用户名: 密码: 验证码:
不同香蒲预处理方式对水平潜流人工湿地脱氮的强化效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strengthening Effect of Different Cattail Pretreatment Methods on the Denitrification of Horizontal Subsurface Flow in a Constructed Wetland
  • 作者:熊家晴 ; 卢学斌 ; 郑于聪 ; 王晓昌
  • 英文作者:XIONG Jia-qing;LU Xue-bin;ZHENG Yu-cong;WANG Xiao-chang;Shaanxi Key Laboratory of Environmental Engineering,School of Environmental and Municipal Engineering,Xi'an University of Architecture and Technology;Key Laboratory of Northwest Water Resources,Environment and Ecology,Ministry of Education,School of Environmental and Municipal Engineering,Xi'an University of Architecture and Technology;
  • 关键词:人工潜流湿地 ; 电子供体 ; 反硝化 ; 香蒲 ; 预处理
  • 英文关键词:horizontal subsurface flow in constructed wetlands;;electron donor;;denitrification;;Typha;;pretreatment
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西安建筑科技大学环境与市政工程学院陕西省环境工程重点实验室;西安建筑科技大学环境与市政工程学院西北水资源与环境生态教育部重点实验室;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家水体污染控制与治理科技重大专项(2012ZX07308-001-08);; 陕西重点科技创新研究团队计划项目(2018KWT-11);; 陕西省海绵城市研究创新团队计划项目(2017KCT-19-02)
  • 语种:中文;
  • 页:262-268
  • 页数:7
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X703.1
摘要
针对水平潜流湿地脱氮过程中后端碳源不足导致反硝化脱氮效果不佳的问题,对湿地植物香蒲采用简单处理、酸热处理和碱热处理这3种预处理,探讨香蒲在不同预处理条件下静态释放规律和反硝化特性,基于碳源稳定释放特性及反硝化特性优选碱热处理香蒲作为人工湿地实验系统补给碳源,研究其对水平潜流人工湿地脱氮的强化效果.结果表明,香蒲不同预处理方式导致乙酸释放存在差异,造成碳源静态释放量存在明显差异,3种香蒲处理方式的平均COD释放量为碱热处理(89. 57 mg·L-1)>酸热处理(67. 27 mg·L-1)>简单处理(54. 45 mg·L-1).碱热处理香蒲硝氮去除率为75. 2%,明显高于酸热处理(67. 2%)和简单处理(23. 5%).水平潜流人工湿地中段投加碱热处理香蒲,能明显提高湿地脱氮效果,TN平均去除率对比空白对照湿地提高30. 3%,同时系统出水COD浓度不会显著提高,还能有效提高系统对污水中磷的去除效果,除磷效果相比空白组提高33. 9%.
        Nitrogen removal in constructed wetlands( CWs) is highly affected by the supply of organic carbon. Thus,to enhance nitrogen removal in the horizontal subsurface flow of CWs,plant carbon sources were added during the downstream portion of the wetland. Moreover,the characteristics of static release and the denitrification potential of Typha were evaluated using three different pretreatment methods( i. e.,minced,acid-heated,and alkali-heated). The average concentrations of COD released and the nitrate removal rate with the alkali-heated,acid-heated,and minced Typha were 89. 57 mg·L-1 and 75. 2%,67. 27 mg·L-1 and 67. 2%,and 54. 45 mg·L-1 and 23. 5%,respectively. The results showed that different pretreatment methods resulted in the release of different amounts of acetic acid,and the alkali-heated Typha performed much better than the other pretreatments. Therefore,the alkali-heated Typha was selected and added to the middle of the horizontal subsurface flow CW,which improved the nitrogen-removal rate significantly; the average removal rate of TN and TP was higher than that of a control CW by 30. 3% and 33. 9%,respectively.However,the COD concentration of the CW with the alkali-heated Typha was not significantly increased.
引文
[1]黄锦楼,陈琴,许连煌.人工湿地在应用中存在的问题及解决措施[J].环境科学,2013,34(1):401-408.Huang J L,Chen Q,Xu L H. Problems and countermeasures in the application of constructed wetlands[J]. Environmental Science,2013,34(1):401-408.
