用户名: 密码: 验证码:
10-23脱氧核酶介导的生物传感器研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on 10-23 DNAzyme Mediated Biosensors
  • 作者:李凯 ; 罗云波 ; 许文涛
  • 英文作者:LI Kai;LUO Yun-bo;XU Wen-tao;Beijing Advanced Innovation Center for Food Nutrition and Human Health,College of Food Science and Nutritional Engineering,China Agricultural University;Key Laboratory of Safety Assessment of Genetically Modified Organism(Food Safety),Ministry of Agriculture;
  • 关键词:10-23脱氧核酶 ; 功能核酸 ; 生物传感器 ; 生物成像 ; Mg2+
  • 英文关键词:10-23 DNAzyme;;functional nucleic acid;;biosensor;;bioimaging;;Mg2+
  • 中文刊名:生物技术通报
  • 英文刊名:Biotechnology Bulletin
  • 机构:中国农业大学食品科学与营养工程学院北京食品营养与人类健康高精尖创新中心;农业部农业转基因生物安全评价(食用)重点实验室;
  • 出版日期:2018-03-06 17:10
  • 出版单位:生物技术通报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(31671922)
  • 语种:中文;
  • 页:146-156
  • 页数:11
  • CN:11-2396/Q
  • ISSN:1002-5464
  • 分类号:TP212;Q55
摘要
近20年间,DNA介导的生物传感器得到了快速的发展,DNA能够作为遗传信息重要载体的同时,其折叠成的空间构象也具有很多的功能。功能核酸的概念逐渐引入到了包括生物传感、生物成像、医疗在内的重要领域中。10-23脱氧核酶作为功能核酸的一种,是通过体外筛选技术得到的,Mg~(2+)存在的条件下能够特异性识别并切割RNA,切割位点为RNA中的嘧啶与嘌呤间的磷酸二酯键。由于其独特的识别以及切割能力,10-23脱氧核酶介导的相关疾病治疗得到了广泛的应用,同时人们逐渐开始关注10-23脱氧核酶介导的生物传感器的搭建。对于10-23脱氧核酶的结构、性质、作用方式及改进修饰进行了介绍,并对10-23脱氧核酶介导的生物传感器的搭建及应用进行了综述,旨为人们在未来使用10-23脱氧核酶搭建新型快捷生物传感器奠定理论基础。
        In the past two decades,many DNA-based biosensors emerged and developed rapidly. While the main role of DNA is geneticinformation container,its folded space structure is functional as well. The theories and applications of functional nucleic acids have beeninvolved in many critical fields such as biosensor,bioimaging and medication. As one of them,10-23 DNAzyme of a functional nucleic acidwas obtained using in vitro selection technology. It can be made to specifically recognize and cleave any targeted RNA substrate at cleavage siteof phosphodiester bond between pyrimidine and purine at the presence of Mg~(2+). Because of its special identification and cleavage ability,10-23 DNAzyme mediated disease treatment has been applied widely;also 10-23 DNAzyme mediated biosensors have been established. In this paper,we present the structure,property,action mechanism,and modification of 10-23 DNAzyme;meanwhile,we summarize the establishmentand application of 10-23 DNAzyme-mediated biosensors,aiming at providing theoretical basis to guide people to develop new 10-23 DNAzymemediated biosensors.
引文
[1]SullengerBA,GilboaE.EmergingclinicalapplicationsofRNA[J]. Nature, 2002, 418(6894):252.
    [2]Cho EJ, Rajendran M, Ellington AD. Aptamers as Emerging Probesfor Macromolecular Sensing[M]. US:Springer, 2005.
    [3]RaveletC,GrossetC,PeyrinE.Liquidchromatography,electrochromatography and capillary electrophoresis applications ofDNA and RNA aptamers[J]. Journal of Chromatography A, 2006,1117(1):1-10.
