用户名: 密码: 验证码:
云凝结核数浓度对华东地区一次飑线过程发展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Cloud Condensation Nuclei Number Concentration on the Development of a Squall Line Process in East China
  • 作者:李振 ; 冉令坤 ; 唐嘉蕙
  • 英文作者:LI Zhen;RAN Lingkun;TANG Jiahui;Institute of Atmospheric Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Atmospheric Sciences,Nanjing University of Information Science and Technology;
  • 关键词:云凝结核 ; 飑线 ; 降水 ; 数值模拟
  • 英文关键词:Cloud condensation nuclei;;Squall Line;;Precipitation;;Numerical simulation
  • 中文刊名:气候与环境研究
  • 英文刊名:Climatic and Environmental Research
  • 机构:中国科学院大气物理研究所;中国科学院大学;南京信息工程大学大气科学学院;
  • 出版日期:2019-07-20
  • 出版单位:气候与环境研究
  • 年:2019
  • 期:04
  • 基金:国家重点基础研究发展计划2015CB452804;; 广州市科技项目201604020069;; 国家自然科学基金41575065、4177510、91437215~~
  • 语种:中文;
  • 页:89-108
  • 页数:20
  • CN:11-3693/P
  • ISSN:1006-9585
  • 分类号:P458
摘要
利用WRF模式对2016年5月2日华东地区的一次飑线过程进行数值模拟,通过开展5组不同初始云凝结核数浓度的数值试验,讨论了污染对飑线发展的影响,并用Q矢量散度进行分析,结果表明:轻度污染下飑线线状结构最完整,强对流组织形式最紧密,而污染过重或过轻均导致飑线强对流组织分散甚至断裂;轻、中度污染对飑线降水有增强作用,而污染程度过重或过轻均对降水有限制作用;从清洁大气加深到轻度污染,强回波区宽度增大,强回波的高度升高,回波强度增强,随着污染继续加深,强回波区宽度减小,强回波的高度降低,回波强度减弱;轻度污染时,垂直速度、涡度和散度的强度较强;飑前低压在轻度污染时强度最强,雷暴高压、尾流低压和冷池则是随着污染加深而逐步减弱,但重度污染时,雷暴高压、尾流低压和冷池又增强;随着污染加深,对流云区不稳定性先增强后减弱,轻度污染下不稳定性最强;除了雪粒子外,其他水凝物粒子混合比含量均在轻度污染下达到最大值,而雪粒子混合比含量的最大值是在重度污染下出现的;推导了非地转非静力平衡的Q矢量散度方程,理论分析和计算结果均表明Q矢量辐合区对应上升运动,辐散区对应下沉运动。在较清洁和轻度污染的情况下,Q矢量散度高值区最强。
        The weather research and forecasting(WRF) model was used to simulate a squall line that occurred in East China on 2 May 2016. Through numerical experiments involving five different initial cloud condensation nuclei(CCN)concentrations, the influence of pollution on the development of the squall line was studied, and the Q vector divergence was used. The results show that under mild pollution, the linear structure of the squall line was the most complete and the strong convective structure was the most compact. Excessively heavy or too light pollution led to the dispersion and even rupture of the strong convective structure of the squall line. Moreover, light and moderate pollution levels corresponded with the strongest precipitation, while too heavy or too light pollution had a limiting effect on precipitation. With increase in the pollution level, from a clean atmosphere to light pollution, the width of the strong echo region increased, the height of the strong echo increased, and the echo intensity increased. However, with further increase in the pollution level, the width of the strong echo region decreased, the height of the strong echo decreased, and the echo intensity decreased. In the case of mild pollution, the vertical velocity, vorticity, and divergence were stronger. The intensity was the strongest under pollution; the high pressure of thunderstorm, low pressure of wake, and strength of cold pool gradually weakened as the pollution deepened, but under heavy pollution, the high pressure of thunderstorm, low pressure of the wake, and strength of cold pool were enhanced. As the pollution deepened, the instability of the flow cloud area first increased and then weakened. Under mild pollution, the instability was the strongest. Except for the snow particles, the mixing ratio of other water condensate particles reached the maximum under mild pollution, while the mixing ratio of the snow particles reached the maximum under severe pollution. The Q vector divergence equation of non-geostatic non-static equilibrium was derived. The theoretical analysis and calculation results show that the Q vector convergence area corresponds to the ascending motion, and the divergent area corresponds to the sinking motion. In the case of relatively clean and light pollution, the Q vector divergence is the strongest.