    [2]刘然彬,赵亚乾,沈澄,等.人工湿地在“海绵城市”建设中的作用[J].中国给水排水,2016,32(24):49-53,58.Liu R B,Zhao Y Q,Shen C,et al. Application of constructed wetlands to construction of sponge city[J]. China Water&Wastewater,2016,32(24):49-53,58.
    [3]徐德福,潘潜澄,李映雪,等.生物炭对人工湿地植物根系形态特征及净化能力的影响[J].环境科学,2018,39(7):3187-3193.Xu D F,Pan Q C,Li Y X,et al. Effect of biochar on root morphological characteristics of wetland plants and purification capacity of constructed wetland[J]. Environmental Science,2018,39(7):3187-3193.
    [4] Hollister C C,Bisogni J J,Lehmann J. Ammonium,nitrate,and phosphate sorption to and solute leaching from biochars prepared from corn stover(Zea mays L.)and oak wood(Quercus spp.)[J]. Journal of Environmental Quality,2013,42(1):137-144.
    [5] Abou-Elela S I,Golinielli G,Abou-Taleb E M,et al. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands[J]. Ecological Engineering,2013,61:460-468.
    [6]易乃康,彭开铭,陆丽君,等.人工湿地植物对脱氮微生物活性的影响机制研究进展[J].水处理技术,2016,42(4):12-16.Yi N K,Peng K M,Lu L J,et al. Research advances on the influence mechanism of wetland plants on microbial activity in nitrogen removal[J]. Technology of Water Treatment,2016,42(4):12-16.
    [7] Martín M,Gargallo S,Hernández-Crespo C,et al. Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland[J]. Ecological Engineering,2013,61:34-42.
    [8] Lu S L,Hu H Y,Sun Y X,et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Journal of Environmental Sciences,2009,21(8):1036-1043.
    [9]姜应和,李瑶,张莹,等. NO3--N负荷对树皮填料人工湿地早期反硝化及释碳速率的影响[J].环境科学,2017,38(5):1898-1903.Jiang Y H,Li Y,Zhang Y,et al. Effects of NO3--N loading on the early-period efficiency of denitrification and carbon releasing in constructed wetland filled with bark[J]. Environmental Science,2017,38(5):1898-1903.
    [10] O'Luanaigh N D,Goodhue R,Gill L W. Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland[J]. Ecological Engineering,2010,36(10):1266-1276.
    [11] Yousefi Z, Mohseni-Bandpei A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus[J]. Ecological Engineering,2010,36(6):777-782.
    [12]殷芳芳,王淑莹,昂雪野,等.碳源类型对低温条件下生物反硝化的影响[J].环境科学,2009,30(1):108-113.Yin F F,Wang S Y,Ang X Y,et al. Effects of carbon source types on denitrification performance at low temperature[J].Environmental Science,2009,30(1):108-113.
    [13] Elefsiniotis P,Wareham D G,Smith M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnology,2004,114(3):289-297.
    [14]宫政.固相碳源强化人工湿地脱氮研究[D].郑州:郑州大学,2016.
    [15]杨飞飞,吴为中.以PHBV为碳源和生物膜载体的生物反硝化研究[J].中国环境科学,2014,34(7):1703-1708.Yang F F,Wu W Z. Biological denitrification using PHBV as carbon source and biofilm carrier[J]. China Environmental Science,2014,34(7):1703-1708.
    [16]封羽涛,吴为中.可降解聚合物PCL、PBS在低有机污染水中固相反硝化脱氮效果比较[J].生态环境学报,2011,20(6-7):1127-1132.Feng Y T,Wu W Z. The comparison of nitrogen removal effect between biodegradable polymers of PCL and PBS in the low organic pollution water[J]. Ecology and Environmental Sciences,2011,20(6-7):1127-1132.
    [17] Peng Y Z, Ma Y, Wang S Y. Denitrification potential enhancement by addition of external carbon sources in a predenitrification process[J]. Journal of Environmental Sciences,2007,19(3):284-289.
