用户名: 密码: 验证码:
资源高强度流动区水、能源和粮食耦合协调发展研究——以京津冀地区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Coupling Coordinative Degree among Water-energy-Food System in High-intensity Flow Areas——A Case Study of Beijing,Tianjin and Hebei Province
  • 作者:张洪芬 ; 曾静静 ; 曲建升 ; 李恒吉 ; 刘莉娜 ; 吴金甲 ; 徐丽
  • 英文作者:ZHANG Hong-fen;ZENG Jing-jing;QU Jian-sheng;LI Heng-ji;LIU Li-na;WU Jin-jia;XU Li;College of Earth and Environmental Science, Lanzhou University;Lanzhou Information Center, Chinese Academy of Sciences;
  • 关键词:水-能-粮系统 ; 耦合协调发展 ; 京津冀
  • 英文关键词:system of water,energy and food;;coupling and coordination;;Beijing,Tianjin and Hebei
  • 中文刊名:中国农村水利水电
  • 英文刊名:China Rural Water and Hydropower
  • 机构:兰州大学资源环境学院;中国科学院兰州文献情报中心/全球变化研究信息中心;
  • 出版日期:2019-05-15
  • 出版单位:中国农村水利水电
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目“结构调整与减排管理对碳排放强度的作用规律及参数化”(2016YFA0602803);; 国家自然科学基金青年科学基金项目“城乡居民家庭碳排放的演进趋势与调控方法研究”(41401656)
  • 语种:中文;
  • 页:22-26+33
  • 页数:6
  • CN:42-1419/TV
  • ISSN:1007-2284
  • 分类号:X24;F426.2;F326.11
摘要
随着社会经济和人口的增长,各地区尤其是资源高强度流动区面临着越来越大的水资源、能源和粮食压力。为缓解地区内的资源压力,需要综合了解WEF系统之间的协调发展状况,以便更好地发挥资源间的协同作用,提高资源利用效率,实现WEF系统的安全及社会的可持续发展。通过构建WEF系统的综合评价指标体系,运用熵值法确定权重,综合评价了京津冀地区WEF系统的发展水平,并测算了三个系统间的耦合协调发展程度。结果表明,京津冀地区的WEF系统综合评价水平呈逐年上升趋势,其耦合协调度历经勉强协调、初级协调和中级协调三种类型向良好协调类型演进,总体上升空间较大。建议应针对地区情况,提高滞后系统的发展水平,加强跨部门合作,以实现WEF系统的资源安全及持续协调发展。
        With the growth of economy and population, water, energy, and food in all areas, especially in areas with high resource intensity, are facing increasing pressure. In order to alleviate the resource pressure in the region, it is necessary to understand the coordinated development between WEF systems, so as to better play the synergy between resources, improve the efficiency of resource utilization, and realize the security of WEF systems and the sustainable development of society. This paper constructs the WEF system's comprehensive evaluation index system, determines the weights through the entropy method, comprehensively evaluates the development level of the WEF system in Beijing, Tianjin and Hebei, and measures the coupling and coordinated development of the three systems. The results show that the comprehensive evaluation level of the WEF system in the Beijing,Tianjin and Hebei has been increasing year after year. The coupling coordination degree has undergone three types of reluctant coordination, primary coordination, and intermediate coordination to evolve into good coordination types, and the overall rise space is relatively large. We should improve the development level of the lagging system and strengthen cross-sector cooperation in order to achieve the resource safety and continuous coordinated development of the WEF system.
引文
[1] R P S Malik.Water-energy nexus in resource-poor economies:the indian experience[J].International Journal of Water Resources Development,2002,18(1):47-58.
    [2] R A A,CHIANG P C.Water-energy nexus for urban water systems:a comparative review on energy intensity and environmental impacts in relation to global water risks[J].Applied energy,017,205:589-601.
    [3] Hoff H.Understanding the Nexus[C]// Background Paper for the Bonn2011 Conference:TheWater,Energy and Food Security Nexus.Stockholm:Stockholm Environ.Inst.,2011.
    [4] Keairns D L,Darton R C,Irabien A.The energy-water-food nexus[J].Annu Rev Chem Biomol Eng,2016,7(7):239-262.
    [5] Hellegers P,Zilberman D,Steduto P,et al.Interactions between water,energy,food and environment:evolving perspectives and policy issues[J].2008,10(S1):1-10.
    [6] Mccornick P G,Awulachew S B,Abebe M,et al.Water-food-energy-environment synergies and tradeoffs:major issues and case studies.[J].Water Policy,2008,10(1):23-36.
    [7] Kling C L,Arritt R W,Calhoun G,et al.Integrated assessment models of the food,energy,and water nexus:a review and an outline of research needs[J].Annual Review of Resource Economics,2017,9(1):1-21.
    [8] Salmoral G,Yan X.Food-energy-water nexus:A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment,UK[J].Resources Conservation & Recycling,2018.
    [9] 李良,毕军,周元春,等.基于粮食-能源-水关联关系的风险管控研究进展[J].中国人口·资源与环境,2018,28(7):85-92.
    [10] Yi Jin,Xu Tang,Cuiyang Feng,et al.Energy and water conservation synergy in China:2007-2012[J].Resources,Conservation & Recycling,2017,127.
    [11] Sovacool B K,Sovacool K E.Identifying future electricity-water tradeoffs in the United States[J].Energy Policy,2009,37(7):2 763-2 773.
    [12] Xydis G A,Liaros S,Botsis K.Energy demand analysis via small scale hydroponic systems in suburban areas:an integrated energy-food nexus solution[J].Science of the total environment,2017,593:610-617.
    [13] 刘定惠,杨永春.区域经济-旅游-生态环境耦合协调度研究——以安徽省为例[J].长江流域资源与环境,2011,20(7):892-896.
    [14] 贺三维,邵玺.京津冀地区人口-土地-经济城镇化空间集聚及耦合协调发展研究[J].经济地理,2018(1):95-102.
    [15] 邓鹏,陈菁,陈丹,等.区域水-能源-粮食耦合协调演化特征研究——以江苏省为例[J].水资源与水工程学报,2017,28(6):232-238.
    [16] 杨建利,雷永阔.我国粮食安全评价指标体系的建构、测度及政策建议[J].农村经济,2014(5):23-27.
    [17] 梁伟森,方伟,杨万江.基于熵值法的广东省地级市粮食生产安全评价研究[J].南方农村,2017,33(4):47-51.
    [18] 钱晓惠.河南省水资源安全实证分析[J].中原工学院学报,2014,25(3):67-70.
    [19] 时珊珊.中国可持续能源安全评价与监管研究[D].武汉:武汉大学,2017.
    [20] 田冲.沈阳市水资源安全评价研究[D].辽宁大连:辽宁师范大学,2014.
    [21] 朱喜安,魏国栋.熵值法中无量纲化方法优良标准的探讨[J].统计与决策,2015(2):12-15.
    [22] 王富喜,毛爱华,李赫龙,等.基于熵值法的山东省城镇化质量测度及空间差异分析[J].地理科学,2013,33(11):1 323-1 329.
    [23] 姜磊,柏玲,吴玉鸣.中国省域经济、资源与环境协调分析——兼论三系统耦合公式及其扩展形式[J].自然资源学报,2017,32(5):788-799.
    [24] 程钰,任建兰,徐成龙.生态文明视角下山东省人地关系演变趋势及其影响因素[J].中国人口·资源与环境,2015,25(11):121-127.
    [25] 刘耀彬,李仁东,宋学锋.中国城市化与生态环境耦合度分析[J].自然资源学报,2005,20(1):105-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700