用户名: 密码: 验证码:
O_3胁迫下冬小麦总初级生产力的损耗模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulated Ozone Damage on Gross Primary Productivity(GPP) in a Winter Wheat Field
  • 作者:徐静馨 ; 郑有飞 ; 王圣 ; 王立稳 ; 赵秀勇 ; 麦博儒
  • 英文作者:XU Jing-xin;ZHENG You-fei;WANG Sheng;WANG Li-wen;ZHAO Xiu-yong;MAI Bo-ru;State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control,State Power Environmental Protection Research Institute Co.,Ltd.;Key Laboratory of Meteorological Disaster,Ministry of Education(KLME) ,Joint International Research Laboratory of Climate and Environment Change (ILCEC) ,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) ,Nanjing University of Information Science & Technology;Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction,Institute of Tropical and Marine Meteorology,China Meteorological Administration;
  • 关键词:臭氧(O3) ; 总初级生产力(GPP) ; 冬小麦 ; 损耗 ; 涡度相关
  • 英文关键词:ozone(O3);;gross primary productivity(GPP);;winter wheat;;damage effect;;eddy-covariance
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:国电环境保护研究院有限公司国家环境保护大气物理模拟与污染控制重点实验室;南京信息工程大学气象灾害教育部重点实验室气候与环境变化国际合作联合实验室气象灾害预报预警与评估协同创新中心;中国气象局广州热带海洋气象研究所广东省区域数值天气预报重点实验室;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(41475108,41771498)
  • 语种:中文;
  • 页:425-432
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S512.11;X515
摘要
基于涡度相关系统,并引入O_3损耗半机制模型,分析了南京地区冬小麦主要生育期总初级生产力(GPP)的变化,并模拟了不同O_3含量胁迫条件下冬小麦GPP的损耗.结果表明:①冬小麦GPP随其生育期变化,呈现出"中间时段高,前后期低"的分布趋势,最大值为40μmol·(m2·s)-1;②基于高、低两种O_3敏感度效应,150、100和50 n L·L-1组和本研究(CK组)胁迫条件下,冬小麦GPP损耗率分别为:-72%、-36%、-6%、-10%和-13%、-6%、-1%、-2%.损耗评估结果可为我国制定防御O_3对作物伤害对策提供科学依据.
        An eddy-covariance system combined with a semi-mechanistic model was used to analyze variations in gross primary productivity( GPP) and to simulate the impact of ozone( O_3) on GPP under different levels O_3 concentrations over a winter wheat field in Nanjing. The results showed that GPP was higher during the middle of the growth period and low during the early and late growth periods,reaching a maximum of 40 μmol·( m2·s)-1.Using high and low ozone sensitivity settings,O_3-damage in 150,100,50 n L·L-1 and control treatment( CK) reduced GPP by-72%,-36%,-6%,and-10%,and by-13%,-6%,-1%,and-2%,respectively. These results provide a scientific basis for formulating defense strategies for O_3 damage to crops.
引文
[1] Wittig V E,Ainsworth E A,Naidu S L,et al. Quantifying the impact of current and future tropospheric ozone on tree biomass,growth,physiology and biochemistry:a quantitative meta-analysis[J]. Global Change Biology,2009,15(2):396-424.
    [2] Stocker T F,Qin D,Plattner G K,et al. Climate change 2013:the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013.
    [3] Sicard P,Anav A,De Marco A,et al. Projected global groundlevel ozone impacts on vegetation under different emission and climate scenarios[J]. Atmospheric Chemistry and Physics,2017,17(19):12177-12196.
    [4]郑启伟,王效科,冯兆忠,等.用旋转布气法开顶式气室研究臭氧对水稻生物量和产量的影响[J].环境科学,2007,28(1):170-175.Zheng Q W,Wang X K,Feng Z Z,et al. Effects of elevated ozone on biomass and yield of rice planted in open-top chamber with revolving ozone distribution[J]. Environmental Science,2007,28(1):170-175.
    [5]王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社,2007.
    [6]郑有飞,胡程达,吴荣军,等.臭氧胁迫对冬小麦光合作用、膜脂过氧化和抗氧化系统的影响[J].环境科学,2010,31(7):1643-1651.Zheng Y F,Hu C D,Wu R J,et al. Effects of ozone stress upon winter wheat photosynthesis,lipid peroxidation and antioxidant systems[J]. Environmental Science,2010,31(7):1643-1651.
