用户名: 密码: 验证码:
2015年4月一次穿过东海黑潮锋大气边界层高度变化的观测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observation and Analysis of the Change of the Atmospheric Boundary Layer over the Kuroshio Front in the East China Sea in April, 2015
  • 作者:霍志丽 ; 张苏平 ; 郭九华 ; 龙景超
  • 英文作者:HUO Zhi-Li;ZHANG Su-Ping;GUO Jiu-Hua;LONG Jing-Chao;The Key Laboratory of Physical Oceanography and Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China;Taizhou Meteorological Bureau;
  • 关键词:海上大气边界层 ; 海洋锋 ; 出海观测 ; 层积云
  • 英文关键词:marine atmosphere boundary layer;;oceanic front;;observation;;stratocumulus
  • 中文刊名:中国海洋大学学报(自然科学版)
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学物理海洋教育部重点实验室海洋-大气相互作用与气候重点实验室;台州市气象局;
  • 出版日期:2019-10-14
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:11
  • 基金:国家自然科学基金项目(41576108;41605006);; 山东省自然科学基金项目(ZR2016DB26);; 国家自然科学基金委员会-山东省人民政府联合资助海洋科学研究中心项目(U1606402)资助~~
  • 语种:中文;
  • 页:15-23
  • 页数:9
  • CN:37-1414/P
  • ISSN:1672-5174
  • 分类号:P714
摘要
本文利用东方红2号科学考察船2015年4月2—3日穿过东海黑潮海洋锋的海上观测资料,结合卫星遥感和再分析资料,分析了由西北向东南穿过东海黑潮海洋锋过程中海上大气边界层(MABL)高度的变化、层积云的发展与云量减少的原因,得出以下结论:(1)在海洋锋的暖水侧,海洋蒸发加强,MABL稳定度减弱,湍流混合加强,在MABL底形成湿层,大气层结由条件性不稳定转为不稳定,这可能是海洋锋暖水侧低云发展的一个主要原因。(2)由于受到天气尺度扰动的影响,海表面水平风散度辐合上升,使得MABL中上升运动加强,导致海洋锋暖水侧MABL顶高度和云底高度升高。顺船行驶的东南方向,SST下降,潜热通量减少,使得水汽输送减少,同时MABL中退耦加强,云中夹卷维持,导致云量减少。(3)垂直混合可导致混合层上部气温下降,逆温层加强,同时云顶长波辐射也可导致降温。由于云的存在,云顶附近逆温层强度逐渐加强,改变了MABL内水汽和热通量的垂直分布,这些变化表明,云和MABL垂直结构之间可能存在的反馈效应。本研究有助于理解云与MABL垂直结构之间的反馈效应。
        In this paper, we use the observation data of the Dongfanghong 2 scientific expedition ship to cross the Kuroshio Ocean Front in the East China Sea from April 2 nd to 3 rd, 2015. Combined with satellite remote sensing and reanalysis data, we analyzed the northeast and southeast seas that crossed the Kuroshio Ocean in the East China Sea. Changes in the height of the MABL at the front and the development and dissipation of the stratiform clouds lead to the following conclusions:(1) On the warm water side of the ocean front, the ocean evaporation is strengthened and the MABL stability is weakened. The turbulent mixing is strengthened, and the wet layer is formed at the bottom of the MABL. The atmospheric stratification changes from conditional instability to instability, which may be a major cause of the low cloud development on the ocean front.(2) Due to the influence of weather scale disturbance, the horizontal wind divergence of sea surface rises, which makes the ascending motion in MABL strengthen, resulting in the increase of the boundary layer height and cloud height of the ocean front warm water side. Continue to SST in the southeast direction, the latent heat flux is reduced, the sea surface evaporation is reduced, the water vapor transport is reduced, and the decoupling in the MABL is strengthened, resulting in a decrease in cloud amount.(3) Vertical mixing can cause the temperature of the upper part of the mixed layer to decrease, and the inversion layer to strengthen, while the long-wave radiation of the cloud top can also cause temperature drop. Due to the existence of clouds, the intensity of the inversion layer near the cloud top is gradually strengthened. These changes also indicate the possible feedback effect between the cloud and the vertical structure of MABL. This study helps to understand the feedback effect between the cloud and the vertical structure of MABL.
引文
[1]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999.Feng Shi-Zuo,Li Feng-Qi,Li Shao-Jing.An Introduction to Marine Science[M].Beijing:China Highter Education Press,1999.
    [2]Xie Shangping,Hafner J,Tanimoto Y,et al.Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China seas[J].Geophys Res Lett,2002,29(24):811-814.
    [3]Xu H M,Xu M M,Xie S P,et al.Deep atmospheric response to the spring Kuroshio over the East China Sea[J].J Climate,2011,24(18):4959-4972.doi:10.1175/JCLI-D-10-05034.1.
