用户名: 密码: 验证码:
水源水库季节性分层及悬浮物行为对铁锰迁移的影响——以辽宁省碧流河水库为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of seasonal stratification and suspended sediment behaviors on the mobilization of manganese and iron in a drinking water reservoir——A case of Biliuhe Reservoir,Liaoning Province
  • 作者:姜欣 ; 朱林 ; 许士国 ; 谢在刚
  • 英文作者:JIANG Xin;ZHU Lin;XU Shiguo;XIE Zaigang;Institute of Water and Environmental Research,Faculty of Infrastructure Engineering,Dalian University of Technology;Management Bureau of Biliuhe Reservoir;
  • 关键词: ; ; 悬浮物 ; 分层 ; 水源水库 ; 碧流河水库
  • 英文关键词:Iron;;manganese;;suspended sediment;;stratification;;drinking water reservoir;;Biliuhe Reservoir
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:大连理工大学建设工程学部水环境研究所;大连市碧流河水库管理局;
  • 出版日期:2019-03-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51327004)资助
  • 语种:中文;
  • 页:73-83
  • 页数:11
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:X524
摘要
铁和锰是氧化还原敏感的元素,水源水库热分层引起的底层水体缺氧造成了沉积物中铁和锰的释放,对城市供水造成了极大的影响.以往鲜有悬浮物行为对铁和锰在水库水-沉积物界面迁移影响的研究,于2014年2月-2015年2月对碧流河水库深水区的水、悬浮物以及沉积物铁和锰的垂向分布特征进行综合调查分析,并进一步分析铁和锰的季节性变化规律及悬浮物行为对其的影响. Spearman相关分析结果表明铁浓度与总悬浮固体、总氮和总磷的相关性较大;锰浓度与总悬浮固体、溶解氧、pH和总氮的相关性较大.进一步讨论分析表明碧流河水库的热分层、底层缺氧以及沉积物再悬浮是影响铁和锰浓度的重要因素,水库铁和锰的季节变化规律存在差异.分层期溶解态的锰在底层累积,平均浓度达到0.18 mg/L,而沉积物中溶解态的铁释放很少.混合期水库的中上层锰浓度升高,达到了0.07 mg/L.沉积物的再悬浮是水库底层水体中铁的主要来源,底层颗粒态铁的平均浓度约为0.3 mg/L.絮凝的颗粒物以及其吸附的锰在水库长期悬浮,难以沉积到水库底部,使得悬浮物中Mn的含量显著高于表层沉积物,约为沉积物的7倍.建议应在碧流河水库采用分层取水、水库曝气以及联合供水等措施,以减少铁和锰的浓度升高对供水产生的影响,保障大连市城市供水安全.
        Iron and manganese are both redox-sensitive elements and important chemical indicators of drinking water quality. The anaerobic hypolimnion caused by thermal stratification results in the release of iron and manganese from sediments in water-supply reservoirs. The exceeding concentration of them may have a great impact on urban water supply. Little research has focused on the relationship between suspended sediment behaviors and the mobilization of iron and manganese in the water-sediment interface of reservoirs. To demonstrate the seasonal variation of iron and manganese and the influence of suspended matter on its behavior in the Biliuhe Reservoir,we comprehensively investigated and analyzed the vertical distribution characteristic of iron and manganese in water,suspended sediments,and sediments from February 2014 to February 2015. According to the results of Spearman correlation analysis,the concentration of iron is highly correlated with total suspended solids,total nitrogen,and total phosphorus,while,the concentration of manganese is significantly correlated with total suspended solids,dissolved oxygen,pH and total nitrogen. Further analysis results indicate that the thermal stratification,the anaerobic hypolimnion,and the resuspension of sediments significantly affect the concentration of iron and manganese in the Biliuhe Reservoir. The average dissolved manganese concentration accumulates on the bottom layer to 0.18 mg/L in the stratified season,while the dissolved iron releases very little from the sediment. The manganese concentration of the surface and middle layers increase to 0.07 mg/L in the mixing season. Because the average concentration of particulate iron in the bottom layer is approximately 0.3 mg/L,the resuspension of sediments may be the main iron source in the bottom layer of the Biliuhe Reservoir. In addition,the flocculated particulate matter and its adsorbed manganese could stay in the reservoir for a long time,so that the content of manganese in the suspended matter is about 7 times higher than that in the surface sediments. Thus,to reduce the impact of elevated iron and manganese concentrations on water supply in the Biliuhe Reservoir,the most effective management practices focused on multi-level intake,hypolimnetic aeration,and amalgamated waterworks,which could ensure the safety of urban water supply in Dalian.
引文
[1]Sommerfeld EO ed.Iron and manganese removal handbook.Denver,Colorado:American Water Works Association,1999:4-5.