    [7] Feng Z Z,Pang J,Kobayashi K,et al. Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions[J]. Global Change Biology,2011,17(1):580-591.
    [8] Payne R J,Stevens C J,Dise N B,et al. Impacts of atmospheric pollution on the plant communities of British acid grasslands[J].Environmental Pollution,2011,159(10):2602-2608.
    [9] Proietti C,Anav A,De Marco A,et al. A multi-sites analysis on the ozone effects on gross primary production of European forests[J]. Science of the Total Environment,2016,556:1-11.
    [10] Ashmore M,Toet S,Emberson L. Ozone-a significant threat to future world food production[J]. New Phytologist,2006,170(2):201-204.
    [11] Avnery S,Mauzerall D L,Liu J F,et al. Global crop yield reductions due to surface ozone exposure:1. Year 2000 crop production losses and economic damage[J]. Atmospheric Environment,2011,45(13):2284-2296.
    [12] Wang X K,Zhang Q Q,Zheng F X,et al. Effects of elevated O3concentration on winter wheat and rice yields in the Yangtze River Delta,China[J]. Environmental Pollution,2012,171:118-125.
    [13] Van Dingenen R,Dentener F J,Raes F,et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment,2009,43(3):604-618.
    [14] Pleijel H, Danielsson H, Emberson L, et al. Ozone risk assessment for agricultural crops in Europe:further development of stomatal flux and flux-response relationships for European wheat and potato[J]. Atmospheric Environment,2007,41(14):3022-3040.
    [15] Sitch S,Cox P M,Collins W J,et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature,2007,448(7155):791-794.
    [16] LRTAP Convention. Mapping Manual 2004. Manual on methodologies and criteria for modeling and mapping critical loads&levels and air pollution effects,risk and trends[EB/OL].http://icpvegetation. ceh. ac. uk. Chapter 3. Mapping critical levels for vegetation[M]. 2010.
    [17]佟磊,冯宗炜,苏德·毕力格,等.冬小麦气孔臭氧通量拟合及通量产量关系的比较分析[J].生态学报,2012,32(9):2890-2899.Tong L,Feng Z W,Sudebilige,et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat[J]. Acta Ecologica Sinica,2012,32(9):2890-2899.
    [18] Feng Z Z,Sun J S,Wan W X,et al. Evidence of widespread ozone-induced visible injury on plants in Beijing,China[J].Environmental Pollution,2014,193:296-301.
    [19]赵辉,郑有飞,李硕,等.麦田O3浓度的长期变化及其对冬小麦干物质和产量损失的估算[J].环境科学,2017,38(12):5315-5325.Zhao H,Zheng Y F,Li S,et al. Long term variations of ozone concentration of in a winter wheat field and its loss estimate based on dry matter and yield[J]. Environmental Science,2017,38(12):5315-5325.
    [20]刘建栋,周秀骥,于强. O3,CO2浓度及太阳光谱变化对作物光合作用影响的数值模拟研究[J].气象学报,2002,60(6):715-721.Liu J D,Zhou X J,Yu Q. Numerical simulation of the influence of O3,CO2and spectrum variation on the photosynthesis of crop canopy[J]. Acta Meteorologica Sinica,2002,60(6):715-721.
    [21]郑昌玲,王春乙.近地层O3和CO2浓度变化对冬小麦影响的数值模拟:I模型结构[J].气象学报,2005,63(2):184-191.Zheng C L,Wang C Y. Numerical simulation study on the impacts of troposphere O3and CO2concentrations changes on winter wheat:I model description[J]. Acta Meteorologica Sinica,2005,63(2):184-191.
    [22]姚芳芳,王效科,欧阳志云,等.臭氧胁迫下冬小麦物质生产与分配的数值模拟[J].应用生态学报,2007,18(11):2586-2593.Yao F F,Wang X K,Ouyang Z Y,et al. A simulation model of ozone stress on photosynthetic production and its allocation of winter wheat[J]. Chinese Journal of Applied Ecology,2007,18(11):2586-2593.
    [23] Yue X,Unger N. Ozone vegetation damage effects on gross primary productivity in the United States[J]. Atmospheric Chemistry and Physics,2014,14(17):9137-9153.
