用户名: 密码: 验证码:
武夷山不同海拔黄山松细根性状季节变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal changes of fine root traits in Pinus taiwanensis Hayata at different altitudes in the Wuyi Mountains
  • 作者:周永姣 ; 程林 ; 王满堂 ; 朱国洁 ; 钟全林 ; 郭炳桥 ; 程栋梁
  • 英文作者:ZHOU Yongjiao;CHENG Lin;WANG Mantang;ZHU Guojie;ZHONG Quanlin;GUO Bingqiao;CHENG Dongliang;Fujian Provincial Key Laboratory of Plant Eco-physiology, Fujian Normal University;Administrative Bureau of Jiangxi Wuyishan National Nature Reserve;School of City and Architecture Engineering, Zaozhuang University;Institute of Geography, Fujian Normal University;
  • 关键词:海拔 ; 季节动态 ; 细根性状 ; 黄山松 ; 武夷山 ; 异速生长关系
  • 英文关键词:altitude;;seasonal dynamics;;fine root traits;;Pinus taiwanensis Hayata;;Wuyi Mountains;;allometric growth relationship
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学福建省植物生理生态重点实验室;江西武夷山国家级自然保护区管理局;枣庄学院城市与建筑工程学院;福建师范大学地理研究所;
  • 出版日期:2019-04-01 09:13
  • 出版单位:生态学报
  • 年:2019
  • 期:12
  • 基金:国家重点研发计划(2017YFC0505400);; 国家自然科学基金项目(31722007);; 福建省杰青滚动资助项目(2018J07003);; 山东省自然科学基金项目(ZR2017QD012)
  • 语种:中文;
  • 页:322-331
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S718.5
摘要
细根作为植物吸收养分和水分的主要器官,其功能性状对森林生态系统功能具有重要影响。以武夷山黄山松为研究对象,通过对不同季节(春季、夏季、秋季和冬季)和不同海拔(1200、1400、1600、1800 m和2000 m)的黄山松细根的功能性状的测定,分析其细根性状特征随海拔和季节变化的规律。结果表明:(1)黄山松细根比根长(SRL),比根面积(SRA)均随海拔先升高后降低,其均值分别为(9.32±0.35) cm/g与(276.41±68.10) cm~2/g;根组织密度(RTD)随海拔先降低后升高,均值为(0.16±0.05) g/cm~3。根平均直径(AvgDiam)随海拔增加变化不显著,均值为(0.097±0.004) mm。SRL和SRA在海拔1600 m处达到最大,而RTD和AvgDiam的最大值出现在海拔1800 m或2000 m处。(2)SRL和SRA在夏季或秋季达到最大,RTD和AvgDiam最大值则出现在冬季或春季。季节和海拔对各细根性状都有显著影响(P<0.01),但季节与海拔对根性状并没有产生显著的交互作用(P>0.05)。(3)SRL与SRA间的异速生长指数是1.25,显著大于1.0(P<0.01);SRL与RTD存在负等速生长关系,而与AvgDiam存在显著负异速生长关系(P<0.01);SRA与RTD,以及RTD与AvgDiam间均存在显著负异速生长关系(P<0.01),但SRA与AvgDiam之间不存在异速生长关系。黄山松的细根性状在1600 m处倾向于增加比根长和比根面积,而在海拔1800 m或2000 m处则倾向于增加组织密度与根直径,这与黄山松细根性状从夏秋到冬春的季节变化规律相类似。同时,相对于比根面积来说,黄山松的细根在海拔1600 m处和夏秋季节更倾向于投资比根长来增加养分的吸收。
        Fine roots are the main organs for plants to absorb nutrients and water, and there are important effects of their functional traits on forest ecosystem functions. In this study, we collected the fine roots of Pinus taiwanensis Hayata at different altitudes(1200, 1400, 1600, 1800, and 2000 m) in the Wuyi Mountains in different seasons(spring, summer, autumn, and winter), and investigated the altitudinal and seasonal variation in fine root traits. The results showed that:(1) the specific root length(SRL) and specific root area(SRA) of P. taiwanensis firstly increased and then decreased with altitudes, and the average values were(9.32±0.35) cm/g and(276.41±68.10) cm~2/g; respectively, root tissue density(RTD) firstly decreased and then increased with altitude with an average value of(0.16±0.05) g/cm~3. The root diameter(AvgDiam) did not change significantly among altitudes, and the mean value was(0.097±0.004) cm. Both SRL and SRA reached a maximum at the altitude of 1600 m, while the maximum values of RTD and AvgDiam appeared at altitudes of 1800 or 2000 m, respectively;(2) SRL and SRA reached a maximum in summer or autumn, and RTD and AvgDiam maximum appeared in winter or spring, respectively. Moreover, season and elevation had significant effects on fine root traits(P<0.01), but not when acting together(P>0.05);(3) there was a significant allometric relationship