用户名: 密码: 验证码:
氯改性活性炭吸附单质铅(Pb~0)的机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The mechanism of elemental lead(Pb~0) adsorption on chlorine-embedded activated carbon
  • 作者:余岳溪 ; 刘晓硕 ; 李昂 ; 廖永进 ; 兰万里
  • 英文作者:YU Yue-xi;LIU Xiao-shuo;LI Ang;LIAO Yong-jin;LAN Wan-li;Electric Power Research Institute of Guangdong Power Gride Corporation;School of Energy and Power Engineering, North China Electric Power University;
  • 关键词:活性炭 ; 氯改性 ; 单质铅 ; 吸附 ; 密度泛函理论
  • 英文关键词:activated carbon;;chlorine modification;;Pb~0;;adsorption;;density functional theory(DFT)
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:广东电网有限责任公司电力科学研究院;华北电力大学能源动力与机械工程学院;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:05
  • 基金:南方电网科研基金资助项目(K-GD2014-173)
  • 语种:中文;
  • 页:57-63
  • 页数:7
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X773
摘要
利用量子化学中密度泛函方法系统研究氯改性活性炭吸附单质铅(Pb~0)的机理,明确了氯改性对活性炭吸附Pb~0的影响,计算得到吸附过程中各个吸附构型的吸附能、重要键长、对应的Mayor键级和铅的Mulliken原子电荷.几何优化选用B3LYP方法结合def2-SVP基组,单点能任务选用PWPB95双杂化泛函结合def2-TZVP基组进行计算.结果表明:对于扶手椅型(armchair)活性炭,氯改性将使活性炭对Pb~0的吸附能降低74.034kJ/mol;对于锯齿型(zigzag)活性炭,氯改性基本不会改变活性炭对Pb~0的吸附能力,因此氯改性总体上会减弱活性炭对Pb~0的吸附作用,但是吸附类型依然为强烈的化学吸附.分别应用电子密度分布和Mayor键级进一步验证纯活性炭和氯改性活性炭对Pb~0吸附类型,结果与吸附能分析一致.Mayor键级分析表明氯原子通过改变周围碳原子活性影响Pb~0的吸附,而不是与Pb~0直接作用.Mulliken原子电荷分析表明铅的原子电荷正相关于活性炭对其的吸附能,铅的原子电荷越大,对应的吸附构型的吸附能越高.此外笔者发现Pb~0的引入对氯改性活性炭继续吸附Pb~0有抑制作用.
        The investigation on adsorption mechanism of chlorine-modified activated carbon on elemental lead(Pb~0) was conducted by density functional method using quantum chemistry method. In this study, we explored the effect of chlorine modification on adsorption of Pb~0 by activated carbon surface, and the adsorption energy, key bond length, corresponding Mayor bond order and Mulliken atomic charge of Pb~0 were acquired. Full-parameter geometrical optimization and single point energy were calculated at B3 LYP/def2-SVP and PWPB95/def2-TZVP level. Results showed that the chlorine modification decreased the adsorption energy of Pb~0 on activated carbon by 74.034 kJ/mol for armchair char but it had little influence on Pb~0 adsorption for zigzag char. Therefore, the chlorine modification would overall suppress the adsorption of Pb~0 on activated carbon, but the adsorption type still belongs to chemical adsorption. The result agreed with the conclusion in regards to Pb~0 adsorption energy on pure activated carbon and chlorine modified activated carbon using electronic density analysis and Mayor bond order analysis respectively. In addition, Mayor bond order analysis suggested chlorine atom would affect the Pb~0 adsorption via affecting carbon atoms, while rather than interacting with Pb~0 directly. Furthermore, the atomic charge of Pb~0 is correlated positively with the adsorption energy on activated carbon, and the higher atomic charge of Pb~0, the larger adsorption energy of the corresponding adsorption configuration. Additionally, we found that the introduction of Pb~0 could block the adsorption of another Pb~0 on chlorine-modified carbon.
引文
[1] Zeman, Frank. Metropolitan sustainability:understanding and improving the urban environment[M]. Woodhead, 2012.
    [2]王英,李令军.北京大气铅污染的变化规律研究[J].中国环境科学,2010,30(6):721-726.Wang Y, Li L J. Changing properties of atmospheric lead pollution in Beijing[J]. China Environmental Science, 2010,30(6):721-726.
    [3]余岳溪,冯永新,廖永进,等.烟气中NO分子对碳基吸附单质铅的影响机理[J].动力工程学报,2017,37(1):39-44+65.Yu Y X, Feng Y X, Liao Y J, et al. Effect of nitric oxide in flue gas on element lead adsorption over carbonaceous surface[J]. Journal of Chinese Society of Power Engineering, 2017,37(1):39-44+65.
    [4] Qin J, Li Z, Lou M. Status, sources of pollution and control measures of Chinese children lead poisoning[J]. Guangdong Trace Elements Science. 2010,1:002.
    [5] Gao Z, Yang W J. Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces[J]. Journal of Molecular Modeling, 2016,22(7):166.