    [24]徐静馨,郑有飞,赵辉,等.冬小麦田O3气孔与非气孔沉降及风险评估[J].环境科学,2017,38(10):4427-4437.Xu J X,Zheng Y F,Zhao H,et al. Ozone deposition and risk assessment for a winter wheat field:partitioning between stomatal and non-stomatal pathways[J]. Environmental Science,2017,38(10):4427-4437.
    [25] Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past,present and future[J]. Global Change Biology,2003,9(4):479-492.
    [26] Falge E,Baldocchi D,Olson R,et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agricultural and Forest Meteorology,2001,107(1):43-69.
    [27] Kowalski S,Loustau D,Berbigier P,et al. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe[J]. Global Change Biology,2004,10(10):1707-1723.
    [28]徐静馨,郑有飞,麦博儒,等.基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J].植物生态学报,2017,41(6):670-682.Xu J X,Zheng Y F,Mai B R, et al. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field[J]. Chinese Journal of Plant Ecology,2017,41(6):670-682.
    [29]周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社,2004.
    [30]杨关盈,樊曙先,汤洁,等.临安近地面臭氧变化特征分析[J].环境科学研究,2008,21(3):31-35.Yang G Y,Fan S X,Tang J,et al. Characteristic of surface ozone concentrations at Lin'an[J]. Research of Environmental Sciences,2008,21(3):31-35.
    [31]金赛花,樊曙先,王自发,等.青海瓦里关地面臭氧浓度的变化特征[J].中国环境科学,2008,28(3):198-202.Jin S H,Fan S X,Wang Z F,et al. The variation characteristics of surface ozone concentration at Waliguan in Qinghai[J]. China Environmental Science,2008,28(3):198-202.
    [32]王占山,李云婷,陈添,等.北京城区臭氧日变化特征及与前体物的相关性分析[J].中国环境科学,2014,34(12):3001-3008.Wang Z S,Li Y T,Chen T,et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science,2014,34(12):3001-3008.
    [33] Feng Z Z,Kobayashi K,Ainsworth E A. Impact of elevated ozone concentration on growth,physiology,and yield of wheat(Triticum aestivum L.):a meta-analysis[J]. Global Change Biology,2008,14(11):2696-2708.
    [34]梁晶,曾青,朱建国,等.开放式臭氧浓度升高对水稻叶片气体交换和荧光特性的影响[J].光谱学与光谱分析,2010,30(4):991-995.Liang J,Zeng Q,Zhu J G,et al. Effects of O3-FACE(ozonefree air control enrichment)on gas exchange and chlorophyll fluorescence of rice leaf[J]. Spectroscopy and Spectral Analysis,2010,30(4):991-995.
    [35] Biswas D K,Xu H,Li Y G,et al. Genotypic differences in leaf biochemical,physiological and growth responses to ozone in 20winter wheat cultivars released over the past 60 years[J]. Global Change Biology,2008,14(1):46-59.
    [36] Pang J, Kobayashi K, Zhu J G. Yield and photosynthetic characteristics of flag leaves in Chinese rice(Oryza sativa L.)varieties subjected to free-air release of ozone[J]. Agriculture,Ecosystems&Environment,2009,132(3-4):203-211.
    [37] Yuan X Y,Calatayud V,Jiang L J,et al. Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea(EDU)[J]. Environmental Pollution,2015,205:199-208.
    [38] Zhang W W,Feng Z Z,Wang X K,et al. Quantification of ozone exposure-and stomatal uptake-yield response relationships for soybean in Northeast China[J]. Science of the Total Environment,2017,599-600:710-720.
    [39] Danielsson H,Karlsson G P,Karlsson P E,et al. Ozone uptake modelling and flux-response relationships-an assessment of ozoneinduced yield loss in spring wheat[J]. Atmospheric Environment,2003,37(4):475-485.
    [40] Wu R J,Zheng Y F,Hu C D. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone fluxresponse relationship with dynamical flux thresholds[J].Atmospheric Environment,2016,142:93-103.
    [41]张巍巍,王光华,王美玉,等.东北春大豆品种东生1号对臭氧胁迫的响应[J].环境科学,2014,35(4):1473-1478.Zhang W W,Wang G H,Wang M Y,et al. Responses of soybean cultivar Dongsheng-1 to different O3concentrations in Northeast China[J]. Environmental Science,2014,35(4):1473-1478.
    [42] Massman W J. Toward an ozone standard to protect vegetation based on effective dose:a review of deposition resistances and a possible metric[J]. Atmospheric Environment,2004,38(15):2323-2337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700