用户名: 密码: 验证码:
建设项目引发的区域生态变化的遥感评估——以敖江流域为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote-sensing-based assessment of regional ecological changes triggered by a construction project: a case study of Aojiang River Watershed
  • 作者:施婷婷 ; 徐涵秋 ; 孙凤琴 ; 陈善沐 ; 杨绘婷
  • 英文作者:SHI Tingting;XU Hanqiu;SUN Fengqin;CHEN Shanmu;YANG Huiting;College of Environment and Resources, Fuzhou University, Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education;Institute of Remote Sensing Information Engineering, Fuzhou University, Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion;Fujian Monitoring Station of Water and Soil Reservation;
  • 关键词:遥感生态指数(RSEI) ; 建筑用地 ; 湿度分量 ; 贵安开发区
  • 英文关键词:Remote Sensing-based Ecological Index(RSEI);;built-up land;;wetness component;;Gui′an Development Zone
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福州大学环境与资源学院空间数据挖掘与信息共享教育部重点实验室;福州大学遥感信息工程研究所福建省水土流失遥感监测评估重点实验室;福建省水土保持试验站;
  • 出版日期:2019-07-04 16:06
  • 出版单位:生态学报
  • 年:2019
  • 期:18
  • 基金:国家重点研发计划专项(2016YFA0600302);; 国家自然科学基金项目(41501469);; 福建省水利科技项目(MSK201704)
  • 语种:中文;
  • 页:254-267
  • 页数:14
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X826;X87
摘要
建筑用地规模的扩大,在很大程度上影响着区域生态质量,制约了区域的可持续发展,利用遥感对地观测技术及时监测区域生态质量具有十分重要的意义。以敖江流域为例,重点研究该流域中的贵安开发区建设项目引发的建筑用地变化及其对区域生态质量的影响。选取2010年建设前的ALOS影像和2016年建设后的GF-1影像,构建基于ALOS和GF-1影像的建筑用地提取模型;采用遥感生态指数(RSEI)来对生态质量进行综合评价,并构建了ALOS和GF-1影像的湿度分量,在此基础上定量分析了区域建筑用地变化及其生态效应。研究表明:2010—2016年间,研究区建筑用地面积显著增加,其中有86%是由于贵安开发区建设引起的。贵安开发区建筑用地的增加导致了区域生态质量的总体下降,其遥感生态指数RSEI均值从建设前的0.787下降到建设后的0.689,降幅达12.4%,生态优良等级所占面积的比例从2010年的91%下降到2016年的79%。定量分析表明,区域建筑用地面积比例与生态质量呈显著负相关关系,建筑用地面积占比每增加10%,其RSEI值将下降0.041。因此,应加强敖江流域生态环境的保护与治理,严格控制沿江的建设开发项目,切实保护好流域的生态环境。
        Regional ecological environments have been frequently affected by expansion of built-up land, which inhibits regional sustainable development. Therefore, it is of great significance to timely and precisely monitor regional ecological quality using remote sensing techniques. Using the Gui′an Development Zone(GDZ) in the Aojiang River Watershed as a case, this study investigated the regional ecological quality changes due to increased construction project-induced built-up land. Two rule-based algorithms were developed to obtain built-up land information from the Advanced Land Observing Satellite(ALOS) image in 2010(before construction started) and the Gaofen-1(GF-1) image in 2016(after the construction). The remote sensing based ecological index(RSEI) was further employed to evaluate the ecological quality changes of the study area before and after the construction. As there are only four bands ranging from visible-near infrared wavelengths in the ALOS and GF-1 images, it is difficult to obtain the wetness and dryness components, which are needed for computing RSEI scores. To meet this requirement, the models of the wetness components specifically for ALOS and GF-1 images were developed. Two synchronous image pairs of GF-1 and Landsat 8 Operational Land Imager(OLI) were used to derive the coefficient of the wetness component of GF-1 by relating GF-1 data with the Landsat 8 wetness component based on selected pixel samples(i.e., 40384 samples). In addition, a soil salinity index was introduced to represent the component. The results showed that the area of built-up land of the study area increased notably over the six study years. The increase in the GDZ-induced built-up land represented 86% of the total increased built-up land in the study area. The overall ecological quality of the study area showed a trend of decline associated with the expansion of the built-up land in GDZ. The mean RSEI declined from 0.787 in 2010 to 0.689 in 2016, representing a 12.4% drop over the six study years. The area proportion of high ecological-quality grades also significantly declined from 91% in 2010 to 79% in 2016. Obviously, built-up land has a negative effect on ecological quality. Indeed, quantitative analysis indicated that a 10% increment in built-up land can cause a decline of RSEI by 0.041. Therefore, we suggest that green planning and development should be taken into consideration by regional planners during the forthcoming construction practice in the Aojiang River Watershed.
