用户名: 密码: 验证码:
川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan plain
  • 作者:吴晓玲 ; 张世熔 ; 蒲玉琳 ; 徐小逊 ; 李云
  • 英文作者:WU Xiaoling;ZHANG Shirong;PU Yulin;XU Xiaoxun;LI Yun;College of Environmental Sciences, Sichuan Agricultural University;Sichuan Provincial Key Laboratory of Soil Environmental Protection;College of Resources, Sichuan Agricultural University;
  • 关键词:土壤微生物生物量碳 ; 土壤微生物生物量氮 ; 土壤微生物生物量磷 ; 气候 ; 海拔 ; 母质 ; 土地利用
  • 英文关键词:Soil microbial biomass carbon;;Soil microbial biomass nitrogen;;Soil microbial biomass phosphorus;;Climate;;Altitude;;Parent material;;Land use
  • 中文刊名:中国生态农业学报(中英文)
  • 英文刊名:Chinese Journal of Eco-Agriculture
  • 机构:四川农业大学环境学院;四川省土壤环境保护重点实验室;四川农业大学资源学院;
  • 出版日期:2019-08-05 15:10
  • 出版单位:中国生态农业学报(中英文)
  • 年:2019
  • 期:10
  • 基金:四川省重点研发项目(19ZDYF2427);; 四川省环境保护科技项目计划(2018HB30)资助~~
  • 语种:中文;
  • 页:149-158
  • 页数:10
  • CN:13-1432/S
  • ISSN:2096-6237
  • 分类号:S154.3
摘要
本文通过区域调查采样和统计分析,探讨了川西平原土壤微生物生物量碳(MBC)、土壤微生物生物量氮(MBN)和土壤微生物生物量磷(MBP)含量特征及其对气候、海拔、母质和土地利用等因素的响应,揭示了其关键影响因素,以期为川西平原地区土壤质量管理提供参考。结果表明,不同土壤类型的MBC、MBN和MBP含量表现为冲积土显著高于水稻土、潮土和黄壤(P<0.05),潮土MBC/MBN显著高于水稻土。气候和海拔的影响为:MBC、MBN和MBP含量随着≥0℃积温、≥10℃积温、年均温和年均降水量的增加呈指数减少,而随干燥度和海拔增加呈线性增加。不同成土母质中,MBC、MBN和MBP含量均为灰色冲积物显著高于老冲积物。不同土地利用方式下,三者含量为草地显著高于水田和旱地,水田、旱地和林地差异不显著。皮尔森相关分析和冗余分析表明,MBC和MBN均与≥0℃积温、年均温呈极显著负相关(P<0.01),与海拔呈极显著正相关关系,MBP与母质呈现极显著负相关关系。逐步回归分析表明,MBC主要受年均温、干燥度、年均降水量和母质的影响; MBN主要受海拔、干燥度和年均降水量的综合影响; MBP主要受母质、年均温、≥10℃积温和年均降水量的调控。因此,川西平原土壤MBC、MBN、MBP能灵敏地反映不同采样点气候的变化,可为该区气候变化下土壤碳、氮、磷的响应预测提供参考。
        The characteristics of soil microbial biomass carbon(MBC), soil microbial biomass nitrogen(MBN), and soil microbial biomass phosphorus(MBP) contents, and their responses to climate, altitude, parent material and land use in the western Sichuan plain were investigated by regional survey and statistical analysis. The key influencing factors were subsequently revealed, which provided theoretical guidance for soil quality management in western Sichuan plain. Results showed that MBC, MBN and MBP were significantly higher in alluvial soil than in paddy soil, fluvo-aquic soil, and yellow earth(P < 0.05); moreover, MBC/MBN of fluvo-aquic soil was significantly higher than that of paddy soil. With respect to the influence of climate and elevation, MBC, MBN, and MBP exponentially declined with increasing accumulated temperature above 0 ℃, accumulated temperature above 10 ℃, mean annual temperature(MAT) and mean annual precipitation(MAP). However, they were augmented with increasing aridity and altitude. For different parent soil materials, the soil that developed from gray alluvial soil had higher MBC, MBN and MBP contents than those developed from glacial till. Meanwhile, they were significantly higher in the grassland than in paddy field and dry land. However, there were no significant differences between paddy field, dry land, and forest land. Pearson correlation and redundancy analyses revealed that the MBC and MBN had highly significant negative relationships with accumulated temperature above 0 ℃ and MAT, while, they had highly significant positive relationships with altitude(P < 0.01). In addition, MBP had a highly significant negative relationship with parent material. Furthermore, stepwise regression analysis showed that the main impact factors for MBC were MAT, MAP, and parent material, and aridity; MBN was affected by altitude, aridity, and MAP; MBP was primarily controlled by parent material, accumulated temperature above 10 ℃, and MAP. Therefore, soil MBC, MBN and MBP can sensitively reflect the climate change in different sampling points in western Sichuan plain, providing an essential basis for predicting the response of soil carbon, nitrogen, and phosphorus to climatic changes.
