用户名: 密码: 验证码:
皖赣交界地区历口群岩石组成及其对造山后超大陆裂解的指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lithology of Likou Group from Around the Anhui-Jiangxi Boundary,South China: Implications for Post-orogenic Collapse of Supercontinent Breakup
  • 作者:曾严 ; 余心起 ; 刘秀 ; 胡军 ; 刘孟言 ; 汪子莘
  • 英文作者:ZENG Yan;YU Xinqi;LIU Xiu;HU Jun;LIU Mengyan;WANG Zishen;School of Earth Sciences and Resources,China University of Geosciences;
  • 关键词:历口群 ; 玄武岩 ; 江南造山带东段 ; 裂谷盆地 ; 地幔柱
  • 英文关键词:Likou Group;;basalt;;eastern part of Jiangnan orogen;;rift basin;;plume
  • 中文刊名:现代地质
  • 英文刊名:Geoscience
  • 机构:中国地质大学(北京)地球科学与资源学院;
  • 出版日期:2019-04-22 15:14
  • 出版单位:现代地质
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金重大项目“大陆中部地壳天然固态流变与应变局部化”(41430211);国家自然科学基金面上项目“浙赣皖相邻区中生代推(滑)覆构造特征及其时序分析”(41872201)
  • 语种:中文;
  • 页:69-84
  • 页数:16
  • CN:11-2035/P
  • ISSN:1000-8527
  • 分类号:P542;P588.145
摘要
历口群是一套沉积-火山岩地层,分布于皖赣交界地区祁门—潜口—歙县断裂带以北,是江南造山带东段新元古代上部浅变质基底。历口群邓家组夹层玄武岩与铺岭组玄武岩具有大陆弧型玄武岩的REE配分模式((La/Yb)_N=2.97~4.47)和微量元素模式。邓家组夹层玄武岩与铺岭组玄武岩的里特曼指数分别为0.029~2.203和4.304~6.538,表明两者是同期不同阶段的产物。历口群邓家组、铺岭组、小安里组界面清晰,形成过程连续,应该合并为一个组,仍称为邓家组,铺岭组作为邓家组上段,小安里组作为邓家组顶段。历口群邓家组中段上部夹层玄武岩用LA-ICP-MS法测得的锆石U-Pb年龄为(804.2±7.4)Ma。原位锆石Lu-Hf同位素结果表明玄武岩锆石的初始~(176)Hf/~(177)Hf比值为0.281 837~0.282 076,ε_(Hf)(t)为-15.9~-7.0,二阶段模式年龄(t_(DM2))为2.16~2.68 Ga,意味着岩浆源区受到了地壳物质的强烈混染,代表着裂解中期阶段结束,岩浆活动发展至地表。历口群的沉积特征表明,江南造山带东段的新元古代裂谷盆地属于被动型裂谷盆地,俯冲板块的回撤为其主导因素,Rodinia地幔柱活动对大地构造的演化有明显影响,裂解的形成是板块活动与地幔柱活动相互作用的结果。
        The Likou Group comprises a volcanic-sedimentary succession distributed to the north of the QimenQiankou-Shexian fault zone near the boundary between Anhui and Jiangxi,South China. It is the upper part of Neoproterozoic epimetamorphic basement in the eastern part of the Jiangnan orogen. Interbedded basalt from the Dengjia and Pulin formations have Continental Arc Basalt( CAB)-like REE distribution(( La/Yb)N= 2. 97-4. 47) and trace-element patterns. The Dengjia and Pulin Formation basalts have Rittmann Index of 0. 029-2. 203 and 4. 304-6. 538,respectively,suggesting comagmatic products of different stages. The Dengjia,Pulin and Xiao'anli formations of the Likou Group have clear boundary surfaces and probably continuous rock formation,and therefore can be merged into one formation( still named Dengjia Formation). The Pulin and Xiao'anli formations represent the upper and top parts of the newly-defined Dengjia Formation,respectively. Basalt from the Dengjia Formation is dated to be( 804. 2 ± 7. 4) Ma by high-precision LA-ICP-MS U-Pb zircon dating. The zircons from interbedded basalt have initial176 Hf/177 Hf ratios of 0. 281,837 to 0. 282,076,εHf( t) of-15. 9 to-7. 0,and two-stage Hf model ages of 2. 16 to 2. 68 Ga,indicating a magmatic source with significant ancient crustal input. The results may reflect that the intermediate stage of rifting had ended,and the magmatism had progressed to the earth surface. Sedimentary characteristics of the Likou Group indicate that the Neoproterozoic rift basin in the eastern part of the Jiangnan orogen was a passive rift basin,which was controlled mainly by subduction rollback,and the Rodinia plume activities may have also made significant impact to the tectonic evolution.We suggest that the rifting was resulted from the interactions between plate subduction and Rodinia superplume.
