用户名: 密码: 验证码:
海洋酸化对海洋鱼类行为的影响及机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects and mechanisms of CO_2-driven ocean acidification on marine fish behavior: A review
  • 作者:赵信国 ; 刘广绪 ; 陈碧鹃 ; 曲克明 ; 夏斌 ; 单秀娟
  • 英文作者:ZHAO Xinguo;LIU Guangxu;CHEN Bijuan;QU Keming;XIA Bin;SHAN Xiujuan;Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology;College of Animal Sciences, Zhejiang University;
  • 关键词:海洋酸化 ; 鱼类 ; 行为 ; 种群动力学 ; 感觉功能 ; GABA_A受体
  • 英文关键词:ocean acidification;;fish;;behavior;;population dynamics;;sensory function;;GABA_A-receptor
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:农业部海洋渔业可持续发展重点实验室中国水产科学研究院黄海水产研究所;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;浙江大学动物科学学院;
  • 出版日期:2019-05-16 16:42
  • 出版单位:生态学报
  • 年:2019
  • 期:15
  • 基金:中国博士后科学基金资助项目(2017M622323);; 青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室创新团队项目(LMEES-CTSP-2018-4);; 国家重点基础研究发展计划(2015CB453303)
  • 语种:中文;
  • 页:15-29
  • 页数:15
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q958.8
摘要
自工业革命以来,在人类活动的影响下,大气CO_2浓度持续增加,其中有大约1/3被海洋吸收,造成海水pH值降低和碳酸盐平衡体系的波动,即"海洋酸化"现象(Ocean Acidification)。据联合国政府间气候变化专门委员会预测,如果以当前速率排放CO_2,到21世纪末表层海水的pH值将降低至7.7—7.8,而到2300年将降低至7.3—7.4。作为鱼类对外界刺激最直接的反应,行为在鱼类的繁衍、捕食、避敌等过程中发挥着关键作用。基于此,海洋酸化对海洋鱼类行为的影响受到了越来越多关注。现有研究结果显示海洋酸化不仅会显著干扰包括嗅觉、听觉、视觉在内的感官功能,还将对神经生理功能和细胞信号传导等过程产生不利影响,从而影响海洋鱼类的捕食、逃避捕食、行为侧向化、栖息地识别与选择和集群等行为。行为异常将直接损害鱼类种群的生存与繁衍,继而威胁海洋生态系统的稳定和功能。我国海岸线漫长,海域辽阔,鱼类资源丰富,鱼类捕捞和养殖业发达。但与国外相比,国内此类研究十分匮乏,仅见零星报道。这种现状极大的制约了我国相关应对策略的制定,对我国海洋生态保育和渔业发展非常不利。此外,当前的研究也存在研究范围窄、研究手段不合理、行为效应、潜在机制及生态风险考察不足、研究结果难以整合等问题亟待改进。为此,研究对国内外相关研究进展进行了梳理和总结,并对未来的研究进行展望,以期弥补上述缺憾,促进国内相关研究的广泛开展。
        Since the industrial revolution, the atmospheric carbon dioxide(CO_2) concentration has increased by approximately 40%, mainly due to anthropogenic activities(e.g., burning of fossil fuel). Approximately one third of CO_2 released into the atmosphere is eventually absorbed by ocean, lowering the pH of surface seawater and causing wholesale shifts in seawater carbonate chemistry, a phenomenon known as "ocean acidification"(OA). During the past 250 years, the average surface seawater pH has decreased by approximately 0.1 units, from 8.21 to 8.10. According to the prediction of Intergovernmental Panel on Climate Change(IPCC), the average surface seawater pH will decline to 7.7—7.8 by the end of the 21~(st) century and 7.3—7.4 around 2300. Behavior, the first response exhibited by fish to stimulus, plays important roles in fish reproduction, predation, and anti-predation. Therefore, effects of OA on marine fish behavior has, recently, garnered considerable attention and gradually become a new research hotspot. Although not immediately lethal, OA has been demonstrated to adversely influence marine fish behavior, especially their predation, anti-predation, behavioral lateralization, shoaling behavior, and habitat detection and seeking behavior, by disrupting sensory system, interfering with GABA_A-receptor function, and hindering cell signal transduction. Behavior normality is likely to impair fitness and population survival, which will in turn affect species interactions and ecological processes, and subsequently pose a great threat to ecosystem structure and functioning. However, current knowledge on marine fish behavior modification is mostly obtained by laboratory simulation and restricted to single species, life stage, leading to an incomplete view of how OA and other coinciding environmental stressors can affect the ecological interactions that structure biological communities. More importantly, China has a long coastline, vast sea area, abundant fish resources, and developed fishing and aquaculture industry; however, only few studies in China have focused on fish behavior alteration under near future OA scenarios. These, undoubtedly, limit our ability to precisely forecast the potential risk of ecosystem in a rapidly changing marine environment, and deal with OA. We therefore reviewed published literature on marine fish behavior under OA conditions, synthesized current understanding and identified knowledge gaps of how OA might affect marine fish behavior, assessed the potential ecological risk, and discussed the underlying mechanisms. Finally, key suggestions have been provided to facilitate future studies, especially those in China.