引文
[1] Kennedy R E,Andréfou?t S,Cohen W B,Gómez C,Griffiths P,Hais M,Healey S P,Helmer E H,Hostert P,Lyons M B,Meigs G W,Pflugmacher D,Phinn S R,Powell S L,Scarth P,Sen S,Schroeder T A,Schneider A,Sonnenschein R,Vogelmann J E,Wulder M A,Zhu Z.Bringing an ecological view of change to Landsat-based remote sensing.Frontiers in Ecology and the Environment,2014,12(6):339- 346.
    [2] Lebed L,Qi J,Heilman P.An ecological assessment of pasturelands in the Balkhash area of Kazakhstan with remote sensing and models.Environmental Research Letters,2012,7(2):025203.
    [3] Mensah F,Adanu S K,Adanu D K.Remote sensing and GIS based assessment of land degradation and implications for Ghana′s ecological zones.Environmental Practice,2015,17(1):3- 15.
    [4] Willis K S.Remote sensing change detection for ecological monitoring in United States protected areas.Biological Conservation,2015,182:233- 242.
    [5] Estoque R C,Murayama Y,Lasco R D,Myint S W,Pulhin F B,Wang C Y,Ooba M,Hijioka Y.Changes in the landscape pattern of the La Mesa Watershed - The last ecological frontier of Metro Manila,Philippines.Forest Ecology and Management,2018,430:280- 290.
    [6] Jaafari S,Sakieh Y,Shabani A A,Danehkar A,Nazarisamani A A.Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study:Jajroud reservation,Iran).Environment,Development and Sustainability,2016,18(6):1701- 1717.
    [7] Zhang F,Kung H T,Johnson V C.Assessment of land-cover/land-use change and landscape patterns in the two national nature reserves of Ebinur Lake Watershed,Xinjiang,China.Sustainability,2017,9(5):724.
    [8] Liang B Q,Weng Q H.Assessing urban environmental quality change of Indianapolis,United States,by the remote sensing and GIS integration.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(1):43- 55.
    [9] Wang S D,Zhang X Y,Wu T X,Yang Y Y.The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades.Science of the Total Environment,2019,646:49- 57.
    [10] 中华人民共和国环境保护部.HJ 192—2015 生态环境状况评价技术规范.北京:中国环境科学出版社,2015.
    [11] 徐涵秋.城市遥感生态指数的创建及其应用.生态学报,2013,33(24):7853- 7862.
    [12] Zhang J Q,Zhu Y Q,Fan F L.Mapping and evaluation of landscape ecological status using geographic indices extracted from remote sensing imagery of the Pearl River Delta,China,between 1998 and 2008.Environmental Earth Sciences,2016,75(4):327.
    [13] 芦颖,李旭东,杨正业.1990- 2015年贵州省乌江流域生态环境质量变化评价.水土保持通报,2018,38(2):140- 147.
    [14] Hu X S,Xu H Q.A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality:A case from Fuzhou City,China.Ecological Indicators,2018,89:11- 21.
    [15] 温小乐,林征峰,唐菲.新兴海岛型城市建设引发的生态变化的遥感分析——以福建平潭综合实验区为例.应用生态学报,2015,26(2):541- 547.
    [16] 张添佑,王玲,王辉,彭丽,罗冲.玛纳斯河流域盐渍化灌区生态环境遥感监测研究.生态学报,2017,37(9):3009- 3018.
    [17] 石三娥,魏伟,杨东,胡鑫,周俊菊,张强.基于RSEDI的石羊河流域绿洲区生态环境质量时空演变.生态学杂志,2018,37(4):1152- 1163.
    [18] Lacroix P,Bièvre G,Pathier E,Kniess U,Jongmans D.Use of Sentinel- 2 images for the detection of precursory motions before landslide failures.Remote Sensing of Environment,2018,215:507- 516.