between SRL and SRA(P<0.01), and the exponent was>1. Negative isometric relationships were found between SRL and RTD, but SRL showed a significant negative allometric relationship with AvgDiam(P<0.01). Significant negative allometric relationships were found between both SRA and RTD, and RTD and AvgDiam(P<0.01). However, there was no allometric relationship between SRA and AvgDiam. Our research showed that the fine root traits of P. taiwanensis tended to increase the SRL and SRA at an altitude of 1600 m, but tended to increase the RTD and AvgDiam at altitudes of 1800 or 2000 m, respectively, which was similar to the fine root traits of P. taiwanensis from summer and autumn to spring and winter. Moreover, fine roots of P. taiwanensis preferred to invest in SRL than SRA for increasing nutrient absorption at altitudes of 1600 m and in summer or autumn.
引文
[1] 张小全,吴可红,Murach D.树木细根生产与周转研究方法评述.生态学报,2000,20(5):875- 883.
    [2] 苏松锦,刘金福,兰思仁,洪伟,李文周.黄山松研究综述(1960- 2014)及其知识图谱分析.福建农林大学学报:自然科学版,2015,44(5):478- 486.
    [3] Ostonen I,Helmisaari H S,Borken W,Tedersoo L,Kukum?gi M,Bahram M,Lindroos A J,N?jd P,Uri V,Meril? P,Asi E,L?hmus K.Fine root foraging strategies in Norway spruce forests across a European climate gradient.Global Change Biology,2011,17(12):3620- 3632.
    [4] 宋长青,冷疏影,吕克解.地理学在全球变化研究中的学科地位及重要作用.地球科学进展,2000,15(3):318- 320.
    [5] Manes F,Vitale M,Donato E,Giannini M,Puppi G.Different ability of three Mediterranean oak species to tolerate progressive water stress.Photosynthetica,2006,44(3):387- 393.
    [6] Hertel D,Strecker T,Müller-Haubold H,Leuschner C.Fine root biomass and dynamics in beech forests across a precipitation gradient-is optimal resource partitioning theory applicable to water-limited mature trees?Journal of Ecology,2013,101(5):1183- 1200.
    [7] Lepp?lammi-Kujansuu J,Salemaa M,Kleja D B,Linder S,Helmisaari H S.Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment.Plant and Soil,2014,374(1/2):73- 88.
    [8] Rytter R M.The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.Tree Physiology,2013,33(9):924- 939.
    [9] Godbold D L,Fritz H W,Jentschke G,Meesenburg H,Rademacher P.Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity.Tree Physiology,2003,23(13):915- 921.
    [10] Useche A,Shipley B.Plasticity in relative growth rate after a reduction in nitrogen availability is related to root morphological and physiological responses.Annals of Botany,2010,106(4):617- 625.
    [11] Vanguelova E I,Nortcliff S,Moffat A J,Kennedy F.Morphology,biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry.Plant and Soil,2005,270(1/2):233- 247.
    [12] Wang G L,Fahey T J,Xue S,Liu F.Root morphology and architecture respond to N addition in Pinus tabuliformis,west China.Oecologia,2013,171(2):583- 590.
    [13] Neumann G,Bott S,Ohler M A,Mock H P,Lippmann R,Grosch R,Smalla K.Root exudation and root development of lettuce (Lactuca sativa L.cv.Tizian) as affected by different soils.Frontiers in Microbiology,2014,5:2.
    [14] Alvarez-Uria P,K?rner C.Fine root traits in adult trees of evergreen and deciduous taxa from low and high elevation in the Alps.Alpine Botany,2011,121(2):107- 112.
    [15] Hajek P,Hertel D,Leuschner C.Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P.tremuloides).Frontiers in Plant Science,2013,4:415.