    [4]Liu Jingwu,Zhang Suping,Xie Shangping.Two types of surface wind response to the East China Sea Kuroshio front[J].J Climate,2013,26(21):8616-8627.doi:10.1175/JCLI-D-12-00092.1.
    [5]Zhang Suping,Xie Shangping,Liu Qinyu,et al.Seasonal variations of Yellow Sea fog:Observations and mechanisms[J].J Climate,2009,22,6758-6772.DOI:10.1175/2009JCLI2806.1.
    [6]Kora?in D,Dorman C E.Marine fog:Challenges and advancements in observations,modeling,and forecasting[J].Springer Atmospheric Sciences,2017:291-343.
    [7]涂静,张苏平,程相坤,等:黄东海大气边界层高度时空变化特征[J].中国海洋大学学报(自然科学版),2012,42(4):7-18.TU Jing,ZHANG Su-Ping,CHENG Xiang-Kun.Temporal and spatial variation of atmospheric boundary layer height(ABLH)over the Yellow-East China Sea[J].Periodical of Ocean University of China,2012,42(4):7-18.
    [8]Small R J,deSzoeke S P,Xie S P,et al.Air-sea interaction over ocean fronts and eddies[J].Dyn Atmos Ocean,2008,45(3-4):274-319.016/j.dynatmoce.2008.01.001.
    [9]Minobe S,Kuwano-Yoshida A,Komori N,et al.Influence of the Gulf Stream on the troposphere[J].Nature,2008,452(7184):206-209.doi:10.1038/nature06690.
    [10]Minobe Shoshiro,Miyashita Masato,Kuwano-Yoshida,et al.Atmospheric response to the gulf stream:Seasonal variations[J].Journal of Climate,2010,23(13):117-123.
    [11]Tokinaga H,Tanimoto Y,Xie S P,et al.Ocean frontal effects on the vertical development of clouds over the western North Pacific:In-situ and satellite observations[J].J Climate,2009,22(16):4241-4260.doi:10.1175/2009JCLI2763.1.
    [12]Norris J R.Low cloud type over the ocean from surface observations.Part II:Geographical and seasonal variations[J].J Climate,1998a,11:383-403.
    [13]Norris J R,Iacobellis S F.North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships[J].J Climate,2005,18:4862-4878.
    [14]Liu J W,Xie S P,Norris J R,et al.Low-level cloud response to the Gulf Stream front in winter using CALIPSO[J].J Climate,2014,27:4421-4432.
    [15]Tanimoto Y,Xie S P.Kai K,et al.Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension[J].J Climate,2009,22:1360-1374.
    [16]孔扬,张苏平.基于船载GPS探空数据的黄东海大气边界层高度分析[J].中国海洋大学学报(自然科学版),2014,44(11):1-10.KONG Yang,ZHANG Su-Ping.Analysis on the atmospheric boundary layer height over the Yellow-East China Sea based on shipborne GPS sounding systems[J].Periodical of Ocean University of China,2014,44(11):1-10.
    [17]张苏平,王媛,衣立,等.一次层积云发展过程对黑潮延伸体海洋锋强迫的响应研究---观测与机制分析[J].大气科学,2017,41(2):227-235.Zhang Su-Ping.Wang Yuan,Yi Li,et al.A study of stratocumulus responses to the Kuroshio extension front:Insitu observations and mechanism[J].Chinese Jaurnal of Atmospheric Sciences,2017,41(2):227-235.
    [18]Liu S Y,Liang X Z,Observed diurnal cycle climatology of planetary boundary layer height[J].J Climate,2010,23:5790-5809.
    [19]Michael A B,Zeng X,Curry J A,et al.Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes[J].Amer Meteor Soc,2003,16:619-635.
    [20]Wood R,Bretherton C S.On the relationship between stratiform low cloud cover and lower-tropospheric stability[J].J Climate,2006,19(24):6425-6432.doi:10.1175/JCLI3988.1.
    [21]Bretherton,Wyant,Moisture transport,lower-tropospheric stability,and decoupling of cloud-topped boundary layers[J].J Atmospheric Sci,1997,54:148-167.
    [22]Wyant,Bretherton,Rand,et al.Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition[J].J Atmospheric Sci,1997,54:168-192.
    [23]Jones C R,Bretherton C S,Leon D.Coupled vs.decoupled boundary layers in VOCALS-Rex[J].Atmospheric Chem Phys,2011,11:7143-7153.
    [24]Long J C,Wang Y Q,Zhang S P,Intercomparison of cloud amount datasets in the Kuroshio region over the East China Sea[J].Journal of the Meteorological Society of Japanin Press,2017,doi:10.2151/jmsj.2018-018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700