    [6]邓双,张凡,刘宇,等.燃煤电厂铅的迁移转化研究.中国环境科学,2013,33(7):1199-206.Zheng S, Zhang F, Liu Y, et al. Lead emission and speciation of coal-fired power plants in China. China Environmental Science. 2013,33(7):1199-206.
    [7]高洪亮,周劲松,骆仲泱,等.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报,2007,27(8):26-30.Gao H L, Zhou J S, Luo Z Y, et al. Experimental study on Hg vapor adsorption of modified activated carbons in simulated flue gas[J].Proceedings of the CSEE, 2007,27(8):26-30.
    [8] Liu J, Cheney M A, Wu F, et al. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces[J]. Journal of Hazardous Materials, 2011,186(1):108-113.
    [9] Liu J,Qu W Q,Sang W J,et al. Effect of SO2 on mercury binding on carbonaceous surfaces[J]. Chemical Engineering Journal, 2012,184(2):163-167.
    [10] Zhang H, Liu J X, Liu J G, et al. DFT study on the alternative NH3formation path and its functional group effect[J]. Fuel, 2018,214:108-114.
    [11]赵鹏飞,郭欣,郑楚光.活炭及氯改性活性炭吸附单质汞的机制研究[J].中国电机工程学报,2010,30(23):40-44.Zhao P F, Guo X,Zheng C G. Investigating the mechanism of elemental mercury binding on activated carbon and chlorineembedded activated carbon[J]. Proceedings of the CSEE, 2010,30(23):40-44.
    [12] He P, Zhang X, Peng X, et al. Interaction of elemental mercury with defective carbonaceous cluster[J]. Journal of Hazardous Materials.2015,300:289-97.
    [13] Zhang H, Liu J, Wang X, et al. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel., 2017,203:715-24.
    [14] Cortes-Arriagada D, Villegas-Escobar N, Ortega DE. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules(CO,CO2,SO2 and H 2S),and the co-adsorption in O2environments[J]. Applied Surface Science, 2018,427:227-36.
    [15] Gao Z, Yang W J, Ding X L, et al. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases(NO2, NH3, SO3and H2S)[J]. Applied Surface Science, 2017.
    [16] Gao Z, Li M, Sun Y, et al. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface[J]. Journal of Hazardous Materials, 2018,360:436.
    [17] Gao Z Y, Ding Y, Yang W J, et al. DFT study of water adsorption on lignite molecule surface[J]. Journal of molecular modeling, 2017,23(1):27.
    [18] Goerigk L, Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[J]. Physical Chemistry Chemical Physics Pccp.,2011,13(14):6670-88.
    [19] Kruse H, Grimme S. A geometrical correction for the inter-and intramolecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems[J]. Journal of Chemical Physics, 2012,136(15):04B613-82.
    [20] Weigend F. A fully direct RI-HF algorithm:Implementation,optimised auxiliary basis sets, demonstration of accuracy and efficiency[J]. Physical Chemistry Chemical Physics. 2002,4(18):4285-91.
    [21] Francisco E, Mowtin P,Blanco M A. A. molecular energy decomposition scheme for atoms in molecules[J]. Journal of Chemical Theory&Computation, 2006,2(1):90-102.
    [22] Gao Z, Sun Y, Li M H, et al. Adsorption sensitivity of Fe decorated different graphene supports toward toxic gas molecules(CO and NO)[J]. Applied Surface Science,2018,456:351-9.
    [23] Neese F. The ORCA program system[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2012,2(1):73-8.
    [24] Chen N, Yang R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon. 1998,36(7/8):1061-70.
    [25] Espinal J F, Mondragon F, Truong T N. Thermodynamic evaluation of steam gasification mechanisms of carbonaceous materials[J]. Carbon.2009,47(13):3010-8.
    [26] Zhang H,Liu J,Shen J, et al. Thermodynamic and kinetic evaluation of the reaction between NO(nitric oxide)and char(N)(char bound nitrogen)in coal combustion[J]. Energy, 2015,82:312-21.
    [27] Jiao A Y, Zhang H, Liu J X, et al. Quantum chemical and kinetics calculations for the NO reduction with char(N):Influence of the carbon monoxide[J]. Flame, 2018,196:377-85.
    [28] Montoya A, Mondragon F. CO desorption from oxygen species on carbonaceous surface:1. Effects of the local structure of the active site and the surface coverage[J]. Journal of Physical Chemistry A.2001,105(27):6757-64.
    [29] Liu J, Cheney M A, Wu F, Li M. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces[J]. Journal of Hazardous Materials, 2011,186(1):108-13.
    [30] Gao Z Y, Yang W J,Ding X L,et al. Theoretical research on heterogeneous reduction of N2O by char[J]. Applied Thermal Engineering. 2017.126:28-36.
    [31] Shen F H, Liu J, Zhang Z, et al. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon[J]. Fuel Processing Technology, 2018,171:258-64.
    [32] Lu T, Chen F W. Multiwfn:a multifunctional wavefunction analyzer.Journal of Computational Chemistry, 2012,33(5):580-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700