引文
Atkins N T,Bouchard C S,Przybylinski R W,et al.2005.Damaging surface wind mechanisms within the 10 June 2003 Saint Louis Bow Echo during BAMEX[J].Mon.Wea.Rev.,133(8):2275-2296.doi:10.1175/MWR2973.1
    Atkins N T,St Laurent M.2009.Bow echo mesovortices.Part II:Their genesis[J].Mon.Wea.Rev.,137(5):1514-1532.doi:10.1175/2008MWR2650.1
    Bluestein H B,Marx G T,Jain M H.1987.Formation of mesoscale lines of precipitation:Nonsevere squall lines in Oklahoma during the spring[J].Mon.Wea.Rev.,115(11):2719-2727.doi:10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2
    Borys R D,Lowenthal D H,Mitchell D L.2000.The relationships among cloud microphysics,chemistry,and precipitation rate in cold mountain clouds[J].Atmos.Environ.,34(16):2593-2602.doi:10.1016/S1352-2310(99)00492-6
    陈丽,银燕,杨军,等.2007.沙尘气溶胶对云和降水影响的模拟研究[J].南京气象学院学报,30(5):590-600.Chen Li,Yin Yan,Yang Jun,et al.2007.Effects of sand dust particles on cloud and precipitation:A numerical study[J].Journal of Nanjing Institute of Meteorology(in Chinese),30(5):590-600.doi:10.3969/j.issn.1674-7097.2007.05.002
    Davies-Jones R.1991.The fron to genetical forcing of secondary circulations.PartⅠ:The duality and generalization of the Q vector[J].J.Atmos.Sci.,48(4):497-509.doi:10.1175/1520-0469(1991)048<0497:TFFOSC>2.0.CO;2
    董昊,徐海明,罗亚丽,等.2012.云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J].大气科学,36(1):145-169.Dong Hao,Xu Haiming,Luo Yali,et al.2012.Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRFmodel:Sensitivity to cloud microphysical schemes[J].Chinese Journal of Atmospheric Sciences(in Chinese),36(1):145-169.doi:10.3878/j.issn.1006-9895.2012.01.12
    方莎莎.2016.南方高海拔地区CCN数浓度参数化及CCN对雨、雾滴谱的影响[D].南京信息工程大学硕士学位论文,69pp.Fang Shasha.2016.Parameterization of CCN number concentration in high altitude areas of southern China and impacts of CCN on droplet spectra of rain and fog[D].M.S.thesis(in Chinese),Nanjing University of Information Science and Technology,69pp.
    封彩云.2011.城市污染大气环境下云和降水形成的观测与数值模拟研究[D].兰州大学博士学位论文,125pp.Feng Caiyun.2011.Observational and numerical simulation studies on cloud and precipitation formation under the polluted urban atmospheric environment[D].Ph.D.dissertation(in Chinese),Lanzhou University,125pp.
    Fujita T.1963.Analytical mesometeorology:A review[M]//Atlas S,Booker D R,Byers H,et al.Severe Local Storms.Boston,MA:American Meteorological Society,77-128.doi:10.1007/978-1-940033-56-3_5
    Fujita T T.1978.Manual of downburst identification for project NIMROD[R].NASA-CR-156953,SMRP-RP-156,104pp.
    何宏让,魏绍远,黄云贵.1998.初始云滴浓度(CCN)对对流性降水作用的数值试验[J].气象科学,18(1):10-19.He Hongrang,Wei Shaoyuan,Huang Yungui.1998.The numerical test of initial cloud droplet concentration(CCN)effect on convectional precipitation[J].Scientia Meteorologica Sinica(in Chinese),18(1):10-19.
