
致密气储层水敏水锁伤害机理实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Mechanism of Water Sensitivity and Water Lock Damage in Tight Gas Reservoir
  • 作者:刘朋志 ; 郭和坤 ; 张新旺 ; 沈瑞 ; 李海波
  • 英文作者:Liu Pengzhi;Guo Hekun;Zhang Xinwang;Shen Rui;Li Haibo;School of Engineering Science,University of Chinese Academy of Sciences;Institute of Porous Flow and Fluid Mechanics,Chinese Academy of Science;Langfang Branch of research Institute of Petroleum Exploration and Development;
  • 关键词:致密气储层 ; 水敏伤害 ; 水锁伤害 ; 核磁共振
  • 英文关键词:tight gas reservoir;;water sensitivity damage;;water lock damage;;NMR
  • 中文刊名:科技通报
  • 英文刊名:Bulletin of Science and Technology
  • 机构:中国科学院大学工程科学学院;中国科学院渗流流体力学研究所;中国石油勘探开发研究院廊坊分院;
  • 出版日期:2019-08-31
  • 出版单位:科技通报
  • 年:2019
  • 期:08
  • 基金:国家科技重大专项资助项目(2017ZX05013-001)
  • 语种:中文;
  • 页:111-116
  • 页数:6
  • CN:33-1079/N
  • ISSN:1001-7119
  • 分类号:TE258
摘要
压裂是开发致密气储层的主要方法,但同时也会对储层造成伤害。为了定量分析压裂伤害效果,对致密气储层开展X射线衍射、扫描电镜、恒速压汞、核磁共振及岩心流动实验研究。结果表明:岩心黏土矿物含量较高,黏土矿物达16. 75%,易运移和膨胀,产生水敏伤害。孔隙不发育,孔喉连通性差,大孔隙被小喉道控制。水敏伤害不会随着反排PV数的增加而得到解除,随着挤入液量的增加,水敏伤害增大。水锁伤害随着反排PV数的增加可以得到解除,在反排初期水敏和水锁伤害为主要伤害;在反排后期,岩心水敏伤害为主要伤害。
        Fracturing is the main method to develop tight gas reservoir,but it can also cause damage to reservoir. In order to quantitatively analyze the effect of fracturing injury,X ray diffraction,scanning electron microscopy,constant velocity mercury injection,nuclear magnetic resonance( NMR) and core flow experiments were carried out on tight gas reservoirs. The results show that the clay mineral content of the core is higher than that of the clay minerals,which is 16. 75%. It is easy to transport and swell,and cause water sensitivity damage. The pore is not developed,and the pore throat connectivity is poor,large pores are controlled by small throat. Water sensitive damage does not increase with the number of anti PV release,with the increase in the amount of liquid,water sensitive damage increased; water locking damage increased with the increase of anti PV number can be released. At the early stage of gas back row,water sensitivity and water lock damage as the main injury; at the later stage of anti later,core water sensitivity damage is the main damage.
引文
[1]梁彬,李闽,曾繁华,等.致密气藏产能分析方法研究[J].断块油气田,2005,12(1):30-33.
    [2]罗诗薇,陈海龙.致密砂岩气藏[J].石油石化节能,2007,23(2):31-36.
    [3]卢拥军.压裂液对储层的损害及其保护技术[J].钻井液与完井液,1995(5):36-43.
    [4]曹彦超,曲占庆,郭天魁,等.水基压裂液的储层伤害机理实验研究[J].西安石油大学学报(自然科学版),2016,31(2):87-92.
    [5]王明磊,张遂安,关辉,等.致密油储层特点与压裂液伤害的关系—以鄂尔多斯盆地三叠系延长组长7段为例[J].石油与天然气地质,2015,36(5):848-854.
    [6] Civan F. Reservoir formation damage[J]. Gulf Professional Pu,2007.
    [7]郭和坤,朱琪.胍胶稠化剂对低渗透砂岩气藏储层伤害的实验研究[J].科学技术与工程,2015(22):24-28.
    [8] Ghalambor A,Lafayette U O L A,Economides M J.Formation Damage Abatement:A Quarter-Century Perspective[J]. Spe Journal,2000,7(1).
    [9]冯晓楠,姜汉桥,李威,等.应用核磁共振技术研究低渗储层压裂液伤害[J].复杂油气藏,2015(3):75-79.
    [10]王贤君,邓贤文,肖丹凤,等.特低渗透储层压裂液微观伤害评价[J].大庆石油地质与开发,2010,29(6):126-133.
    [11]蔡承政,李根生,黄中伟,等.液氮压裂中液氮对岩石破坏的影响试验[J].中国石油大学学报:自然科学版,2014(4):98-103.
    [12]姚风英.低渗透储层压裂液伤害核磁共振评价方法[J].油气地质与采收率,2011,18(2):102-104.
    [13]樊世忠,窦红梅.保护油气层技术发展趋势[J].石油勘探与开发,2001,28(1):78-84.
    [14]刘鹏,张有才,张海龙.提高特低渗透扶杨油层单井压裂效果途径探讨[J].大庆石油地质与开发,2008,27(3):95-97.
    [15]刘易非,黄海.压裂液滤液对特低渗透储层驱油效率的影响[J].油气地质与采收率,2007,14(1):94-97.
    [16]刘彦学,王宝峰,刘建坤.压裂液对低渗砂岩气藏的水敏性伤害实验研究[J].石油钻探技术,2013,41(1):70-75.
    [17]李宁,王有伟,张绍俊,等.致密砂岩气藏水锁损害及解水锁实验研究[J].钻井液与完井液,2016,33(4):14-19.
    [18]石小虎,安文宏,王慧玲,等.致密砂岩气藏储层水锁伤害评价及解除方法实验研究[J].石油化工应用,2015,34(11):22-25.
    [19]聂法健,田巍,李中超,等.致密砂岩气藏水锁伤害及对产能的影响[J].科学技术与工程,2016,16(18):30-35.
    [20]盛军,孙卫,段宝虹,等.致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J].天然气地球科学,2015,26(10):1972-1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700