引文
[1] POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biology and Biochemistry, 1987, 19(2):159–164
    [2] HE Z L, YANG X E, BALIGAR V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils[J]. Advances in Agronomy, 2003, 78:89–138
    [3]郭振,王小利,徐虎,等.长期施用有机肥增加黄壤稻田土壤微生物量碳氮[J].植物营养与肥料学报, 2017, 23(5):1168–1174GUO Z, WANG X L, XU H, et al. A large number of long-term application of organic fertilizer can effectively increase microbial biomass carbon and nitrogen in yellow paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2017,23(5):1168–1174
    [4] LI P, YANG Y H, HAN W X, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems[J]. Global Ecology and Biogeography, 2015,23(9):979–987
    [5] MUKHERJEE S, TRIPATHI S, MUKHERJEE A K, et al.Persistence of the herbicides florasulam and halauxifen-methyl in alluvial and saline alluvial soils, and their effects on microbial indicators of soil quality[J]. European Journal of Soil Biology, 2016, 73:93–99
    [6] JU C, XU J, WU X H, et al. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations[J]. Environmental Pollution, 2016, 208:811–820
    [7]刘定辉,舒丽,陈强,等.秸秆还田少免耕对冲积土微生物多样性及微生物碳氮的影响[J].应用与环境生物学报,2011, 17(2):158–161LIU D H, SHU L, CHEN Q, et al. Effects of straw mulching and little-or zero-tillage on microbial diversity and biomass C and N of alluvial soil in Chengdu Plain, China[J]. Chinese Journal of Applied&Environmental Biology, 2011, 17(2):158–161
    [8] YAN W D, CHEN X Y, PENG Y Y, et al. Response of soil respiration to nitrogen addition in two subtropical forest types[J]. Pedosphere, 2017, doi:10.1016/S1002-0160(17)60471-5
    [9]刘秉儒.贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J].生态环境学报, 2010, 19(4):883–888LIU B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 2010, 19(4):883–888
    [10] ZHANG L H, XIE Z K, ZHAO R F, et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology, 2018, 127:87–95
    [11] LI G L, KIM S, HAN S H, et al. Precipitation affects soil microbial and extracellular enzymatic responses to warming[J].Soil Biology and Biochemistry, 2018, 12:212–221
    [12]曹瑞,吴福忠,杨万勤,等.海拔对高山峡谷区土壤微生物生物量和酶活性的影响[J].应用生态学报, 2016, 27(4):1257–1264CAO R, WU F Z, YANG W Q, et al. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1257–1264
    [13] DENG H, YU Y J, SUN J E, et al. Parent materials have stronger effects than land use types on microbial biomass, activity and diversity in red soil in subtropical China[J]. Pedobiologia, 2015, 58(2/3):73–79
    [14] LIU D, HUANG Y M, AN S S, et al. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients[J]. Catena, 2018, 162:345–353
    [15]周正虎,王传宽.帽儿山地区不同土地利用方式下土壤-微生物-矿化碳氮化学计量特征[J].生态学报, 2017, 37(7):2428–2436ZHOU Z H, WANG C K. Soil-microbe-mineralization carbon and nitrogen stoichiometry under different land-uses in the Maoershan region[J]. Acta Ecologica Sinica, 2017, 37(7):2428–2436
    [16]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:中国气象出版社, 2006:54–84WU J S, LIN Q M, HUANG Q Y, et al. Measurement Method and Application of Soil Microbial Biomass[M]. Beijing:China Meteorological Press, 2006:54–84
    [17]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:25–97BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agricultural Press, 2000:25–97