    [16] 徐文静,王政权,范志强,孙海龙,贾淑霞,吴楚.遮荫对水曲柳幼苗细根衰老的影响.植物生态学报,2006,30(1):104- 111.
    [17] 王向荣.水曲柳和落叶松细根构型研究[D].哈尔滨:东北林业大学,2005.
    [18] 杨秀云.华北落叶松人工林细根生物量季节动态及空间分布格局[D].晋中:山西农业大学,2005.
    [19] 路德维希·冯·贝塔朗菲.生命问题:现代生物学思想评价.吴晓江,译.北京:商务印书馆,1999:141- 168.
    [20] Reich P B,Walters M B,Ellsworth D S.From tropics to tundra:global convergence in plant functioning.Proceedings of the National Academy of Sciences of the United States of America,1997,94(25):13730- 13734.
    [21] McGroddy M E,Daufresne T,Hedin L O.Scaling of C:N:P stoichiometry in forests worldwide:implications of terrestrial redfield-type ratios.Ecology,2004,85(9):2390- 2401.
    [22] Kerkhoff A J,Enquist B J,Elser J J,Fagan W F.Plant allometry,stoichiometry and the temperature-dependence of primary productivity.Global Ecology and Biogeography,2005,14(6):585- 598.
    [23] ?gren G I.Stoichiometry and nutrition of plant growth in natural communities.Annual Review of Ecology,Evolution,and Systematics,2008,39:153- 170.
    [24] ?gren G I.The C:N:P stoichiometry of autotrophs-theory and observations.Ecology Letters,2004,7(3):185- 191.
    [25] Wright I J,Reich P B,Westoby M,Ackerly D D,Baruch Z,Bongers F,Cavender-Bares J,Chapin T,Cornelissen J H C,Diemer M,Flexas J,Garnier E,Groom P K,Gulias J,Hikosaka K,Lamont B B,Lee T,Lee W,Lusk C,Midgley J J,Navas M L,Niinemets ü,Oleksyn J,Osada N,Poorter H,Poot P,Prior L,Pyankov V I,Roumet C,Thomas S C,Tjoelker M G,Veneklaas E J,Villar R.The worldwide leaf economics spectrum.Nature,2004,428(6985):821- 827.
    [26] 姚婧,李颖,魏丽萍,蒋思思,杨松,侯继华.东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化.生态学报,2013,33(13):3907- 3915.
    [27] 郑成洋,刘增力,方精云.福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化.生物多样性,2004,12(1):63- 74.
    [28] 刘信中,方福生.江西武夷山自然保护区科学考察集.北京:中国林业出版社,2001.
    [29] 刘广路,刘希珍,李雁冰,罗天磊,蔡春菊,范少辉.毛竹向撂荒地扩展过程中细根性状变化特征.热带作物学报,2017,38(7):1204- 1209.
    [30] Warton D I,Wright I J,Falster D S,Westoby M.Bivariate line-fitting methods for allometry.Biological Reviews,2006,81(2):259- 291.
    [31] Venables W N,Smith D M,the R Core Team.An Introduction to R.Notes on R:A Programming Environment for Data Analysis and Graphics.Version 3.5.1 Patched.(2018- 11- 10) [2018- 6- 23].http://ydl.oregonstate.edu/pub/cran/doc/manuals/r-patched/R-intro.pdf.
    [32] Pitman E J G.A note on normal correlation [2018-06- 23].http://biomet.oxfordjournals.org/.
    [33] Warton D I,Weber N C.Common slope tests for bivariate errors-in-variables models.Biometrical Journal,2002,44(2):161- 174.
    [34] 权伟.武夷山不同海拔植被细根的空间变化与季节动态[D].南京:南京林业大学,2008.
    [35] Pregitzer K S,DeForest J L,Burton A J,Allen M F,Ruess R W,Hendrick R L.Fine root architecture of nine North American trees.Ecological Monographs,2002,72(2):293- 309.
    [36] Poorter H,Niklas K J,Reich P B,Oleksyn J,Poot P,Mommer L.Biomass allocation to leaves,stems and roots:meta-analyses of interspecific variation and environmental control.New Phytologist,2012,193(1):30- 50.
    [37] Holdaway R J,Richardson S J,Dickie I A,Peltzer D A,Coomes D A.Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest.Journal of Ecology,2011,99(4):954- 963.