    [4]Lu Y, Liu J. Smart Nanomaterials inspired by biology:dynamicassembly of error-free nanomaterials in response to multiplechemical and biological stimuli[J]. Accounts of ChemicalResearch, 2007, 40(5):315-323.
    [5]Storhoff JJ, Mirkin CA. ChemInform Abstract:Programmedmaterials synthesis with DNA[J]. Cheminform, 1999, 30(39):1849-1862.
    [6]Silverman SK. Catalytic DNA(deoxyribozymes)for syntheticapplications-current abilities and future prospects[J]. Chemicalcommunications(Cambridge, England), 2008, 39(30):3467.
    [7]Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selectionin vitro to applications in vivo[J]. Accounts of Chemical Research,2000, 33(9):591.
    [8]Song S, Wang L, Li J, et al. Aptamer-based biosensors[J]. TracTrends in Anal Chem, 2008, 27(2):108-117.
    [9]Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA[J].Chemistry&Biology, 1994, 1(4):223.
    [10]Huang PJ, Liu J. Rational evolution of Cd2+-specificDNAzymeswith phosphorothioate modified cleavage junction and Cd2+sensing[J]. Nucleic Acids Research, 2015, 43(12):6125-6133.
    [11]Zhou W, Vazin M, Yu T, et al. In vitro selection of chromiumdependent DNA zymes for sensing chromium(III)and chromium(VI)[J]. Chemistry, 2016, 22(28):9835.
    [12]Huang PJ, Liu J. An Ultrasensitive light-up Cu2+biosensor using anew DNAzyme cleaving a phosphorothioate modified substrate[J]. Anal Chem, 2016, 88(6):3341.
    [13]Lan T, Furuya K, Lu Y. A highly selective lead sensor based on aclassic lead DNAzyme[J]. Chem Commun, 2010, 46(22):3896.
    [14]Santoro SW, Joyce GF. A general purpose RNA-cleaving DNAenzyme[J]. Proc Natl Acad Sci USA, 1997, 94(9):4262-4256.
    [15]Breaker RR, Joyce GF. A DNA enzyme with Mg 2+-dependent RNAphosphoesterase activity[J]. Chemistry&Biology, 1995, 2(10):655.
    [16]Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleavingDNA enzyme[J]. Biochemistry, 1998, 37(38):13330-13342.
    [17]Cairns M J, Hopkins TM, Witherington C, et al. The influenceof arm length asymmetry and base substitution on the activity ofthe 10-23 DNA enzyme[J]. Antisense and Nucleic Acid DrugDevelopment, 2000, 10(5):323-332.
    [18]Pan WH, Devlin HF, Kelley C, et al. A selection system foridentifying accessible sites in target RNAs[J]. RNA, 2001, 7(4):610-621.
    [19]Wang Q, Zhang D, Liu Y, et al. A structure-activity relationshipstudy for 2’-deoxyadenosine analogs at A9 position in the catalyticcore of 10-23 DNAzyme for rate enhancement[J]. Nucleic AcidTherapeutics, 2012, 22(6):423-427.
    [20]Vester B, Lundberg LB, S Rensen MD, et al. LNAzymes:incorporation of LNA-type monomers into DNAzymes markedlyincreases RNA cleavage[J]. J Am Chem Soc, 2002, 124(46):13682-13683.
    [21]Wengel J, Vester B, Lundberg LB, et al. LNA and alpha-L-LNA:towards therapeutic applications[J]. Nucleosides Nucleotides&Nucleic Acids, 2003, 22(5-8):601-614.
    [22]Asahina Y, Ito Y, Wu CH, et al. DNA ribonucleases that areactive against intracellular hepatitis B viral RNA targets[J].Hepatology, 1998, 28(2):547.
    [23]Sioud M, Leirdal M. Design of nuclease resistant protein kinasecalpha DNA enzymes with potential therapeutic application[J].Journal of Molecular Biology, 2000, 296(3):937-947.
    [24]Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage ofHuntingtin mRNA by catalytic DNA[J]. Annals of Neurology,1999, 46(3):366-373.