引文
[1]CHARVET J,SHU L,SHI Y,et al. The building of south China:collision of Yangzi and Cathaysia blocks,problems and tentative answers[J]. Journal of Southeast Asian Earth Science,1996,13(3/5):223-235.
    [2]程光华,汪应庚.江南东段构造格架[J].安徽地质,2000,10(1):1-8.
    [3]WANG Y J,ZHANG A,CAWOOD P A,et al. Geochronological,geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research,2013,231:343-371.
    [4]LI X H,LI W X,LI Z X,et al. Amalgamation between the Yangtze and Cathaysia blocks in south China:constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research,2009,174:117-128.
    [5]ZHANG C L,ZOU H B,ZHU Q B,et al. Late Mesoproterozoic to Early Neoproterozoic ridge subduction along southern margin of the Jiangnan orogen:new evidence from the northeastern Jiangxi ophiolite(NJO), south China[J]. Precambrian Research,2015,268:1-15.
    [6]蒋幸福,彭松柏,KUSKY T,等.江南造山带东段赣东北蛇绿岩的形成时代:来自辉长岩LA-ICP-MS锆石U-Pb年龄的证据[J].现代地质,2017,31(4):697-704.
    [7]WANG X L,ZHAO G C,ZHOU J C,et al. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group,South China:implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen[J]. Gondwana Research,2008,14(3):355-367.
    [8]CUI X,ZHU W B,FITZSIMONS I C W,et al. A possible transition from island arc to continental arc magmatism in the eastern Jiangnan Orogen,South China:Insights from a Neoproterozoic(870-860 Ma)gabbroic-dioritic complex near the Fuchuan ophiolite[J]. Gondwana Research,2017,46:1-16.
    [9]LIN S F,XING G F,DAVIS D W,et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology,2018,46(4):319-322.
    [10]邢凤鸣,陈江峰,徐祥,等.皖南浅变质岩和沉积岩的钕同位素特点及其大地构造意义[J].现代地质,1991,5(3):290-299.
    [11]ZHAO J H,ZHOU M F,YAN D P,et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4):299-302.
    [12]WANG W,ZHOU M F,YAN D P,et al. Depositional age,provenance,and tectonic setting of the Neoproterozoic Sibao Group,southeastern Yangtze Block,South China[J]. Precambrian Research,2012,192/195:107-124.
    [13]WANG W,ZHOU M F,YAN D P,et al. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen,South China[J]. Precambrian Research,2013,235:1-19.
    [14]韩瑶,张传恒,刘子荟,等.浙江浦江新元古界平水群沉积特征、碎屑锆石年龄及构造古地理格局探讨[J].地质论评,2015,61(6):1270-1280.
    [15]廖圣兵,张彦杰,周效华,等.皖赣相邻地区双桥山群沉积序列及沉积环境分析[J].现代地质,2016,30(1):130-143.
    [16]LI L M,LIN S F,XING G F,et al. Ca. 830 Ma back-arc type volcanic rocks in the eastern part of the Jiangnan orogen:implications for the Neoproterozoic tectonic evolution of South China Block[J]. Precambrian Research,2016,275:209-224.
    [17]LI Y J,WANG X L,ZHANG F F,et al. A rhythmic source change of the Neoproterozoic basement meta-sedimentary sequences in the Jiangnan Orogen:Implications for tectonic evolution on the southeastern margin of the Yangtze Block[J]. Precambrian Research,2016,280:46-60.
    [18]WANG X L,ZHOU J C,GRIFFIN W L,et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yangtze and Cathaysia blocks[J]. Precambrian Research,2007,159(1/2):117-131.
    [19]ZHANG S B,WU R X,ZHENG Y F. Neoproterozoic continental accretion in South China:geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research,2012,220/221:45-64.
    [20]XU X B,XUE D,LI Y,et al. Neoproterozoic sequences along the Dexing-Huangshan fault zone in the eastern Jiangnan orogen,South China:geochronological and geochemical constrains[J].Gondwana Research,2014,25(1):368-382.
    [21]XU X B,LI Y,TANG S,et al. Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block:constraints from structural analysis and40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences,2015,98:141-151.
    [22]XU X B,LIN S F,TANG S,et al. Transformation from Neoproterozoic sinistral to Early Paleozoic dextral shearing for the Jingdezhen ductile shear zone in the Jiangnan orogen,south China[J]. Journal of Earth Science,2018,29(2):376-390.
    [23]LI Z X,WARTHO J A,COOHIPINTI S,et al. Early history of the eastern Sibao Orogen(South China)during the assembly of Rodinia:New mica40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research,2007,159:79-94.
