用户名: 密码: 验证码:
基于TUV模式的对流层光解速率影响因子的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A study on the influencing factors of tropospheric photolysis rate based on TUV model
  • 作者:昝雅媛 ; 马晓燕 ; 田蓉
  • 英文作者:ZAN Ya-yuan;MA Xiao-yan;TIAN Rong;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology;
  • 关键词:光解速率 ; 光化通量 ; ; 气溶胶 ; 对流层紫外及可见光辐射模式
  • 英文关键词:photolysis rate;;actinic flux;;cloud;;aerosol;;Tropospheric Ultraviolet and Visible Radiation Model
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室;
  • 出版日期:2019-09-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(41675004)
  • 语种:中文;
  • 页:125-136
  • 页数:12
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X513
摘要
应用TUV辐射传输模式进行了一系列的敏感性试验,以期确定影响对流层O_3和NO_2光解速率的关键性因子.结果表明,气溶胶的光学性质对光解速率的影响存在明显差异.在气溶胶光学厚度(AOD)一定的情况下,散射性越强,近地面光解速率越大;当AOD从0.5增加至2.5, J[O1D]和J[NO_2]极大值分别下降30.3%和13.1%.光解速率对较小的云光学厚度的变化比较敏感.云对J[NO_2]的影响存在明显的时间差异,在早晨和傍晚, J[NO_2]的衰减可以达到12%,而午时, J[NO_2]的衰减不足4%;在垂直方向上,云层的存在能够减小通过云层的光化辐射通量,有效降低云下光解速率,而云滴的后向散射特性能增大云上的光解速率.臭氧能够吸收300nm左右的紫外辐射,因而臭氧柱浓度变化对J[O1D]有显著的影响,臭氧柱浓度从200DU增加至400DU, J[O1D]极大值下降了53.1%,J[NO_2]极大值仅降低了1.0%.同时发现,气溶胶和云相对位置的改变对光解速率的垂直分布有较大的影响,气溶胶在云上时,高层的光解速率明显增大,且气溶胶的散射性越强,光解速率的增幅越大;当吸收性气溶胶位于云上时,使得高层光化辐射通量大量衰减,此时云层对于光解速率的影响比较微弱.
        In this paper, a series of sensitivity tests were carried out using radiation transfer model(TUV) to determine the key factors affecting the photolysis rate of tropospheric O_3 and NO_2. The results showed that the optical properties of aerosols could have a significant impact on the photolysis rate. When the aerosol optical depth(AOD) was constant, the stronger the scattering was, the higher the near-surface photolysis rates were. When AOD increases from 0.5 to 2.5, the maximum values of J[O1D] and J[NO_2] decreased by 30.3% and 13.1%, respectively. The photolysis rates were more sensitive to the change of smaller cloud optical depth. The effect of cloud on J[NO_2] varied with time significantly. In the morning and evening, the attenuation of J[NO_2] could reach 12%, while the attenuation of J[NO_2] in the noon was less than 4%. In the vertical direction, the presence of the cloud layer could reduce the photolysis rate under the cloud effectively via reducing the actinic flux through the cloud layer. The backscattering properties of cloud droplets increased the photolysis rate above the cloud. Ozone could absorb ultraviolet radiation around 300 nm, so total ozone content had a considerable effect on J[O1D]. The ozone column concentration increased from 200 DU to 400 DU, the maximum value of J[O1D] decreased by 53.1%, while the maximum value of J[NO_2] was only reduced by 1.0%. At the same time, the relative position of aerosols and clouds was found having a great influence on the vertical distribution of the photolysis rate. When the aerosol was located above the cloud, the photolysis rate of the upper layer was significantly increased, and the stronger the scattering of the aerosol, the greater the increase of the photolysis rate; When the absorbing aerosol was located above the cloud, the actinic flux in the upper layer was greatly attenuated. The influence of the cloud on the photolysis rate was weak in this situation.
引文
[1] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics:From air pollution to climate change[M]. New York, US:John Wiley&Sons, Incorporated, 2016:44-47.
    [2] Dickerson R, Kondragunta S, Stenchikov G, et al. The impact of aerosols on solar ultraviolet radiation and photochemical smog[J].Science, 1997,278(5339):827-830.
    [3] Liao H, Yung Y L, Seinfeld J H. Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres[J]. Journal of Geophysical Research:Atmospheres, 1999,104(D19):23697-23707.
    [4] Xia X, Chen H, Li Z, et al. Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China[J]. Journal of Geophysical Research:Atmospheres,2007,112(D22S02),doi:10.1029/2006JD007562.
    [5]邓雪娇,周秀骥,铁学熙,等.广州大气气溶胶对到达地表紫外辐射的衰减[J].科学通报, 2012,57(18):1684-1691.Deng X J, Zhou X J, Tie X X, et al. Attenuation of atmospheric aerosols to the surface ultraviolet radiation in Guangzhou[J]. Chinese Science Bulletin, 2012,57(18):1684-1691.