    Hoskins B J,Draghici I,Davies H C.1978.A new look at theω-equation[J].Quart.J.Roy.Meteor.Soc.,104(439):31-38.doi:10.1002/qj.49710443903
    Houze Jr R A,Rutledge S A,Biggerstaff M I,et al.1989.Interpretation of Doppler Weather Radar displays of midlatitude mesoscale convective systems[J].Bull.Amer.Meteor.Soc.,70(6):608-619.doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2
    靳奎峰.2017.CCN浓度对华东地区夏冬两次暴雨过程影响的数值模拟和诊断分析[D].南京信息工程大学硕士学位论文,66pp.Jin Kuifeng.2017.Numerical simulation and diagnostic analysis of the influences of the CCN concentration on the two rainstorm processes in winter and summer of East China[D].M.S.thesis(in Chinese),Nanjing University of Information Science and Technology,66pp.
    Johnson R H,Hamilton P J.1988.The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line[J].Mon.Wea.Rev.,116(7):1444-1473.doi:10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2
    Khain A,Rosenfeld D,Pokrovsky A.2005.Aerosol impact on the dynamics and microphysics of deep convective clouds[J].Quart.J.Roy.Meteor.Soc.,131(611):2639-2663.doi:10.1256/qj.04.62
    鹿翔,王春明,陈浩伟.2016.云凝结核浓度对一次梅雨锋降水影响的数值模拟[J].安徽农业科学,44(2):219-223,228.Lu Xiang,Wang Chunming,Chen Haowei.2016.A numerical study on influence of cloud condensation nuclei on a Meiyu front rainfall event[J].Journal of Anhui Agricultural Sciences(in Chinese),44(2):219-223,228.doi:10.3969/j.issn.0517-6611.2016.02.076
    Meng Z Y,Zhang F Q,Markowski P,et al.2012.A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J].J.Atmos.Sci.,69(4):1182-1207.doi:10.1175/JAS-D-11-0121.1
    Newton C W.1950.Structure and mechanism of the prefrontal squall line[J].J.Meteor.,7(3):210-222.doi:10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2
    Parker M D,Johnson R H.2000.Organizational modes of midlatitude mesoscale convective systems[J].Mon.Wea.Rev.,128(10):3413-3436.doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
    Remer L A,Kaufman Y J,Levin Z,et al.2002.Model assessment of the ability of MODIS to measure top-of-atmosphere direct radiative forcing from smoke aerosols[J].J.Atmos.Sci.,59(3):657-667.doi:10.1175/1520-0469(2002)059<0657:MAOTAO>2.0.CO;2
    Rosenfeld D.2000.Suppression of rain and snow by urban and industrial air pollution[J].Science,287(5459):1793-1796.doi:10.1126/science.287.5459.1793
    Rotunno R,Klemp J B,Weisman M L.1988.A theory for strong,longlived squall lines[J].J.Atmos.Sci.,45(3):463-485.doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    Schumacher R S,Johnson R H.2005.Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J].Mon.Wea.Rev.,133(4):961-976.doi:10.1175/MWR2899.1
    Rutledge S A,HouzeJr R A,Biggerstaff M I,et al.1988.The Oklahoma-Kansas mesoscale convective system of 10-11 June1985:Precipitation structure and single-Doppler radar analysis[J].Mon.Wea.Rev.,116(7):1409-1430.doi:10.1175/1520-0493(1988)116<1409:TOMCSO>2.0.CO;2
    Trapp R J,Weisman M L.2003.Low-level mesovortices within squall lines and bow echoes.Part II:Their genesis and implications[J].Mon.Wea.Rev.,131(11):2804-2823.doi:10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
    Wakimoto R M,Murphey H V,Davis C A,et al.2006.High winds generated by bow echoes.Part II:The relationship between the mesovortices and damaging straight-line winds[J].Mon.Wea.Rev.,134(10):2813-2829.doi:10.1175/MWR3216.1
    张兴旺.1998.湿Q矢量表达式及其应用[J].气象,24(8):3-7.Zhang Xingwang.1998.An expression of the wet Q vector and application[J].Meteorological Monthly(in Chinese),24(8):3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700