    [24]WANG J,LI Z X. Sequence stratigraphy and evolution of the Neoproterozoic marginal basins along southeastern Yangtze Craton,South China[J]. Gondwana Research,2001,4(1):17-26.
    [25]LI Z X,LI X H,KINNY P D,et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research,2003,122(1):85-109.
    [26]WANG J,LI Z X. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research,2003,122(1):141-158.
    [27]WANG Q,WYMAN D A,LI Z X,et al. Petrology,geochronology and geochemistry of ca. 780 Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research,2010,178(1):185-208.
    [28]XU X B,LI Q M,GUI L,et al. Detrital zircon U-Pb geochronology and geochemistry of Early Neoproterozoic sedimentary rocks from the northwestern Zhejiang Basin,South China[J]. Marine and Petroleum Geology,2018,98:607-621.
    [29]汪正江,王剑,江新胜,等.华南扬子地区新元古代地层划分对比研究新进展[J].地质论评,2015,61(1):1-22.
    [30]CUI X,ZHU W B,FITZSIMONS I C W,et al. U-Pb age and Hf isotope composition of detrital zircons from Neoproterozoic sedimentary units in southern Anhui Province,South China:Implications for the provenance,tectonic evolution and glacial history of the eastern Jiangnan Orogen[J]. Precambrian Research,2015,271:65-82.
    [31]ZHANG F F,WANG X L,SUN Z M,et al. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area:Constraints on the initiation of Neoproterozoic rifting in South China[J]. Precambrian Research,2018, 309:138-151.
    [32]YAO J L,SHU L S,SANTOSH M,et al. Neoproterozoic arc-related andesite and orogeny-related unconformity in the eastern Jiangnan orogenic belt:constraints on the assembly of the Yangtze and Cathaysia blocks in South China[J]. Precambrian Research,2015,262:84-100.
    [33]YAO J L,SHU L S,CAWOOD P A,et al. Delineating and characterizing the boundary of the Cathaysia block and the Jiangnan orogenic belt in south China[J]. Precambrian Research,2016,275:265-277.
    [34]ZHANG C L,SANTOSH M,ZOU H B,et al. The Fuchuan ophiolite in Jiangnan Orogen:Geochemistry,zircon U-Pb Geochronology,Hf isotope and implications for the Neoproterozoic assembly of South China[J]. Lithos,2013,179:263-274.
    [35]LI L M,LIN S F,XING G F,et al. Geochronology and geochemistry of volcanic rocks from the Jingtan Formation in the eastern Jiangnan orogen,South China:Constraints on petrogenesis and tectonic implications[J]. Precambrian Research,2018,309:166-180.
    [36]LI Z X,LI X H,KINNY P D,et al. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J].Earth and Planetary Science Letters,1999,173:171-181.
    [37]LI X H,LI Z X,GE W,et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research,2003,122(1):45-83.
    [38]LI W X,LI X H,LI Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research,2005,136(1):51-66.
    [39]WANG X C,LI X H,LI W X,et al. Ca. 825 Ma komatiitic basalts in South China:first evidence for> 1500℃mantle melts by a Rodinia mantle plume[J]. Geology,2007,35(12):1103-1106.
    [40]LI X H,LI W X,LI Z X,et al. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China:a major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos,2008,102(1):341-357.
    [41]ZHOU M F,YAN D P,KENNEDY A K,et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J]. Earth and Planetary Science Letters,2002,196:51-67.
    [42]ZHENG Y F,WU R X,WU Y B et al. Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen,South China[J]. Precambrian Research,2008,163:351-383.
    [43]DONG Y P,LIU X M,SANTOSH M,et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China:Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research,2011,189:66-90.
    [44]WANG X L,SHU L S,XING G F,et al. Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800-760 Ma volcanic rocks[J]. Precambrian Research,2012,222/223:404-423.
    [45]安徽地质矿产局.安徽省岩石地层[M].武汉:中国地质大学出版社,1997:101-118.
    [46]孙乘云.皖南前震旦纪小安里组的建立和铺岭组玄武岩的发现[J].地层学杂志,1993,17(4):288-292.
    [47]胡军,余心起,曾严,等.歙县—祁门断裂带南北两侧新元古代基底变质-变形差异及成因探讨[J].地质论评,2018,64(6):1339-1355.
    [48]毕治国,王贤方,朱鸿,等.皖南震旦系[M].北京:地质出版社,1988:41-42.
    [49]孙乘云,褚进海,耿晓光,等.安徽东至地区晋宁运动[J].安徽地质,2000,10(1):19-28.
    [50]杜建国,孙乘云,许卫,等.皖南地区葛公镇组砾岩性质及其构造含义[J].资源调查与环境,2002,23(2):107-112.
    [51]马荣生.皖南前南华纪岩石地层[J].资源调查与环境,2002,23(2):94-106.