    [2]Frisbie SH,Mitchell EJ,Dustin H et al.World Health Organization discontinues its drinking-water guideline for manganese.Environ Health Perspect,2012,120(6):775-778.DOI:10.1289/ehp.1104693.
    [3]Kenari SLD,Barbeau B.Integratedpyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.Water Res,2017,113:50-61.DOI:10.1016/j.watres.2017.01.053.
    [4]Gerke TL,Little BJ,Barry MJ.Manganese deposition in drinking water distribution systems.Sci of the Total Environ,2016,541:184-193.DOI:10.1016/j.scitotenv.2015.09.054.
    [5]Davison W.Iron and manganese in lakes.Earth-Sci Rev,1993,34(2):119-163.DOI:10.1016/0012-8252(93)90029-7.
    [6]Abesser C,Robinson R.Mobilisation of iron and manganese from sediments of a Scottish Upland Reservoir.J Limnol,2010,69(1):42-53.DOI:10.3274/JL10-69-1-04.
    [7]Zaw M,Chiswell B.Iron and manganese dynamics in lake water.Water Res,1999,33(8):1910-1990.DOI:10.1016/S0043-1354(98)00360-1.
    [8]Betancourt C,Jorge F,Suarez R et al.Manganese sources and cycling in a tropical eutrophic water supply reservoir,Paso Bonito Reservoir,Cuba.Lake Reserv Manage,2010,26(3):217-226.DOI:10.1080/07438141.2010.519856.
    [9]Xu YR,Xu ZJ,Xu W et al.Characteristics of Fe,Mn vertical distribution in a thermal stratified reservoir.J Lake Sci,1999,11(2):117-122.DOI:10.18307/1999.0205.[徐毓荣,徐钟际,徐玮等.水温分层型水库铁、锰垂直分布特征.湖泊科学,1999,11(2):117-122.]
    [10]Peng H,Zheng XL,Chen L et al.Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs.Environ Sci Pollut R,2016,23(14):14362-14372.DOI:10.1007/s11356-016-6380-3.
    [11]Liu SY,Zheng C,Yuan Q et al.Analysis on the variation characteristics of iron and manganese concentration and its genesis in Changtan Reservoir in Taizhou,Zhejiang Province.Environmental Science,2014,35(10):3702-3708.DOI:10.13227/j.hjkx.2014.10.009.[刘树元,郑晨,袁琪等.台州长潭水库铁锰质量浓度变化特征及其成因分析.环境科学,2014,35(10):3702-3708.]
    [12]Yang SY,Zhao J,Yu HZ et al.Vertical distribution characteristics of Fe and Mn in subtropical reservoirs during summer.Environmental Science,2017,38(11):4546-4552.DOI:10.13227/j.hjkx.201704233.[杨思远,赵剑,余华章等.南亚热带地区水库夏季铁、锰垂直分布特征.环境科学,2017,38(11):4546-4552.]
    [13]Galvez JA,Niell FX.Sedimentresuspension in a monomictic eutrophic reservoir.Hydrobiologia,1992,235(1):133-141.DOI:10.1007/BF00026206.
    [14]Ji XC,Wang SR,Jiang X.Preliminary study of the three-dimension model of the lake water-sediment interface.Research of Environmental Sciences,2004,17(S1):1-5.[金相灿,王圣瑞,姜霞.湖泊水-沉积物界面三相结构模式的初步研究.环境科学研究,2004,17(S1):1-5.]
    [15]Chen Y,Gao G,Li YP et al.Hydrostatic setting of suspended matter of Lake Taihu.J Lake Sci,2006,18(5):528-534.DOI:10.18307/2006.0515.[陈鋆,高光,李一平等.太湖水体中悬浮物的静沉降特征.湖泊科学,2006,18(5):528-534.]
    [16]Davison W.Supply of iron and manganese to an anoxic lake basin.Nature,1981,290(5803):241-243.DOI:10.1038/290241a0.
    [17]Wetzel RG.Limnology:lake and river ecosystems:3rd edition.San Diego:Academic Press,2001:291.
    [18]Sholkovitz ER,Copland D.The chemistry of suspended matter in Esthwaite Water,a biologically productive lake with seasonally anoxic hypolimnion.Geochim Cosmochim Ac,1982,46(3):393-410.DOI:10.1016/0016-7037(82)90231-9.
    [19]Imberger J,Patterson JC.Physical limnology.Adv Appl Mech,1989,27:303-475.DOI:10.1016/S0065-2156(08)70199-6.
    [20]Martynova MV.Exchange of Mn compounds between bottom sediments and water:1.Mn flux from water to the bed.Water Resour,2013,40(6):640-648.DOI:10.1134/S0097807813060079.