引文
[1] Sabine C L,Feely R A,Gruber N,Key R M,Lee K,Bullister J L,Wanninkhof R,Wong C S,Wallace D W R,Tilbrook B,Millero F J,Peng T H,Kozyr A,Ono T,Rios A F.The oceanic sink for anthropogenic CO2.Science,2004,305(5682):367- 371.
    [2] Feely R A,Sabine C L,Lee K,Berelson W,Kleypas J,Fabry V J,Millero F J.Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Science,2004,305(5682):362- 366.
    [3] Caldeira K,Wickett M E.Oceanography:anthropogenic carbon and ocean pH.Nature,2003,425(6956):365.
    [4] Orr J C,Fabry V J,Aumont O,Bopp L,Doney S C,Feely R A,Gnanadesikan A,Gruber N,Ishida A,Joos F,Key R M,Lindsay K,Maier-Reimer E,Matear R,Monfray P,Mouchet A,Najjar R G,Plattner G K,Rodgers K B,Sabine C L,Sarmiento J L,Schlitzer R,Slater R D,Totterdell I J,Weirig M F,Yamanaka Y,Yool A.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Nature,2005,437(7059):681- 686.
    [5] Caldeira K,Wickett M E.Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean.Journal of Geophysical Research,2005,110(C9):C09S04.
    [6] 唐启升,陈镇东,余克服,戴民汉,赵美训,柯才焕,黄天福,柴扉,韦刚健,周力平,陈立奇,宋佳坤,Barry J,吴亚平,高坤山.海洋酸化及其与海洋生物及生态系统的关系.科学通报,2013,58(14):1307- 1314.
    [7] Kroeker K J,Kordas R L,Crim R N,Singh G G.Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.Ecology Letters,2010,13(11):1419- 1434.
    [8] 赵信国,刘广绪.海洋酸化对海洋无脊椎动物的影响研究进展.生态学报,2015,35(7):2388- 2398.
    [9] 张东.水生动物行为研究及其在水产养殖中的应用简述.水产学报,2013,37(10):1591- 1600.
    [10] Clements J C,Hunt H L.Marine animal behaviour in a high CO2 ocean.Marine Ecology Progress Series,2015,536:259- 279.
    [11] Briffa M,de la Haye K,Munday P L.High CO2 and marine animal behaviour:Potential mechanisms and ecological consequences.Marine Pollution Bulletin,2012,64(8):1519- 1528.
    [12] Leduc A O H C,Munday P L,Brown G E,Ferrari M C O.Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems:a synthesis.Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1627):20120447.
    [13] 王晓杰,宋佳坤,范纯新,张旭光,郭弘艺.海洋酸化对鱼类感觉和行为影响的研究进展.生态毒理学报,2015,10(6):13- 20.
    [14] Tresguerres M,Hamilton T J.Acid-base physiology,neurobiology and behaviour in relation to CO2-induced ocean acidification.Journal of Experimental Biology,2017,220(12):2136- 2148.
    [15] 刘洪军,张振东,官曙光,于道德,郑永允.海洋酸化效应对海水鱼类的综合影响评述.生态学报,2012,32(10):3233- 3239.
    [16] Wang X J,Song L L,Chen Y,Ran H Y,Song J K.Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).Marine Environmental Research,2017,131:10- 18.
    [17] 王晓杰,连丞,降瑞婵,吕宇涛.海洋酸化对青鳉鱼(Oryzias melastigma)耳石形态和成分的影响.海洋环境科学,2018,37(2):168- 174.