    [52]薛怀民,马芳,宋永勤,等.江南造山带东段新元古代花岗岩组合的年代学和化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报,2010,26(11):3215-3244.
    [53]WU R X,ZHENG Y F,WU Y B,et al. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research,2006,146(3/4):179-212.
    [54]吴荣新,郑永飞,吴元保.皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究[J].高校地质学报,2007,13(2):282-296.
    [55]吴荣新,郑永飞,吴元保,等.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究[J].高校地质学报,2005,11(3):364-382.
    [56]LIU Y S,GAO S,HU Z C,et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Petrology,2010,51(1/2):537-571.
    [57]HU Z C,LIU Y S,GAO S,et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2012,27(9):1391-1399.
    [58]HOSKIN P W O,BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,2000,18(4):423-439.
    [59]RUBATTO D,GEBAUER D. Use of Cathodoluminescence for UPb Zircon Dating by Ion Microprobe:Some Example from the Western Alps[M]. Heidelberg:Springer-Verlag,2000:373-400.
    [60]BELOUSOVA E A,GRIFFIN W L,O'REILLY S Y,et al. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contribution to Mineralogy and Petrology,2002,143(5):602-622.
    [61]MOLLER A,O'BRIEN P J,KENNEDY A,et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland(SW Norway)[J]. Geological Society,London,Special Publications,2003,220(1):65-81.
    [62]VERVOORT J D,PATCHETT P J. Behavior of hafnium and neodymium isotopes in the crust:Constraints from Precambrian crustally derived granites[J]. Geochimica et Cosmochimica Acta,1996,60(19):3717-3733.
    [63]AMELIN Y,HALLIDAY A N,LEE D C. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta,2000,64(24):4205-4225.
    [64]BLICHERT T F,ALBAREDE F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J].Earth and Planetary Science Letters,1997,148:243-258.
    [65]GRIFFIN W L,PEARSON N J,BELOUSOVA E,et al. The Hf isotope composition of cratonic mantle:LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta,2000,64(1):133-147.
    [66]SODERLUND U,PATCHETT P J,ISACHSEN S E. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters,2004,219(3/4):311-324.
    [67]吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [68]MAITRE R W L,BATEMAN P,DUDEK A,et al. A Classification of Igneous Rocks and Glossary of Terms[M]. Chichester:Blackwell,1989:193.
    [69]SUN S S,MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J]. Geological Society,London,Special Publication,1989,42(1):313-345.
    [70]黄文成,叶海敏,孟庆秀.皖南新元古代双峰式岩墙群的年龄、地球化学特征及地质意义[J].资源调查与环境,2014,35(3):192-201.
    [71]VERVOORT J D,PATCHETT P J,ALBAREDE F,et al. Hf-Nd isotopic evolution of the lower crust[J]. Earth and Planetary Science Letters,2000,181(1/2):115-129.
    [72]高林志,杨明桂,丁孝忠,等.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄[J].地质通报,2008,27(10):1744-1751.
    [73]贾进华.陆相前陆盆地沉积充填与层序地层模式探讨——以库车前陆盆地为例[J].现代地质,2009,23(4):739-745.
    [74]马荣生,余心起,程光华.论皖南邓家组、铺岭组[J].安徽地质,2001,11(2):95-105.
    [75]卢成忠,杨树峰,顾明光,等.浙江次坞地区晋宁晚期双峰式岩浆岩杂岩带的地球化学特征:Rodinia超大陆裂解的岩石学记录[J].岩石学报,2009,25(1):67-76.
    [76]WATSON M P,HAYWARD A B,PARKINSON D N,et al.Plate tectonic history,basin development and petroleum source rock deposition onshore,China[J]. Marine and Petroleum Geology,1987,4(3):205-225.
    [77]CHUNG S L,CHU M F,ZHANG Y Q,et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews,2005,68(3/4):173-196.
    [78]LI W X,LI X H,LI Z X. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng,South China:petrogenesis and tectonic significance[J]. Geological Magazine,2008,145:475-489.
    [79]SHU L S,FAURE M,YU J H,et al. Geochronological and geochemical features of the Cathaysia block(South China):new evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research,2011,187(3/4):263-276.
    [80]LYU P L,LI W X,WANG X C,et al. Initial breakup of supercontinent Rodinia as recorded by ca 860-840 Ma bimodal volcanism along the southeastern margin of the Yangtze Block,South China[J]. Precambrian Research,2017,296:148-167.
    [81]罗照华,辛后田,陈必河,等.壳幔过渡层及其大陆动力学意义[J].现代地质,2007,21(2):421-425.
    [82]WANG W,ZHOU M F. Sedimentary records of the Yangtze Block(South China)and their correlation with equivalent Neoproterozoic sequences on adjacent continents[J]. Sedimentary Geology,2012,265/266:126-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700