    [18]王传杰,肖婧,蔡岸冬,等.不同气候与施肥条件下农田土壤微生物生物量特征与容量分析[J].中国农业科学, 2017,50(6):1067–1075WANG C J, XIAO J, CAI A D, et al. Capacity and characteristics of soil microbial biomass under various climate and fertilization conditions across China croplands[J]. Scientia Agricultura Sinica, 2017, 50(6):1067–1075
    [19] TOMIOLO S, VAN DER PUTTEN W H, TIELB?RGER K.Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change[J].Ecology, 2015, 96(5):1298–1308
    [20] FIERER N, MCCAIN C M, MEIR P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4):797–804
    [21] GASTON K J. Global patterns in biodiversity[J]. Nature,2000, 405(6783):220–227
    [22] TRETTIN C C, JOHNSON D W, TODD D E. Forest nutrient and carbon pools at walker branch watershed changes during a 21-year period[J]. Soil Science Society of America Journal,1999, 63(5):1436–1448
    [23] SHENG R, QIN H L, O’DONNELL A G, et al. Bacterial succession in paddy soils derived from different parent materials[J]. Journal of Soils and Sediments, 2015, 15(4):982–992
    [24] KODE?OVáR, JIRKU V, KODE?V, et al. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland[J]. Soil and Tillage Research, 2011, 111(2):154–161
    [25]李渝,刘彦伶,白怡婧,等.黄壤稻田土壤微生物生物量碳磷对长期不同施肥的响应[J].应用生态学报, 2019, 30(4):1327–1334LI Y, LIU Y L, BAI Y J, et al. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1327–1334
    [26]臧逸飞,郝明德,张丽琼,等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响[J].生态学报, 2015, 35(5):1445–1451ZANG Y F, HAO M D, ZHANG L Q, et al. Effects of wheat cultivation and fertilization on soil microbial biomass carbon,soil microbial biomass nitrogen and soil basal respiration in26 years[J]. Acta Ecologica Sinica, 2015, 35(5):1445–1451
    [27]刘骁蒨,涂仕华,孙锡发,等.秸秆还田与施肥对稻田土壤微生物生物量及固氮菌群落结构的影响[J].生态学报,2013, 33(17):5210–5218LIU X Q, TU S H, SUN X F, et al. Effect of different fertilizer combinations and straw return on microbial biomass and nitrogen-fixing bacteria community in a paddy soil[J]. Acta Ecologica Sinica, 2013, 33(17):5210–5218
    [28] XU X F, THORNTON P E, POST W M. A Global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography,2013, 22(6):737–749
    [29]张洋,倪九派,周川,等.三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J].中国生态农业学报, 2014, 22(7):766–773ZHANG Y, NI J P, ZHOU C, et al. Effects of configuration mode of crop-mulberry system in purple arid hillside field on SMBC and SMBN in the three gorges reservoir[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7):766–773
    [30]曲成闯,陈效民,韩召强,等.生物有机肥对潮土物理性状及微生物量碳、氮的影响[J].水土保持通报, 2018, 38(5):70–76QU C C, CHEN X M, HAN Z Q, et al. Effects of bioorganic fertilizer application on soil physical properties and microbial biomass carbon and nitrogen in fluvoaquic soil[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):70–76
    [31] HODGE A, ROBINSON D, FITTER A. Are microorganisms more effective than plants at competing for nitrogen?[J].Trends in Plant Science, 2000, 5(7):304–308
    [32]张明乾,韩证仿,陈金,等.夜间增温对冬小麦土壤微生物量碳氮及其活性的影响[J].中国生态农业学报, 2012,20(11):1464–1470ZHANG M Q, HAN Z F, CHEN J, et al. Impact of nighttime warming on soil microbial biomass carbon/nitrogen and activity in main winter wheat cropping areas in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11):1464–1470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700