    [18] Khan S T, Horiba Y, Takahashi N, et al. Activity and community composition of denitrifying bacteria in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-using solid-phase denitrification processes[J]. Microbes and Environments,2007,22(1):20-31.
    [19] Biedermann J,Schloe K T,Sü? muth R,et al. Interaction between poly-3-hydroxybutyrate-co-3-hydroxyvalerate and a denitrifying Pseudomonas strain[J]. Canadian Journal of Microbiology,1997,43(6):561-568.
    [20]周海红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐[J].清华大学学报(自然科学版),2006,46(3):434-436.Zhou H H,Zhao X,Wang J L. Removal of nitrates from drinking water using biodegradable polymers as both substrate and biofilm carrier[J]. Journal of Tsinghua University(Science and Technology),2006,46(3):434-436.
    [21] Greenan C M,Moorman T B,Parkin T B,et al. Denitrification in wood chip bioreactors at different water flows[J]. Journal of Environmental Quality,2009,38(4):1664-1671.
    [22]晋凯迪,于鲁冀,陈涛,等.植物碳源调控对人工湿地脱氮效果的影响[J].环境工程学报,2016,10(10):5611-5616.Jin K D,Yu L J,Chen T,et al. Effect of adding plant carbon on nitrogen removal in constructed wetland[J]. Chinese Journal of Environmental Engineering,2016,10(10):5611-5616.
    [23] Wen Y,Chen Y,zheng N,et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology,2010,101(19):7286-7292.
    [24]邵留,徐祖信,金伟,等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J].环境科学,2009,30(5):1414-1419.Shao L,Xu Z X,Jin W,et al. Nitrate removal from wastewater using rice straw as carbon source and biofilm carrier[J].Environmental Science,2009,30(5):1414-1419.
    [25]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [26]席国赟,张璐鑫,王晓昌.木质纤维素厌氧消化产甲烷的化学预处理方法研究进展[J].纤维素科学与技术,2017,25(2):77-84.Xi G Y,Zhang L X,Wang X C. Recent progress in study on chemical technology for pretreating lignocellulose to methane production in anaerobic digestion[J]. Journal of Cellulose Science and Technology,2017,25(2):77-84.
    [27] Nges I A,Li C,Wang B,et al. Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius[J].Fuel,2016,166:29-35.
    [28] Kaur K,Phutela U G. Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment[J]. Renewable Energy,2016,92:178-184.
    [29]裴廷权,杨小毛,刘欢,等.不同缓释碳源对低碳氮比污水反硝化的影响[J].工业水处理,2013,33(5):40-43.Pei T Q,Yang X M,Liu H,et al. Effect of different sustainedrelease carbon source on the denitrification of low C/N wastewater[J]. Industrial Water Treatment,2013,33(5):40-43.
    [30]赵文莉,郝瑞霞,李斌,等.预处理方法对玉米芯作为反硝化固体碳源的影响[J].环境科学,2014,35(3):987-994.Zhao W L,Hao R X,Li B,et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J].Environmental Science,2014,35(3):987-994.
    [31] Chu L B,Wang J L. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor[J]. Chemical Engineering Journal,2011,170(1):220-225.
    [32] Ovez B. Batch biological denitrification using Arundo donax,Glycyrrhiza glabra,and Gracilaria verrucosa as carbon source[J]. Process Biochemistry,2006,41(6):1289-1295.
    [33]孙文杰,佘宗莲,关艳艳,等.垂直流人工湿地净化污水的研究进展[J].安全与环境工程,2011,18(1):25-28,44.Sun W J,She Z L,Guan Y Y,et al. Research progress of sewage purification in vertical flow wetland[J]. Safety and Environmental Engineering,2011,18(1):25-28,44.
    [34]李剑波,闻岳,赵星洁,等.有机物对人工湿地基质除磷影响研究[J].环境科学,2008,29(7):1880-1883.Li J B,Wen Y,Zhao X J,et al. Effect of organic matter on phosphorus removal for substrate in constructed wetland[J].Environmental Science,2008,29(7):1880-1883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700