用户名: 密码: 验证码:
常压N_2+H_2O气液DBD等离子体处理PP无纺布的超亲水性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Superhydrophilicity of PP Nonwoven Fabric Modified with Atmospheric Gas-Liquid DBD Plasma
  • 作者:张燕 ; 徐庆南 ; 孔祥茹 ; 孙浩 ; 杨德正 ; 孙岩洲 ; 明平美
  • 英文作者:Zhang Yan;Xu Qingnan;Kong Xiangru;Sun Hao;Yang Dezheng;Sun Yanzhou;Ming Pingmei;School of Electronic Information and Electrical Engineering,Huzhou University;Key Lab of Materials Modification (Dalian University of Technology),Ministry of Education;School of Mechanical and Power Engineering,Henan Polytechnic University;School of electrical Engineering and Automatic,Henan Polytechnic University;
  • 关键词:气液等离子体 ; 介质阻挡放电 ; 表面改性 ; 超亲水
  • 英文关键词:Gas-liquid plasma;;Dielectric barrier discharge;;Surface modification;;Superhydrophilicity
  • 中文刊名:真空科学与技术学报
  • 英文刊名:Chinese Journal of Vacuum Science and Technology
  • 机构:惠州学院电子信息与电气工程学院;大连理工大学三束材料改性教育部重点实验室;河南理工大学机械与动力工程学院;河南理工大学电气工程与自动化学院;
  • 出版日期:2019-09-15
  • 出版单位:真空科学与技术学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金项目(11405044,U1204506);; 惠州学院博士科研启动项目
  • 语种:中文;
  • 页:29-36
  • 页数:8
  • CN:11-5177/TB
  • ISSN:1672-7126
  • 分类号:X703;O539
摘要
采用接触式气液介质阻挡放电装置,采用常压N_2和N_2+去离子水(H_2O)两种介质阻挡放电等离子体对PP无纺布的表面进行改性研究,实验结果表明PP无纺布经N_2+H_2O等离子体处理60 s后表面出现了超亲水,其表面水接触角降为0°。但是经N_2等离子体处理60 s,表面接触角由未处理时的115.8°降低至62°,并未出现超亲水。通过扫描电镜、X射线光电子能谱的对比分析发现,PP经N_2+H_2O等离子体处理60 s后,表面出现粘连、刻蚀,表面C1s的含量由原来的96.7%下降到31.8%,同时表面O1s和N1s的含量分别增加到38.4%和29.8%,比PP经N_2等离子体处理60 s后C1s多降低20.8%,而O1s和N1s的含量分别多增加了12.7%和8.1%,并且PP表面分子出现明显的交联;而FTIR-ATR的结果进一步表明,PP经N_2+H_2O等离子体处理60 s后表面接入更多的-OH,从而导致表面超亲水。
        We experimentally addressed the surface modification of polypropylene(PP) non-woven fabric with atmospheric gas-liquid dielectric barrier discharge(DBD) plasma.The influence of the nitrogen + deionized water DBD plasma on the microstructures and wettability of the PP fabrics was investigated with scanning electron microscopy,X-ray photoelectron spectroscopy and Fourier transform infrared attenuated total reflection(FTIR-ATR) spectroscopy.The results show that the N_2+H_2O DBD plasma makes the difference.For instance,modified for 60 s,the PP fabric had a water-contact angle of 0°,showing a super-hydrophilicity,possibly because of high-OH density.The content of C1 s decreased from 96.7% to 31.8%,while contents of O1s and N1s increased to 38.4% and 29.8%,respectively.In addition,plasma-etching,surface-roughening,deformation,cracking and cross-linking of individual PP fibers were observed.When it comes to enhancement of hydrophilicity,N_2+H_2O plasma significantly outperforms N_2 plasma.