    [18] Heinrich D D U,Watson S A,Rummer J L,Brandl S J,Simpfendorfer C A,Heupel M R,Munday P L.Foraging behaviour of the epaulette shark Hemiscyllium ocellatum is not affected by elevated CO2.ICES Journal of Marine Science,2016,73(3):633- 640.
    [19] Johnson M S,Kraver D W,Renshaw G M C,Rummer J L.Will ocean acidification affect the early ontogeny of a tropical oviparous elasmobranch (Hemiscyllium ocellatum) Conservation Physiology,2016,4(1):cow003.
    [20] Pistevos J C A,Nagelkerken I,Rossi T,Connell S D.Antagonistic effects of ocean acidification and warming on hunting sharks.Oikos,2017,126(2):241- 247.
    [21] Pistevos J C A,Nagelkerken I,Rossi T,Olmos M,Connell S D.Ocean acidification and global warming impair shark hunting behaviour and growth.Scientific Reports,2015,5:16293.
    [22] Dixson D L,Jennings A R,Atema J,Munday P L.Odor tracking in sharks is reduced under future ocean acidification conditions.Global Change Biology,2015,21(4):1454- 1462.
    [23] Rosa R,Baptista M,Lopes V M,Pegado M R,Ricardo Paula J,Trübenbach K,Leal M C,Calado R,Repolho T.Early-life exposure to climate change impairs tropical shark survival.Proceedings of the Royal Society B:Biological Sciences,2014,281(1793):20141738.
    [24] Green L,Jutfelt F.Elevated carbon dioxide alters the plasma composition and behaviour of a shark.Biology Letters,2014,10(9):20140538.
    [25] McCormick M I,Watson S A,Simpson S D,Allan B J M.Effect of elevated CO2 and small boat noise on the kinematics of predator-prey interactions.Proceedings of the Royal Society B:Biological Sciences,2018,285(1875):20172650.
    [26] Allan B J M,Domenici P,Watson S A,Munday P L,McCormick M I.Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish.Proceedings of the Royal Society B:Biological Sciences,2017,284(1857):20170784.
    [27] Domenici P,Allan B J M,Watson S A,McCormick M I,Munday P L.Shifting from right to left:the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish.PLoS One,2014,9(1):e87969.
    [28] Munday P L,Dixson D L,McCormick M I,Meekan M,Ferrari M C O,Chivers D P.Replenishment of fish populations is threatened by ocean acidification.Proceedings of the National Academy of Sciences of the United States of America,2010,107(29):12930- 12934.
    [29] Welch M J,Munday P L.Heritability of behavioural tolerance to high CO2 in a coral reef fish is masked by nonadaptive phenotypic plasticity.Evolutionary Applications,2017,10(7):682- 693.
    [30] Sundin J,Amcoff M,Mateos-González F,Raby G D,Jutfelt F,Clark T D.Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues.Behavioral Ecology and Sociobiology,2017,71(8):108.
    [31] Jarrold M D,Humphrey C,McCormick M I,Munday P L.Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification.Scientific Reports,2017,7(1):10153.
    [32] Heuer R M,Welch M J,Rummer J L,Munday P L,Grosell M.Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish.Scientific Reports,2016,6:33216.
    [33] Welch M J,Watson S A,Welsh J Q,McCormick M I,Munday P L.Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation.Nature Climate Change,2014,4(12):1086- 1089.
    [34] Chung W S,Marshall N J,Watson S A,Munday P L,Nilsson G E.Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors.Journal of Experimental Biology,2014,217(3):323- 326.
    [35] Kwan G T,Hamilton T J,Tresguerres M.CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish.Royal Society Open Science,2017,4(7):170283.
    [36] Sundin J,Jutfelt F.Effects of elevated carbon dioxide on male and female behavioural lateralization in a temperate goby.Royal Society Open Science,2018,5(3):171550.
    [37] Forsgren E,Dupont S,Jutfelt F,Amundsen T.Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish.Ecology and Evolution,2013,3(11):3637- 3646.
    [38] Castro J M,Amorim M C P,Oliveira A P,Gon?alves E J,Munday P L,Simpson S D,Faria A M.Painted goby larvae under high-CO2 fail to recognize reef sounds.PLoS One,2017,12(1):e0170838.
    [39] Devine B M,Munday P L.Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2.Marine Biology,2013,160(8):1955- 1962.
