用户名: 密码: 验证码:
纳米颗粒强化TETA溶液富液解吸CO_2的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Desorption of CO_2 performance enhancement by nanoparticles in TETA rich solution
  • 作者:贾萌川 ; 张忠孝 ; 江砚池 ; 于娟 ; 赵子淇 ; 李博扬
  • 英文作者:JIA Meng-chuan;ZHANG Zhong-xiao;JIANG Yan-chi;YU Juan;ZHAO Zi-qi;LI Bo-yang;School of Energy and Power Engineering, University of Shanghai for Science and Technology;School of Mechanical Engineering, Shanghai Jiao Tong University;
  • 关键词:纳米颗粒 ; TETA ; 解吸 ; 传质强化 ; 分散剂
  • 英文关键词:nanoparticles;;TETA;;desorption;;mass transfer enhancement;;dispersant
  • 中文刊名:化学工程
  • 英文刊名:Chemical Engineering(China)
  • 机构:上海理工大学能源与动力工程学院;上海交通大学机械与动力工程学院;
  • 出版日期:2019-10-15
  • 出版单位:化学工程
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(2016YFE0102500)
  • 语种:中文;
  • 页:43-47+84
  • 页数:6
  • CN:61-1136/TQ
  • ISSN:1005-9954
  • 分类号:TQ021.4
摘要
为探究纳米颗粒对TETA溶液富液解吸CO_2的影响,采用两步法配制了相同基液质量分数、不同纳米颗粒的纳米流体,以电热套和鼓泡床为解吸实验装置,分别检测了在富液中加入不同纳米颗粒及分散剂后,不同反应时刻,富液中CO_2的残余量,并与空白富液解吸结果作对比,得出纳米颗粒的种类、固含量和粒径及分散剂对解吸转化率、解吸增强因子和解吸能耗的影响。实验结果表明:添加TiO_2和Al_2O_3纳米颗粒可以显著地加快解吸的传质速率,解吸增强因子随固含量及粒径的增加先增大后变小,即存在最佳固含量和最佳粒径;SiO_2纳米颗粒对解吸过程的促进作用并不明显;纳米流体中加入分散剂后,促进传质能力增强,且解吸能耗降低,具有较好的经济性。结合纳米流体促进传质机理对实验结果做出了解释和分析。
        In order to study the effect of nanoparticles on the desorption of CO_2 in TETA rich solution, the nanofluids were prepared by two-step method with the same mass fraction of TETA and different nanoparticles. The heating mantles and bubble column were used as desorption experimental devices. The residual CO_2 in the rich solution was measured at different reaction time after adding different nanoparticles and dispersants, and the results were compared with the blank rich solution desorption. The effects of the kinds of nanoparticles, solid content, particle size and dispersant on desorption conversion rate, desorption enhancement factor and desorption energy consumption were obtained. The results show that the mass transfer rate of desorption can be significantly accelerated by adding TiO_2 and Al_2O_3 nanoparticles, and the desorption enhancement factor increases at first and then decreases with the increase of the solid content and particle size. That is, there is an optimal solid content and particle size; the effect of SiO_2 nanoparticles on the desorption process is not obvious; after the addition of dispersant into nanofluids, the mass transfer ability is enhanced, and the energy consumption of desorption is reduced, which has better economy. The experimental results are explained and analyzed in combination with the mechanism of nanofluids enhancing mass transfer.
引文
[1] 项菲.烯胺DETA/TETA溶液富集烟道气中CO2的研究[D].杭州:浙江大学,2003.
    [2] 杨震.化学溶剂TETA和混合胺(TETA+MDEA)吸收二氧化碳的解吸过程能耗研究[D].长沙:湖南大学,2015.
    [3] SCHAFFER A,BRECHEL K,SCHEFFKNECHT G.Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gases[J].Fuel,2012,101(2):148-153.
    [4] WANG Zhen,FANG Mengxiang,PAN Yili,et al.Comparison and selection of amine-based absorbents in membrane va-cuum regeneration process for CO2 capture with low energy cost[J].Energy Procedia,2013,37:1085-1092.
    [5] 张俊,苏巧,彭林明,等.纳米流体强化气液传质研究进展[J].化工进展,2013,32(4):732-739.
    [6] 唐忠利,湛波,张树杨,等.CO2在纳米流体解吸过程中的微对流现象[J].化工学报,2012,63(6):1691-1696.
    [7] 赵颖超.纳米流体的制备及其对CO2吸收强化的研究[D].天津:天津工业大学,2017.
    [8] 杨文刚.吸收CO2的有机胺富液热解析动力学的研究[D].武汉:武汉工程大学,2010.
    [9] 张宁.二氧化碳在有机胺中吸收及解吸动力学研究[D].上海:华东理工大学,2011.
    [10] 晏水平.膜吸收和化学吸收分离CO2特性的研究[D].杭州:浙江大学,2009.
    [11] 钱新贺.双组分纳米流体中CO2鼓泡吸收的实验研究[D].北京:华北电力大学,2014.
    [12] 方立军,刘洪锟,祝云飞,等.纳米颗粒对氨水鼓泡吸收CO2影响的实验研究[J].化学工程,2016,44(5):22-26.
    [13] 张树杨.纳米流体强化气液传质研究[D].天津:天津大学,2010.
    [14] 李兴,王昭玮,孙一峰.分散剂对纳米流体影响的研究进展[J].材料导报,2015,29(12):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700