用户名: 密码: 验证码:
披针叶茴香对变化光环境的表型可塑性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phenotypic plasticity of Illicium lanceolatum in response to varied light environments
  • 作者:成向荣 ; 邢文黎 ; 苑海静 ; 熊静 ; 虞木奎
  • 英文作者:CHENG Xiangrong;XING Wenli;YU Haijing;XIONG Jing;YU Mukui;East China Coastal Forest Ecosystem Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry;
  • 关键词:披针叶茴香 ; 光环境 ; 表型可塑性 ; 生态适应
  • 英文关键词:Illicium lanceolatum;;light environment;;phenotypic plasticity;;ecological adaptation
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:华东沿海防护林生态系统国家定位观测研究站中国林业科学研究院亚热带林业研究所;
  • 出版日期:2019-03-23
  • 出版单位:生态学报
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目(2017YFC0505500,2017YFC0505502)
  • 语种:中文;
  • 页:62-71
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S718.5
摘要
植物对变化光环境的表型可塑性大小影响其在林下生境中分布、生长和更新。为探讨披针叶茴香在不同光环境下的整体表型可塑性及其适应机制,采用遮荫试验模拟5种光照条件(100%、52%、33%、15%和6%相对光照强度),研究了不同光环境下披针叶茴香叶片形态、生理、解剖结构、根系形态以及生物量分配等的变化。结果表明:叶生物量在5种光照处理之间差异不显著,但叶面积和比叶面积均随光照强度减弱显著增加。遮荫处理增加了叶绿素a、叶绿素b和类胡萝卜素的含量,但叶绿素a/b比值随光照强度减弱而降低。遮荫降低了非结构性碳水化合物(淀粉和可溶性糖)和可溶性蛋白的含量,增加了叶片氮和磷含量,对叶片氮/磷比影响较小。在52%和33%相对光照处理下,叶片中硝酸盐含量最低,而在100%和6%相对光照处理下硝酸盐积累较多。根生物量、细根和粗根的长度、表面积以及比根长和比根表面积在5种光照处理之间均没有显著差异,根系氮含量在低光环境(15%和6%相对光照处理)中显著降低。随光照强度减弱,披针叶茴香采取保守生存策略,并没有增加叶生物量的分配,而是分配较多的生物量给枝条和树干,储存能量。综合来看,披针叶茴香具有较宽的光生态幅,在6%—100%光照强度下均能正常生长,遮荫有利于披针叶茴香地上和总生物量的积累,52%的相对光照条件下生长最佳。变化光环境下根系性状和整体结构的可塑性相对较低,叶片生理性状的可塑性在披针叶茴香适应光环境变化过程中发挥了主要作用。
        The phenotypic plasticity of plants in varied light environments affects their distribution, growth, and regeneration in the understory environment. To investigate the phenotypic plasticity and adaptation mechanisms of Illicium lanceolatum in different light conditions, five light conditions(100%, 52%, 33%, 15%, and 6% relative light intensity) were simulated in the shading experiment. The changes in leaf morphology, physiology, anatomical structure, root morphology, and biomass allocation of I. lanceolatum in different light conditions were studied. The results showed that there was no significant difference in leaf biomass between the five light treatments, and the leaf area and specific leaf area increased significantly with the decrease of light intensity. The shading treatments enhanced the contents of chlorophyll a, chlorophyll b, and carotenoid. However, the chlorophyll a/b ratio decreased with the decrease of light intensity. Shading reduced the contents of non-structural carbohydrates(starch and soluble sugar) and soluble protein, and increased the leaves′ nitrogen and phosphorus contents, but the nitrogen/phosphorus ratio of leaves was less affected by light gradients. The nitrate content of the leaves in 52% and 33% relative light treatments was the lowest, whereas the nitrate content was higher in the 100% and 6% relative light treatments. Root biomass, fine root and root length, root surface area, specific root length, and specific root surface area were not significantly different among the five light treatments. The content of root nitrogen was significantly reduced in the low light environments(15% and 6% relative light intensities). As light intensity decreased, I. lanceolatum adopted a conservative survival strategy, which did not invest in leaf biomass, but allocated more biomass to the branches and trunks to store energy. As a whole, I. lanceolatum had a wide light ecological amplitude and could grow normally in 6%—100% light intensities. Shading was beneficial for the accumulation of aboveground biomass and total biomass for I. lanceolatum, and the optimal growth condition was 52% relative light intensity. The plasticity of the root traits and whole structure was relatively lower in the different light environments, and the plasticity of the leaf physiological traits played a key role for I. lanceolatum to adapt to varied light environments.
引文
[1] Aleric K M,Kirkman L K.Growth and photosynthetic responses of the federally endangered shrub,Lindera Melissifolia (Lauraceae),to varied light environments.American Journal of Botany,2005,92(4):682- 689.
    [2] 郭志华,王荣,肖文发.不同光环境下喜树与四川大头茶幼苗的表型可塑性.林业科学,2009,45(9):6- 12.
    [3] 刘从,田甜,李珊,王芳,梁宇.中国木本植物幼苗生长对光照强度的响应.生态学报,2018,38(2):518- 527.
    [4] Gao L,Li B,Liu W Y,Shen Y X,Liu W J.Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes.Aquatic Botany,2013,107:47- 53.
    [5] Bradshaw A D.Evolutionary significance of phenotypic plasticity in plants.Advances in Genetics,1965,13:115- 155.
    [6] 施建敏,叶学华,陈伏生,杨清培,黎祖尧,方楷,杨光耀.竹类植物对异质生境的适应——表型可塑性.生态学报,2014,34(20):5687- 5695.
    [7] 胡启鹏,郭志华,李春燕,马履一.植物表型可塑性对非生物环境因子的响应研究进展.林业科学,2008,44(5):135- 142.