    [40] Maulvault A L,Santos L H M L M,Paula J R,Camacho C,Pissarra V,Foga?a F,Barbosa V,Alves R,Ferreira P P,Barceló D,Rodriguez-Mozaz S,Marques A,Diniz M,Rosa R.Differential behavioural responses to venlafaxine exposure route,warming and acidification in juvenile fish (Argyrosomus regius).Science of the Total Environment,2018,634:1136- 1147.
    [41] Rossi T,Nagelkerken I,Pistevos J C A,Connell S D.Lost at sea:ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.Biology Letters,2016,12(1):20150937.
    [42] Nagelkerken I,Pitt K A,Rutte M D,Geertsma R C.Ocean acidification alters fish-jellyfish symbiosis.Proceedings of the Royal Society B:Biological Sciences,2016,283(1833):20161146.
    [43] Lopes A F,Morais P,Pimentel M,Rosa R,Munday P L,Gon?alves E J,Faria A M.Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification.Marine Biology,2016,163(12):243.
    [44] Munday P L,Cheal A J,Dixson D L,Rummer J L,Fabricius K E.Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps.Nature Climate Change,2014,4(6):487- 492.
    [45] Chivers D P,McCormick M I,Nilsson G E,Munday P L,Watson S A,Meekan M G,Mitchell M D,Corkill K C,Ferrari M C O.Impaired learning of predators and lower prey survival under elevated CO2:a consequence of neurotransmitter interference.Global Change Biology,2014,20(2):515- 522.
    [46] L?nnstedt O M,Munday P L,McCormick M I,Ferrari M C O,Chivers D P.Ocean acidification and responses to predators:can sensory redundancy reduce the apparent impacts of elevated CO2 on fish?Ecology and Evolution,2013,3(10):3565- 3575.
    [47] Allan B J M,Domenici P,McCormick M I,Watson S A,Munday P L.Elevated CO2 affects predator-prey interactions through altered performance.PLoS One,2013,8(3):e58520.
    [48] Bignami S,Enochs I C,Manzello D P,Sponaugle S,Cowen R K.Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.Proceedings of the National Academy of Sciences of the United States of America,2013,110(18):7366- 7370.
    [49] Munday P L,Pratchett M S,Dixson D L,Donelson J M,Endo G G K,Reynolds A D,Knuckey R.Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish.Marine Biology,2013,160(8):2137- 2144.
    [50] Allan B J M,Miller G M,McCormick M I,Domenici P,Munday P L.Parental effects improve escape performance of juvenile reef fish in a high-CO2 world.Proceedings of the Royal Society B:Biological Sciences,2014,281(1777):20132179.
    [51] Nowicki J P,Miller G M,Munday P L.Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish.Journal of Experimental Marine Biology and Ecology,2012,412:46- 51.
    [52] Nilsson G E,Dixson D L,Domenici P,McCormick M I,S?rensen C,Watson S A,Munday P L.Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function.Nature Climate Change,2012,2(3):201- 204.
    [53] Domenici P,Allan B,McCormick M I,Munday P L.Elevated carbon dioxide affects behavioural lateralization in a coral reef fish.Biology Letters,2012,8(1):78- 81.
    [54] Devine B M,Munday P L,Jones G P.Homing ability of adult cardinalfish is affected by elevated carbon dioxide.Oecologia,2012,168(1):269- 276.
    [55] Devine B M,Munday P L,Jones G P.Rising CO2 concentrations affect settlement behaviour of larval damselfishes.Coral Reefs,2012,31(1):229- 238.
    [56] Ferrari M C O,Dixson D L,Munday P L,McCormick M I,Meekan M G,Sih A,Chivers D P.Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification:implications for climate change projections on marine communities.Global Change Biology,2011,17(9):2980- 2986.
    [57] Ferrari M C O,Munday P L,Rummer J L,McCormick M I,Corkill K,Watson S A,Allan B J M,Meekan M G,Chivers D P.Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.Global Change Biology,2015,21(5):1848- 1855.
    [58] Ferrari M C O,McCormick M I,Munday P L,Meekan M G,Dixson D L,Lonnstedt ?,Chivers D P.Putting prey and predator into the CO2 equation - qualitative and quantitative effects of ocean acidification on predator-prey interactions.Ecology Letters,2011,14(11):1143- 1148.
    [59] Cripps I L,Munday P L,McCormick M I.Ocean acidification affects prey detection by a predatory reef fish.PLoS One,2011,6(7):e22736.