    [21]Gantzer PA,Bryant LD,Little JC.Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation.Water Res,2009,43(5):1285-1294.DOI:10.1016/j.watres.2008.12.019.
    [22]Munger ZW,Carey CC,Gerling AB et al.Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir.Water Res,2016,106:1-14.DOI:10.1016/j.watres.2016.09.038.
    [23]Munger ZW,Shahady TD,Schreiber ME.Effects of reservoir stratification and watershed hydrology on manganese and iron in a dam-regulated river.Hydrol Process,2017,31(8):1622-1635.DOI:10.1002/hyp.11131.
    [24]Yu S,Li HB.Perspectives on the release of heavy metals via sediment resuspension.Ecology and Environmental Sciences,2010,19(7):1724-1731.[俞慎,历红波.沉积物再悬浮-重金属释放机制研究进展.生态环境学报,2010,19(7):1724-1731.]
    [25]Zheng XL,Zhang JJ,Chen L.Advances in the study of migration and transformation mechanisms of endogenous phosphorus via sediment resuspension.Advances in Water Science,2013,24(2):287-295.[郑西来,张俊杰,陈蕾.再悬浮条件下沉积物内源磷迁移-转化机制研究进展.水科学进展,2013,24(2):287-295.]
    [26]Simpson SL,Apte SC,Batley GE.Effect ofshort term resuspension events on trace metal speciation in polluted anoxic sediments.Environ Sci Technol,1998,32(5):620-625.DOI:10.1021/es970568g.
    [27]Imboden DM,Wüest A.Mixing mechanisms in lakes.In:Lerman A,Imboden DM,Gat J et al eds.Physics and chemistry of lakes.Berlin,Heidelberg:Springer,1995:83-138.
    [28]Pierson DC,Weyhenmeyer GA.High resolution measurements of sediment resuspension above an accumulation bottom in a stratified lake.Hydrobiologia,1994,284(1):43-57.DOI:10.1007/BF00005730.
    [29]Schaller T,Wehrli B.Geochemical-focusing of manganese in lake sediments-An indicator of deep-water oxygen conditions.Aquat Geochem,1997,2(4):359-378.DOI:10.1007/BF00115977.
    [30]Zhu L,Liu JW,Xu SG et al.Deposition behavior,risk assessment and source identification of heavy metals in reservoir sediments of Northeast China.Ecotox Environ Safe,2017,142:454-463.DOI:10.1016/j.ecoenv.2017.04.039.
    [31]Du XH,Yu WQ,Rui JL.Hydropower ecology practice-selective withdrawal structures.Water Power,2008,34(12):28-32.[杜效鹄,喻卫奇,芮建良.水电生态实践---分层取水结构.水力发电,2008,34(12):28-32.]
    [32]Xu YR,Xu ZJ,Xiang S et al.Vertical distribution of Fe and Mn and optimal pumping depth in a seasonal oxygen shortage reservoir.Acta Scientiae Circumstantiae,1999,19(2):37-42.[徐毓荣,徐钟际,向申等.季节性缺氧水库铁、锰垂直分布规律及优化分层取水研究.环境科学学报,1999,19(2):37-42.]
    [33]Cao GF,Li Q.Introduction to the reconstruction of multi-level intake structures in the Tanghe Reservoir.Water Resources&Hydropower of Northeast China,2015,33(9):4-5.[曹桂芬,李琦.汤河水库分层取水改造工程简述.东北水利水电,2015,33(9):4-5.]
    [34]Nurnberg GK.Lake responses to long-term hypolimnetic withdrawal treatments.Lake Reserv Manage,2007,23(4):388-409.DOI:10.1080/07438140709354026.
    [35]Beutel MW,Horne AJ.A review of the effects of hypolimnetic oxygenation on lake and reservoir water quality.Lake Reserv Manage,1999,15(4):285-297.DOI:10.1080/07438149909354124.
    [36]Huang TL,Li JJ.Water lifting and aeration technology for improving raw water quality in Fenhe River Reservoir.Water Technology,2007,1(4):13-16.[黄廷林,李建军.扬水曝气技术对汾河水库原水水质的改善.供水技术,2007,1(4):13-16.]
    [37]Zhou ZZ,Huang TL,Li Y et al.Improvement of water quality and sediment control by WLAs in a source water reservoir.China Environmental Science,2017,37(1):210-217.[周子振,黄廷林,李扬等.扬水曝气器对水源水库水质改善及沉积物控制.中国环境科学,2017,37(1):210-217.]
    [38]Bryant LD,Hsu-Kim H,Gantzer PA et al.Solving the problem at the source:Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation.Water Res,2011,45(19):6381-6392.DOI:10.1016/j.watres.2011.09.030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700