    [19] Bouvet M,Goryl P,Chander G,Santer R,Saunier S.Preliminary radiometric calibration assessment of ALOS AVNIR- 2//2007 IEEE International Geoscience and Remote Sensing Symposium.Barcelona,Spain:IEEE,2007:2673- 2676.
    [20] Chander G,Markham B L,Helder D L.Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO- 1 ALI sensors.Remote Sensing of Environment,2009,113(5):893- 903.
    [21] USGS.Landsat 8 (L8) Data Users Handbook.(2016-03- 29)[2018-03- 21].https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf.
    [22] Xu H Q.Rule-based impervious surface mapping using high spatial resolution imagery.International Journal of Remote Sensing,2013,34(1):27- 44.
    [23] McFeeters S K.The use of the normalized difference water index (NDWI) in the delineation of open water features.International Journal of Remote Sensing,1996,17(7):1425- 1432.
    [24] 李粉玲,常庆瑞,申健,刘京.黄土高原沟壑区生态环境状况遥感动态监测——以陕西省富县为例.应用生态学报,2015,26(12):3811- 3817.
    [25] 宋慧敏,薛亮.基于遥感生态指数模型的渭南市生态环境质量动态监测与分析.应用生态学报,2016,27(12):3913- 3919.
    [26] Baig M H A,Zhang L F,Shuai T,Tong Q X.Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance.Remote Sensing Letters,2014,5(5):423- 431.
    [27] Crist E P.A TM Tasseled Cap equivalent transformation for reflectance factor data.Remote Sensing of Environment,1985,17(3):301- 306.
    [28] Jiménez-Muňoz J C,Cristóbal J,Sobrino J A,Sòria G,Ninyerola M,Pons X.Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data.IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):339- 349.
    [29] Jiménez-Muňoz J C,Sobrino J A,Skokovi■.Land surface temperature retrieval methods from landsat- 8 thermal infrared sensor data.IEEE Geoscience and Remote Sensing Letters,2014,11(10):1840- 1843.
    [30] Sobrino J A,Jiménez-Muňoz J C,Soria G,Romaguera M,Guanter L,Moreno J,Plaza A,Martínez P.Land surface emissivity retrieval from different VNIR and TIR sensors.IEEE Transactions on Geoscience and Remote Sensing,2008,46(2):316- 327.
    [31] 徐涵秋.新型Landsat8卫星影像的反射率和地表温度反演.地球物理学报,2015,58(3):741- 747.
    [32] Nichol J.An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis.Photogrammetric Engineering & Remote Sensing,2009,75(5):547- 556.
    [33] Xu H.A new index for delineating built-up land features in satellite imagery.International Journal of Remote Sensing,2008,29(14):4269- 4276.
    [34] Rikimaru A,Roy P S,Miyatake S.Tropical forest cover density mapping.Tropical Ecology,2002,43(1):39- 47.
    [35] Tripathi N K,Rai B K,Dwivedi P.Spatial modeling of soil alkalinity in GIS environment using IRS data//18th Asian conference on remote sensing.Kuala Lampur,Malaysia,1997:81- 86.
    [36] Khan N M,Rastoskuev V V,Sato Y,Shiozawa S.Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators.Agricultural Water Management,2005,77(1/3):96- 109.
    [37] Douaoui A E K,Nicolas H,Walter C.Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data.Geoderma,2006,134(1/2):217- 230.
    [38] Abbas A,Khan S.Using remote sensing techniques for appraisal of irrigated soil salinity//International Congress on Modelling and Simulation.Brighton:Modelling and Simulation Society of Australia and New Zealand,2007:2632- 2638.
    [39] 徐涵秋.区域生态环境变化的遥感评价指数.中国环境科学,2013,33(5):889- 897.
    [40] 彭丽媛,张军民,梁二敏,胡蒙蒙.基于RSEI的玛纳斯河流域自然生态环境变化评价.石河子大学学报:自然科学版,2017,35(4):506- 512.
    [41] 施婷婷,徐涵秋,唐菲.经济快速增长区建筑用地变化及其对生态质量的影响——以福建晋江为例.应用生态学报,2017,28(4):1317- 1325.
    [42] 刘盼,任春颖,王宗明,张柏,陈琳.南瓮河自然保护区生态环境质量遥感评价.应用生态学报,2018,29(10):3347- 3356.
    [43] 王士远,张学霞,朱彤,杨维,赵静瑶.长白山自然保护区生态环境质量的遥感评价.地理科学进展,2016,35(10):1269- 1278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700