    [6]邓雪娇,周秀骥,吴兑,等.广州地区光化辐射通量与辐照度的特征[J].中国环境科学, 2010,30(7):893-899.Deng X J, Zhou X J, Wu D, et al. Characterization of actinic flux and irradiances over Guangzhou region[J]. China Environmental Science,2010,30(7):893-899.
    [7]邓雪娇,周秀骥,吴兑,等.珠江三角洲大气气溶胶对地面臭氧变化的影响[J].中国科学:地球科学, 2011,41(1):93-102.Deng X J, Zhou X J, Wu D, et al. Influence of atmospheric aerosols on the changes of ground-level ozone in the Pearl River Delta[J].SCIENTIA SINICA Terrae, 2011,41(1):93-102.
    [8] Casasanta G, Di Sarra A, Meloni D, et al. Large aerosol effects on ozone photolysis in the Mediterranean[J]. Atmospheric Environment,2011,45(24):3937-3943.
    [9] Gerasopoulos E, Kazadzis S, Vrekoussis M, et al. Factors affecting O3and NO2 photolysis frequencies measured in the eastern Mediterranean during the five-year period 2002~2006[J]. Journal of Geophysical Research:Atmospheres, 2012,117(D22305),doi:10.1029/2012JD017622.
    [10] Jonson J, Kylling A, Berntsen T, et al. Chemical effects of UV fluctuations inferred from total ozone and tropospheric aerosol variations[J]. Journal of Geophysical Research:Atmospheres, 2000,105(D11):14561-14574.
    [11] Real E, Sartelet K. Modeling of photolysis rates over Europe:impact on chemical gaseous species and aerosols[J]. Atmospheric Chemistry and Physics, 2011,11(4):1711-1727.
    [12] Sunny F, Mahadevan T, Sitaraman V. Estimation of actinic flux and photolysis rate constant of NO2 from aerosol size data[J].Atmospheric Environment, 1999,33(9):1479-1488.
    [13] Palancar G G, Lefer B, Hall S, et al. Effect of aerosols and NO2concentration on ultraviolet actinic flux near Mexico City during MILAGRO:measurements and model calculations[J]. Atmospheric Chemistry and Physics, 2013,13(2):1011-1022.
    [14] Alvarado M, Lonsdale C, Yokelson R, et al. Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral[J]. Atmospheric Chemistry and Physics, 2015,15(12):6667-6688.
    [15] Li G, Bei N, Tie X, et al. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign[J].Atmospheric Chemistry and Physics, 2011,11(11):5169-5182.
    [16] Li M, Wang T, Han Y, et al. Modeling of a severe dust event and its impacts on ozone photochemistry over the downstream Nanjing megacity of eastern China[J]. Atmospheric Environment, 2017,160:107-123.
    [17] Ying Z, Tie X, Madronich S, et al. Simulation of regional dust and its effect on photochemistry in the Mexico City area during MILAGRO experiment[J]. Atmospheric Environment, 2011,45(15):2549-2558.
    [18] Baylon P, Jaffe D A, Hall S R, et al. Impact of Biomass Burning Plumes on Photolysis Rates and Ozone Formation at the Mount Bachelor Observatory[J]. Journal of Geophysical Research Atmospheres, 2018,123(4):2272-2284.
    [19] Baylon P, Jaffe D, Wigder N, et al. Ozone enhancement in western US wildfire plumes at the Mt. Bachelor Observatory:The role of NOx[J].Atmospheric Environment, 2015,109:297-304.
    [20]高丽波,王体健,崔金梦,等.2016年夏季南京大气污染特征观测分析[J].中国环境科学, 2019,39(1):1-12.Gao L B, Wang T J, Cui J M, et al. Observation and analysis of the characteristics of air pollution in Nanjing in summer 2016[J]. China Environmental Science, 2019,39(1):1-12.
    [21]赖安琪,陈晓阳,刘一鸣,等.珠江三角洲PM2.5和O3复合污染过程的数值模拟[J].中国环境科学, 2017,37(11):4022-4031.Lai A Q, Chen X Y, Liu Y M, et al. Numerical simulation of a complex pollution episode with high concentrations of PM2.5 and O3 over the Pearl River Delta region, China[J]. China Environmental Science,2017,37(11):4022-4031.
    [22]刘建,吴兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响[J].中国环境科学, 2017,37(3):813-820.Liu J, Wu D, Fan S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta[J]. China Environmental Science, 2017,37(3):813-820.
    [23]齐冰,牛彧文,杜荣光,等.杭州市近地面大气臭氧浓度变化特征分析[J].中国环境科学, 2017,37(2):443-451.Qi B, Niu Y W, Du R G, et al. Characteristics of surface ozone concentration in urban site of Hangzhou[J]. China Environmental Science, 2017,37(2):443-451.