    [25]Zhao Y, Li Z, Tang Z. Cleavage-based signal amplification ofRNA[J]. Nature Communications, 2013, 4(2):1493.
    [26]Carter JR, Balaraman V, Kucharski CA, et al. A novel dengue virusdetection method that couples DNAzyme and gold nanoparticleapproaches[J]. Virology Journal, 2013, 10:201.
    [27]Li Y, Xu J, Wang L, et al. Aptamer-based fluorescent detectionof bisphenol A using nonconjugated gold nanoparticles and CdTequantum dots[J]. Sensors&Actuators B Chemical, 2016, 222:815-822.
    [28]Bone SM, Hasick NJ, Lima NE, et al. DNA-only cascade:auniversal tool for signal amplification, enhancing the detection oftarget analytes[J]. Anal Chem, 2014, 86(18):9106-9113.
    [29]Cha TG, Pan J, Chen H, et al. A synthetic DNA motor thattransports nanoparticles along carbon nanotubes[J]. NatNanotechnol, 2014, 9(1):39-43.
    [30]Fan H, Zhao Z, Yan G, et al. A smart DNAzyme-MnO2 nanosystemfor efficient gene silencing[J]. Angewandte Chemie InternationalEdition, 2015, 54(16):4801-4805.
    [31]Todd AV, Fuery CJ, Impey HL, et al. DzyNA-PCR:use ofDNAzymes to detect and quantify nucleic acid sequences in a realtime fluorescent format[J]. Clinical Chemistry, 2000, 46(5):625-630.
    [32]Tian Y, Mao C. DNAzyme amplification of molecular beaconsignal[J]. Talanta, 2005, 67(3):532-537.
    [33]Kahan-Hanum M, Douek Y, Adar R, et al. A Library of programmable DNAzymes that operate in a cellular environment[J]. SciRep, 2013, 3:1535.
    [34]Wu L, Tong Q, Li HC, et al. Design of a new hairpin DNAzyme:The activity controlled by TMPyP 4[J]. African Journal ofBiotechnology, 2011, 10(40):7902-7910.
    [35]Yehl K, Joshi JP, Greene Bl, et al. Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation[J].ACS Nano, 2012, 6(10):9150-9157.
    [36]ElbazJ,MosheM,ShlyahovskyB,etal.Cooperativemulticomponent self-assembly of nucleic acid structures for theactivation of DNAzyme cascades:a paradigm for DNA sensors andaptasensors[J]. Chemistry, 2009, 15(14):3411-3418.
    [37]Gong H, Zhong T, Gao L, et al. Unlabeled hairpin DNA probe forelectrochemical detection of single-nucleotide mismatches based onMutS-DNA interactions[J]. Anal Chem, 2009, 81(20):8639-8643.
    [38]Sun C, Zhang L, Jiang J, et al. Electrochemical DNA biosensorbased on proximity-dependent DNA ligation assays with DNAzymeamplification of hairpin substrate signal[J]. Biosens Bioelectron,2010, 25(11):2483-2489.
    [39]Gao X, Huang H, Niu S, et al. Determination of magnesiumion in serum samples by a DNAzyme-based electrochemicalbiosensor[J]. Analytical Methods, 2012, 4(4):947-952.
    [40]FokinaAA,StetsenkoDA,FranoisJC.DNAenzymesaspotential therapeutics:towards clinical application of 10-23DNAzymes[J]. Expert Opinion on Biological Therapy, 2015, 15(5):689-711.
    [41]Li N, Li Y, Gao X, et al. Multiplexed gene silencing in Living cellsand in vivo using a DNAzymes-CoOOH nanocomposite[J]. ChemCommun, 2017, 53(36):4962-4965.
    [42]Dass CR, Friedhuber AM, Khachigian LM, et al. Biocompatiblechitosan-DNAzyme nanoparticle exhibits enhanced biologicalactivity[J]. Journal of Microencapsulation, 2008, 25(6):421-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700