    [38] Bauhus J,Khanna P K,Menden N.Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii.Canadian Journal of Forest Research,2000,30(12):1886- 1894.
    [39] 刘运科,苏宇,李德会,范川,谢雨彤,李贤伟.川中丘陵区3个树种的细根形态和功能异质性分析.西北植物学报,2016,36(5):1012- 1020.
    [40] 周伟,陈信力,李瑞霞,闵建刚,徐梅,卢雯,关庆伟.林分密度对侧柏人工林细根形态的影响.林业科技开发,2012,26(4):35- 38.
    [41] Kramer-Walter K R,Bellingham P J,Millar T R,Smissen R D,Richardson S J,Laughlin D C.Root traits are multidimensional:specific root length is independent from root tissue density and the plant economic spectrum.Journal of Ecology,2016,104(5):1299- 1310.
    [42] Zadworny M,McCormack M L,Mucha J,Reich P B,Oleksyn J.Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient.New Phytologist,2016,212(2):389- 399.
    [43] Alvarez-Uria P,K?rner C.Low temperature limits of root growth in deciduous and evergreen temperate tree species.Functional Ecology,2007,21(2):211- 218.
    [44] King J S,Pregitzer K S,Zak D R.Clonal variation in above- and below-ground growth responses of Populus tremuloides Michaux:influence of soil warming and nutrient availability.Plant and Soil,1999,217(1/2):119- 130.
    [45] Chesus K A,Ocheltree T W.Analyzing root traits to characterize juniper expansion into rangelands.Journal of Arid Environments,2018,150:1- 8.
    [46] Green J J,Dawson L A,Proctor J,Duff E I,Elston D A.Fine root dynamics in a tropical rain forest is influenced by rainfall.Plant and Soil,2005,276(1/2):23- 32.
    [47] 梅莉,韩有志,于水强,史建伟,王政权.水曲柳人工林细根季节动态及其影响因素.林业科学,2006,42(9):7- 12.
    [48] Prieto I,Roumet C,Cardinael R,Dupraz C,Jourdan C,Kim J H,Maeght J L,Mao Z,Pierret A,Portillo N,Roupsard O,Thammahacksa C,Stokes A,Cahill J.Root functional parameters along a land-use gradient:evidence of a community-level economics spectrum.Journal of Ecology,2015,103(2):361- 373.
    [49] Hodge A.The plastic plant:root responses to heterogeneous supplies of nutrients.New Phytologist,2004,162(1):9- 24.
    [50] Reich P B,Tjoelker M G,Walters M B,Vanderklein D W,Buschena C.Close association of RGR,leaf and root morphology,seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light.Functional Ecology,1998,12(3):327- 338.
    [51] Gu J C,Xu Y,Dong X Y,Wang H F,Wang Z Q.Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species.Tree Physiology,2014,34(4):415- 425.
    [52] Kong D L,Ma C E,Zhang Q,Li L,Chen X Y,Zeng H,Guo D L.Leading dimensions in absorptive root trait variation across 96 subtropical forest species.New Phytologist,2014,203(3):863- 872.
    [53] Eissenstat D M,Wells C E,Yanai R D,Whitbeck J L.Building roots in a changing environment:implications for root longevity.New Phytologist,2000,147(1):33- 42.
    [54] Luke McCormack M,Adams T S,Smithwick E A H,Eissenstat D M.Predicting fine root lifespan from plant functional traits in temperate trees.New Phytologist,2012,195(4):823- 831.
    [55] Withington J M,Reich P B,Oleksyn J,Eissenstat D M.Comparisons of structure and life span in roots and leaves among temperate trees.Ecological Monographs,2006,76(3):381- 397.
    [56] Ma Z Q,Guo D L,Xu X L,Lu M Z,Bardgett R D,Eissenstat D M,McCormack M L,Hedin L O.Evolutionary history resolves global organization of root functional traits.Nature,2018,555(7694):94- 97.
    [57] Arndt S K,Arampatsis C,Foetzki A,Li X Y,Zeng F J,Zhang X M.Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater.Journal of Arid Environments,2004,59(2):259- 270.
    [58] Jobbágy E G,Jackson R B.The distribution of soil nutrients with depth:global patterns and the imprint of plants.Biogeochemistry,2001,53(1):51- 77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700