    [60] Munday P L,Welch M J,Allan B J M,Watson S A,McMahon S J,McCormick M I.Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water.PeerJ,2016,4:e2501.
    [61] Simpson S D,Munday P L,Wittenrich M L,Manassa R,Dixson D L,Gagliano M,Yan H Y.Ocean acidification erodes crucial auditory behaviour in a marine fish.Biology Letters,2011,7(6):917- 920.
    [62] Dixson D L,Munday P L,Jones G P.Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues.Ecology Letters,2010,13(1):68- 75.
    [63] Munday P L,Donelson J M,Dixson D L,Endo G G K.Effects of ocean acidification on the early life history of a tropical marine fish.Proceedings of the Royal Society B:Biological Sciences,2009,276(1671):3275- 3283.
    [64] Munday P L,Dixson D L,Donelson J M,Jones G P,Pratchett M S,Devitsina G V,D?ving K B.Ocean acidification impairs olfactory discrimination and homing ability of a marine fish.Proceedings of the National Academy of Sciences of the United States of America,2009,106(6):1848- 1852.
    [65] Jutfelt F,Hedg?rde M.Juvenile Atlantic cod behavior appears robust to near-future CO2 levels.Frontiers in Zoology,2015,12:11.
    [66] Jutfelt F,Hedg?rde M.Atlantic cod actively avoid CO2 and predator odour,even after long-term CO2 exposure.Frontiers in Zoology,2013,10:81.
    [67] Maneja R H,Frommel A Y,Browman H I,Clemmesen C,Geffen A J,Folkvord A,Piatkowski U,Durif C M F,Bjelland R,Skiftesvik A B.The swimming kinematics of larval Atlantic cod,Gadus morhua L.,are resilient to elevated seawater pCO2.Marine Biology,2013,160(8):1963- 1972.
    [68] Melzner F,G?bel S,Langenbuch M,Gutowska M A,P?rtner H O,Lucassen M.Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4- 12 months) acclimation to elevated seawater.Aquatic Toxicology,2009,92(1):30- 37.
    [69] Leduc A O H C,Roh E,Harvey M C,Brown G E.Impaired detection of chemical alarm cues by juvenile wild Atlantic salmon (Salmo salar) in a weakly acidic environment.Canadian Journal of Fisheries and Aquatic Sciences,2006,63(10):2356- 2363.
    [70] Rossi T,Pistevos J C A,Connell S D,Nagelkerken I.On the wrong track:ocean acidification attracts larval fish to irrelevant environmental cues.Scientific Reports,2018,8:5840.
    [71] Rossi T,Nagelkerken I,Simpson S D,Pistevos J C A,Watson S A,Merillet L,Fraser P,Munday P L,Connell S D.Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement.Proceedings of the Royal Society B:Biological Sciences,2015,282(1821):20151954.
    [72] Sundin J,Vossen L E,Nilsson-Sk?ld H,Jutfelt F.No effect of elevated carbon dioxide on reproductive behaviors in the three-spined stickleback.Behavioral Ecology,2017,28(6):1482- 1491.
    [73] Lai F,Jutfelt F,Nilsson G E.Altered neurotransmitter function in CO2 -exposed stickleback (Gasterosteus aculeatus):a temperate model species for ocean acidification research.Conservation Physiology,2015,3(1):cov018.
    [74] N?slund J,Lindstr?m E,Lai F,Jutfelt F.Behavioural responses to simulated bird attacks in marine three-spined sticklebacks after exposure to high CO2 levels.Marine and Freshwater Research,2015,66(10):877- 885.
    [75] Jutfelt F,de Souza K B,Vuylsteke A,Sturve J.Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels.PLoS One,2013,8(6):e65825.
    [76] Milazzo M,Cattano C,Alonzo S H,Foggo A,Gristina M,Rodolfo-Metalpa R,Sinopoli M,Spatafora D,Stiver K A,Hall-Spencer J M.Ocean acidification affects fish spawning but not paternity at CO2 seeps.Proceedings of the Royal Society B:Biological Sciences,2016,283(1835):20161021.
    [77] Nasuchon N,Yagi M,Kawabata Y,Gao K S,Ishimatsu A.Escape responses of the Japanese anchovy Engraulis japonicus under elevated temperature and CO2 conditions.Fisheries Science,2016,82(3):435- 444.