    [24]张宇静,赵天良,殷翀之,等.徐州市大气PM2.5与O3作用关系的季节变化[J].中国环境科学, 2019,39(6):2267-2272.Zhang Y J, Zhao T L, Yin C Z, et al. Seasonal variation of the relationship between surface PM2.5and O3concentrations in Xuzhou[J].China Environment Science, 2019,39(6):2267-2272.
    [25] Crawford J, Davis D, Chen G, et al. An assessment of cloud effects on photolysis rate coefficients:Comparison of experimental and theoretical values[J]. Journal of Geophysical Research:Atmospheres,1999,104(D5):5725-5734.
    [26] Lefer B, Shetter R, Hall S, et al. Impact of clouds and aerosols on photolysis frequencies and photochemistry during TRACE-P:1.Analysis using radiative transfer and photochemical box models[J].Journal of Geophysical Research:Atmospheres, 2003,108(D21):8821.
    [27] Madronich S. Photodissociation in the atmosphere:1. Actinic flux and the effects of ground reflections and clouds[J]. Journal of Geophysical Research:Atmospheres, 1987,92(D8):9740-9752.
    [28] Voulgarakis A, Wild O, Savage N, et al. Clouds, photolysis and regional tropospheric ozone budgets[J]. Atmospheric Chemistry and Physics, 2009,9(21):8235-8246.
    [29] Tang Y, Carmichael G R, Uno I, et al. Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P:2.Three-dimensional study using a regional chemical transport model[J]. Journal of Geophysical Research:Atmospheres, 2003,108(D21):1981-1990.
    [30] Flynn J, Lefer B, Rappenglück B, et al. Impact of clouds and aerosols on ozone production in Southeast Texas[J]. Atmospheric Environment,2010,44(33):4126-4133.
    [31] Liao H, Adams P J, Chung S H, et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J]. Journal of Geophysical Research:Atmospheres, 2003,108(D1):4001.
    [32] Xu J, Zhang Y, Wang W. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area[J]. Advances in Atmospheric Sciences, 2006,23(4):605-614.
    [33] Liu H, Crawford J H, Considine D B, et al. Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties[J]. Journal of Geophysical Research Atmospheres, 2009,114(D10305),doi:10.1029/2008JD011503.
    [34] Liu H, Crawford J H, Pierce R B, et al. Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model[J]. Journal of Geophysical Research:Atmospheres,2006,111(D20303),doi:10.1029/2005JD006403.
    [35] Madronich S, Flocke S. The Role of Solar Radiation in Atmospheric Chemistry[M]. Germany:Springer Verlag, 1999.
    [36] Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J]. Applied Optics, 1988,27(12):2502-2509.
    [37] Elterman L. UV, visible, and IR attenuation for altitudes to 50km[D].Bedford, MA, 1968.
    [38] Shao P, An J, Xin J, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J].Atmospheric Research, 2016,176:64-74.
    [39] Ryu Y-H, Hodzic A, Barre J, et al. Quantifying errors in surface ozone predictions associated with clouds over the CONUS:a WRF-Chem modeling study using satellite cloud retrievals[J]. Atmospheric Chemistry and Physics, 2018,18(10):7509-7525.
    [40] D’allura A, Kulkarni S, Carmichael G R, et al. Meteorological and air quality forecasting using the WRF–STEM model during the2008ARCTAS field campaign[J]. Atmospheric Environment, 2011,45(38):6901-6910.
    [41]邓雪娇,铁学熙,吴兑,等.大城市气溶胶对光化辐射通量及臭氧的影响研究(Ⅱ)——数值试验分析[J].广东气象, 2006,28(4):5-11.Deng X J, Tie X X, Wu D, et al. Study on the influence of aerosol on actinic flux and ozone in megecities(II)——Analysis of Numerical experiment[J]. Guangdong Meterology, 2006,28(4):5-11.
    [42]安俊琳,王跃思,李昕,等.北京地面紫外辐射与空气污染的关系研究[J].环境科学, 2008,29(4):1053-1058.An J L, Wang Y S, Li X, et al. Relationship Between Surface UV Radiation and Air Pollution in Beijing[J]. Environmental Science,2008,29(4):1053-1058.
    [43] Mayer B, Fischer C A, Madronich S. Estimation of surface actinic flux from satellite(TOMS)ozone and cloud reflectivity measurements[J].Geophysical Research Letters, 2013,25(23):4321-4324.
    [44] Lingaswamy A P, Arafath S M, Balakrishnaiah G, et al. Observations of trace gases, photolysis rate coefficients and model simulations over semi-arid region, India[J]. Atmospheric Environment, 2017,158:246-258.
    [45] Lu K D, Rohrer F, Holland F, et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006:a missing OH source in a VOC rich atmosphere[J]. Atmospheric Chemistry and Physics, 2011,11(4):11311-11378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700