    [8] Portsmuth A,Ni+inemets ü.Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance.Functional Ecology,2007,21(1):61- 77.
    [9] Sánchez-Gómez D,Valladares F,Zavala M A.Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species.Tree Physiology,2006,26(11):1425- 1433.
    [10] Valladares F,Wright S J,Lasso E,Kitajima K,Pearcy P W.Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest.Ecology,2000,81(7):1925- 1936.
    [11] Valladares F,Sanchez-Gomez D,Zavala M A.Quantitative estimation of phenotypic plasticity:bridging the gap between the evolutionary concept and its ecological applications.Journal of Ecology,2006,94(6):1103- 1116.
    [12] Gratani L.Plant phenotypic plasticity in response to environmental factors.Advances in Botany,2014,2014:208747.
    [13] Gong H D,Wang H,Jiao D Y,Cai Z Q.Phenotypic plasticity of seedlings of five tropical tree species in response to different light and nutrient availability.Tropical Ecology,2016,57(4):727- 737.
    [14] 郑成忠,徐金良,郑卫华.优良林下药用观赏树种——披针叶茴香.林业调查规划,2014,39(1):98- 100.
    [15] 曹永慧,周本智,陈双林,萧江华,王小明.不同产地披针叶茴香光合特性对水分胁迫和复水的响应.生态学报,2012,32(23):7421- 7429.
    [16] Cao Y H,Zhou B Z,Chen S L,Xiao J H,Wang X M.The photosynthetic physiological properties of Illicium lanceolatum plants growing under different light intensity conditions.African Journal of Agricultural Research,2011,6(26):5736- 5741.
    [17] 曹永慧,周本智,张汝民,陈双林.披针叶茴香叶绿素荧光参数对不同光环境的响应.西北植物学报,2012,32(3):525- 531.
    [18] 李慧娟,王丽霞,刘孟奇,张雁冰,毕跃峰,柳继锋.披针叶茴香果实的化学成分研究.中国药学杂志,2014,49(8):636- 639.
    [19] 王国伟.披针叶茴香茎、叶化学成分及抗炎活性研究[D].上海:第二军医大学,2012.
    [20] 颉洪涛,虞木奎,成向荣.光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响.植物生态学报,2017,41(5):559- 569.
    [21] 鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2013.
    [22] 张治安,张美善,蔚荣海.植物生理学实验指导.北京:中国农业科学技术出版社,2004.
    [23] 吴月燕,李波,张燕忠,崔鹏.盐胁迫对杜鹃生理生化与叶绿体亚显微结构的影响.浙江大学学报:农业与生命科学版,2011,37(6):642- 648.
    [24] 王艺,韦小丽.不同光照对植物生长、生理生化和形态结构影响的研究进展.山地农业生物学报,2010,29(4):353- 359,370- 370.
    [25] 徐高峰,申时才,张付斗.异质环境下入侵植物薇甘菊的适应性与繁殖特性.生态环境学报,2014,23(8):1258- 1264.
    [26] 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31(1):150- 165.
    [27] Poorter L.Growth responses of 15 rain-forest tree species to a light gradient:the relative importance of morphological and physiological traits.Functional Ecology,1999,13(3):396- 410.
    [28] 成向荣,周俊宏,陈永辉,武克壮,虞木奎.山栀子幼苗表型可塑性对不同光环境的响应.江西农业大学学报,2016,38(1):180- 186.
    [29] 李冬林,向其柏.光照条件对浙江楠幼苗生长及光合特性的影响.南京林业大学学报:自然科学版,2004,28(5):27- 31.
    [30] 刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响.中国农业科学,2006,39(10):2069- 2075.
    [31] 徐飞,郭卫华,徐伟红,王仁卿.不同光环境对麻栎和刺槐幼苗生长和光合特征的影响.生态学报,2010,30(12):3098- 3107.
    [32] 关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26(6):806- 812.
    [33] Vos J,van der Putten P E L.Effects of partial shading of the potato plant on photosynthesis of treated leaves,leaf area expansion and allocation of nitrogen and dry matter in component plant parts.European Journal of Agronomy,2001,14(3):209- 220.
    [34] 林多,黄丹枫,杨延杰,陈宁.钾素水平对网纹甜瓜叶片光合特性及叶绿体亚显微结构的影响.应用生态学报,2007,18(5):1066- 1070.
    [35] 陶巧静,吴月燕,付涛,项锡娜,李波.弱光胁迫对西洋杜鹃生理特性和叶片超微结构的影响.林业科学,2015,51(3):84- 92.
    [36] Nishimura E,Suzaki E,Irie M,Nagashima H,Hirose T.Architecture and growth of an annual plant Chenopodium album in different light climates.Ecological Research,2010,25(2):383- 393.
    [37] Curt T,Coll L,Prévosto B,Balandier P,Kunstler G.Plasticity in growth,biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition.Annals of Forest Science,2005,62(1):51- 60.
    [38] 王振兴,朱锦懋,王健,汪滢,卢钰茜,郑群瑞.闽楠幼树光合特性及生物量分配对光环境的响应.生态学报,2012,32(12):3841- 3848.
    [39] Craine J M,Reich P B.Leaf-level light compensation points in shade-tolerant woody seedlings.New Phytologist,2005,166(3):710- 713.
    [40] Reich P B,Wright I J,Cavender-Bares J,Craine J M,Oleksyn J,Westoby M,Walters M B.The evolution of plant functional variation:traits,spectra,and strategies.International Journal of Plant Sciences,2003,164(S3):S143-S164.
    [41] 武高林,陈敏,杜国祯.三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应.生态学报,2010,30(1):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700