    [78] Hamilton T J,Holcombe A,Tresguerres M.CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning.Proceedings of the Royal Society B:Biological Sciences,2014,281(1775):20132509.
    [79] Pimentel M,Pegado M,Repolho T,Rosa R.Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae.Marine Biology,2014,161(3):725- 729.
    [80] 赵大鹏,李保国.中国非人灵长类物种的行为偏侧研究进展.兽类学报,2016,36(2):232- 240.
    [81] Kurvers R H J M,Krause S,Viblanc P E,Herbert-Read J E,Zaslansky P,Domenici P,Marras S,Steffensen J F,Svendsen M B S,Wilson A D M,Couillaud P,Boswell K M,Krause J.The evolution of lateralization in group hunting sailfish.Current Biology,2017,27(4):521- 526.
    [82] Dadda M,Koolhaas W H,Domenici P.Behavioural asymmetry affects escape performance in a teleost fish.Biology Letters,2010,6(3):414- 417.
    [83] Nagelkerken I,Munday P L.Animal behaviour shapes the ecological effects of ocean acidification and warming:moving from individual to community-level responses.Global Change Biology,2016,22(3):974- 989.
    [84] Pitcher T J.Functions of shoaling behaviour in teleosts//Pitcher T J,ed.The Behaviour of Teleost Fishes.Boston,MA:Springer,1986:294- 337.
    [85] Krause J,Tegeder R W.The mechanism of aggregation behaviour in fish shoals:individuals minimize approach time to neighbours.Animal Behaviour,1994,48(2):353- 359.
    [86] Nagelkerken I,Goldenberg S U,Ferreira C M,Russell B D,Connell S D.Species interactions drive fish biodiversity loss in a high-CO2 world.Current Biology,2017,27(14):2177- 2184.e4.
    [87] 赖晓健,洪万树,张其永.鱼类嗅觉系统和性信息素受体的研究进展.动物学杂志,2013,48(2):298- 305.
    [88] 杨纬和,张健旭.鱼类信息素研究概况.动物学杂志,2010,45(1):169- 176.
    [89] Tierney A J,Atema T.Amino acid chemoreception:effects of pH on receptors and stimuli.Journal of Chemical Ecology,1988,14(1):135- 141.
    [90] Roggatz C C,Lorch M,Hardege J D,Benoit D M.Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.Global Change Biology,2016,22(12):3914- 3926.
    [91] Munday P L,Hernaman V,Dixson D L,Thorrold S R.Effect of ocean acidification on otolith development in larvae of a tropical marine fish.Biogeosciences,2011,8(6):1631- 1641.
    [92] Bignami S,Sponaugle S,Cowen R K.Response to ocean acidification in larvae of a large tropical marine fish,Rachycentron canadum.Global Change Biology,2013,19(4):996- 1006.
    [93] Knight K.Ocean acidification will interfere with fish eyes.Journal of Experimental Biology,2014,217(3):311- 312.
    [94] Lambert N,Grover L.The mechanism of biphasic GABA responses.Science,1995,269(5226):928- 929.
    [95] Heuer R M,Grosell M.Physiological impacts of elevated carbon dioxide and ocean acidification on fish.American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2014,307(9):R1061-R1084.
    [96] O′Donnell S.The neurobiology of climate change.The Science of Nature,2018,105(1/2):11.
    [97] Hamilton S L,Logan C A,Fennie H W,Sogard S M,Barry J P,Makukhov A D,Tobosa L R,Boyer K,Lovera C F,Bernardi G.Species-specific responses of juvenile rockfish to elevated pCO2:from behavior to genomics.PLoS One,2017,12(1):e0169670.
    [98] Schunter C,Welch M J,Ryu T,Zhang H M,Berumen M L,Nilsson G E,Munday P L,Ravasi T.Molecular signatures of transgenerational response to ocean acidification in a species of reef fish.Nature Climate Change,2016,6(11):1014- 1018.
    [99] 吕为群,袁明哲.温度变化对鱼类行为影响的研究进展.上海海洋大学学报,2017,26(6):828- 835.
    [100] Munday P L,McCormick M I,Nilsson G E.Impact of global warming and rising CO2 levels on coral reef fishes:what hope for the future?Journal of Experimental Biology,2012,215(22):3865- 3873.
    [101] Rosa R,Rummer J L,Munday P L.Biological responses of sharks to ocean acidification.Biology Letters,2017,13(3):20160796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700