引文
[1] 杨长河,曹志荣,丁堃,等.介质阻挡放电等离子体处理酸性大红GR废水[J].水处理技术,2012,38(5):96-100
    [2] 杨长河,余秋梅,刘建伟,等.介质阻挡放电处理含喹啉废水实验[J].高电压技术,2010,36(9):2316-2323
    [3] WEI Q,LI Q,WANG X,et al.Dynamic Water Adsorption Behaviour of Plasma-Treated Polypropylene Nonwovens[J].Polymer Testing,2006,25(5):717-722
    [4] YANG Y,KIM H,STARIKOVSKIY A,et al.An Underwater Multi-Channel Plasma Array for Water Sterilization[J].Review of Scientific Instruments,2011,82(9):1188
    [5] MOK Y S,JO J O,WHITEHEAD J C.Degradation of an Azo Dye Orange II Using a Gas Phase Dielectric Barrier Discharge Reactor Submerged in Water[J].Chemical Engineering Journal,2008,142(1):56-64
    [6] KRUGLY E,MARTUZEVICIUS D,TICHONOVAS M,et al.Decomposition of 2-Naphthol in Water Using a Non-Thermal Plasma Reactor[J].Chemical Engineering Journal,2015,260(4):188-198
    [7] Grinevich V I,Kvitkova E Y,Plastinina N A,et al.Application of Dielectric Barrier Discharge for Waste Water Purification[J].Plasma Chemistry & Plasma Processing,2011,31(4):573-583
    [8] 杨国清,钟思,张青,等.大气压下气液两相介质阻挡放电的放电特性[J].高电压技术,2017,43(12):4000-40005
    [9] 牛金海,张志慧,刘东平,等.等离子体作用下甲烷和氮氧化物活化转化研究[J].高压电器,2010,46(7):51-56
    [10] HOMMA H,KATAYAMA H,YASUOKA K.Pulsed Dielectric Barrierdischarge of Argon Gas in Gas-Liquid Two-Phase Flow [J].IEEE Transactionson Plasma Science,2008,36(4):1344-1345
    [11] KATAYAMA H,HONMA H,NAKAGAWARA N,et al.Decompositionof Persistent Organics in Water Using a Gas-Liquid Two-Phase Flowplasma Reactor [J].IEEE Transactions on Plasma Science,2009,37(6):897-904
    [12] HUANG F,CHEN L,WANG H,et al.Analysis of the Degradation Mechanism of Methylene Blue by Atmospheric Pressure Dielectric Barrier Discharge Plasma[J].Chemical Engineering Journal,2010,162(1):250-256
    [13] MATSUI Y,TAKEUCHI N,SASAKI K,et al.Experimental and Theoretical Study of Acetic-Acid Decomposition by a Pulsed Dielectric-Barrier Plasma in a Gasliquid Two-Phase Flow[J].Plasma Sources Science & Technology,2011,20(3):034015
    [14] WANG H,HE G,YANG W,et al.Formation of Hydrogen Peroxide and Degradation of Dye Wastewater by Pulsed Discharge Plasma Combined with Activated Carbon[J].High Voltage Engineering,2016
    [15] 田一平,周新颖,袁晓莉,等.强电离放电等离子体在应急净化饮用水中的应用[J].高电压技术,2017,43(6):1792-1799
    [16] 白敏菂,冷白羽,陈宝玖.采用强电离放电法降解废水中难降解有机物[J].高电压技术,2017,43(8):2653-2659
    [17] 冯景伟,郑正,孙亚兵,等.介质阻挡放电对水中敌草隆的降解研究[J].环境化学,2008,27(4):422-426
    [18] 文凤,何劲松,李戎.介质阻挡放电等离子体对印染废水的脱色处理[J].印染,2012,38(8):35-38
    [19] Kim K S,Yang C S,Mok Y S.Degradation of Veterinary Antibiotics by Dielectric Barrier Discharge Plasma[J].Chemical Engineering Journal,2013,219(219):19-27
    [20] 顾信鹏,方志,钱晨,等.气液两相介质阻挡放电影响因素研究[J].真空科学与技术学报,2014,34(8):828-835
    [21] 赵卫东,黄健泉,倪康,等.气体-液体两相放电低温等离子体的光谱诊断[J].真空科学与技术学报,2016,36(12):1407-1412
    [22] 商克峰,王肖静,鲁娜 等.介质阻挡放电脱色酸性橙II废水的动力学及脱色物化效应[J].高电压技术,2018,44(9):3009-3015
    [23] 杨惕,张燕,徐庆南,等.利用大气压气液介质阻挡放电等离子体对PTFE进行表面改性[J].材料科学与工程学报,2018,36(4):671-674
    [24] GUIMOND S,RADU I,CZEREMUSZKIN G,et al.Biaxially Oriented Polypropylene (BOPP) Surface Modification by Nitrogen Atmospheric Pressure Glow Discharge (APGD) and by Air Corona[J].Plasmas & Polymers,2002,7(1):71-88
    [25] SOCRATES G.Infrared Characteristic Group Frequencies[M].New York:Wiley,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700