用户名: 密码: 验证码:
铵态氮和浮游植物对穗花狐尾藻的生理影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological effects of ammonium nitrogen and phytoplankton on Myriophyllum spicatum
  • 作者:代亮亮 ; 李莉杰 ; 郭亮亮 ; 李根保
  • 英文作者:DAI Liang-liang;LI Li-jie;GUO Liang-liang;LI Gen-bao;State Key Laboratory of Freshwater Ecology and Biotechnology,Institute of Hydrobiology,Chinese Academy of Sciences;Guizhou Institute of Biology;College of Environment and Planning,Henan University;
  • 关键词:铵态氮 ; 浮游植物 ; 穗花狐尾藻 ; 生长 ; 生理
  • 英文关键词:ammonium nitrogen;;phytoplankton;;Myriophyllum spicatum;;growth;;physiology
  • 中文刊名:生态学杂志
  • 英文刊名:Chinese Journal of Ecology
  • 机构:中国科学院水生生物研究所淡水生态与生物技术国家重点实验室;贵州省生物研究所;河南大学环境与规划学院;
  • 出版日期:2019-09-15
  • 出版单位:生态学杂志
  • 年:2019
  • 期:09
  • 基金:“十二五”水专项滇池课题“滇池草海水生态规模化修复关键技术与工程示范”(2013ZX07102-005)资助
  • 语种:中文;
  • 页:153-159
  • 页数:7
  • CN:21-1148/Q
  • ISSN:1000-4890
  • 分类号:Q945
摘要
为探讨铵态氮-浮游植物-沉水植物三者之间关系,在滇池岸边开展室外模拟实验。在初始叶绿素a为100μg·L~(-1)的浮游植物密度下,研究不同浓度(0、0.05、0.15、0.50、1.50、5.00 mg·L~(-1))铵态氮和浮游植物对穗花狐尾藻的生长和生理状况的影响。结果表明:各处理组穗花狐尾藻的各项生长和生理指标在实验期间存在明显差异;当铵态氮浓度为1.50mg·L~(-1)时,穗花狐尾藻的株高和生物量明显大于其他处理组;穗花狐尾藻叶片的总叶绿素含量、光合活性和可溶性蛋白在铵态氮浓度为1.50 mg·L~(-1)时,实验期间能维持原来的水平,其余铵态氮浓度下,呈现下降的趋势;在铵态氮与浮游植物的复合作用下,适宜穗花狐尾藻生长的铵态氮浓度为1.50 mg·L~(-1),高浓度的铵态氮(5.00 mg·L~(-1))和氮缺乏(NH4+-N≤0.50 mg·L~(-1))都不利于穗花狐尾藻的生长;铵态氮浓度达到5.00 mg·L~(-1)时,浮游植物大量生长带来的相关效应,如水体浊度上升,水下光强降低等,导致穗花狐尾藻耐受铵态氮的阈值较单一铵态氮胁迫下的耐受阈值低,此时,沉水植物对藻类的抑制效应也将解除,水华大量发生,叶绿素a的浓度可达(948.1±313.0)μg·L~(-1)。
        To examine the relationships among ammonium nitrogen( NH_4~+-N),phytoplankton and submerged macrophytes,an outdoor simulation experiment was conducted on the shores of Dianchi Lake. The effects of NH_4~+-N on the growth and physiological characteristics of Myriophyllum spicatum were investigated at different NH_4~+-N concentrations( 0,0.05,0.15,0.50,1.50,5.00 mg·L~(-1)) and 100 μg·L~(-1) of the initial chlorophyll-a. The growth and physiological indices of M. spicatum were measured. At the NH_4~+-N concentration of 1.50 mg·L~(-1),the height and biomass of M. spicatum were significantly higher than those under other treatments,while the total chlorophyll concentration,photosynthetic activity,and soluble protein concentration of M. spicatum could maintain the initial level. In contrast,these indices decreased in other treatments.Under combined conditions of NH_4~+-N and phytoplankton,1.50 mg·L~(-1) of NH_4~+-N was beneficial to the growth of M. spicatum whereas high concentration of NH_4~+-N( 5.00 mg·L~(-1)) and N deficiency( NH_4~+-N≤0.50 mg·L~(-1)) were not beneficial to the growth of M. spicatum. When the NH_4~+-N concentration reached 5. 00 mg · L~(-1),the massive phytoplankton blooms could bring some correlative effects,including the increases of water turbidity and the decreases of underwater light intensity,which resulted in the lower tolerance threshold of M. spicatum compared with single pollution of NH_4~+-N. Meanwhile,the inhibitory effects of submerged plants on phytoplankton would be relieved,leading to algae blooms,in which the chlorophyll-a concentration reached up to( 948.1±313.0) μg·L~(-1).
引文
代亮亮,郭亮亮,李露,等.2017.铜绿微囊藻和四尾栅藻对铵态氮的响应.生态学杂志,36(8):2289-2295.
    代亮亮,郭亮亮,吴中奎,等.2016.不同浓度藻类水华对两种沉水植物的影响.中国环境科学,36(9):2765-2773.
    丰茂武,吴云海,冯仕训,等.2008.不同氮磷比对藻类生长的影响.生态环境学报,17(5):1759-1763.
    金相灿,郭俊秀,许秋瑾,等.2008.不同质量浓度氨氮对轮叶黑藻和穗花狐尾藻抗氧化酶系统的影响.生态环境,17(1):1-5.
    刘伟妍,韩秋影,唐玉琴,等.2017.营养盐富集和全球温度升高对海草的影响.生态学杂志,36(4):1087-1096.
    宋睿,姜锦林,耿金菊,等.2011.不同浓度铵态氮对苦草的生理影响.中国环境科学,31(3):448-453.
    王华,逄勇,刘申宝,等.2008.沉水植物生长影响因子研究进展.生态学报,28(8):3958-3968.
    王爱丽,孙旭,陈乾坤,等.2015.污水处理厂尾水中氨氮对穗花狐尾藻生长的影响.生态学杂志,34(5):1367-1372.
    王霁虹,任鹏,马娜,等.2018.铵态氮对粉绿狐尾藻抗氧化系统的影响研究.生物化工,4(3):65-68.
    王学奎.2006.植物生理生化实验原理和技术.北京:高等教育出版社.
    魏复盛,齐文启.2002.水和废水监测分析方法.北京:中国环境科学出版社.
    许秋瑾,金相灿,王兴民,等.2006.氨氮与镉单一和复合作用对沉水植物穗花狐尾藻和轮叶黑藻光合能力的影响.环境科学,27(10):1974-1978.
    颜昌宙,曾阿妍,金相灿,等.2007.不同浓度氨氮对轮叶黑藻的生理影响.生态学报,27(1):1050-1055.
    张强,龙民慧,宋运贤,等.2018.不同氮形态对濒危药用植物三叶青叶片光合、能量分配和抗氧化酶活性的影晌.生态学杂志,37(3):877-883.
    张玮,林一群,郭定芳,等.2006.不同氮,磷浓度对铜绿微囊藻生长,光合及产毒的影响.水生生物学报,30(3):318-322.
    朱伟,张俊,赵联芳.2006.底质中氨氮对沉水植物生长的影响.生态环境,15(5):914-920.
    Amini F,Ehsanpour AA.2005.Soluble proteins,proline,carbohydrates and Na+/K+changes in two tomato(Lycopersicon esculentum Mill.)cultivars under in vitro salt stress.American Journal of Biochemistry and Biotechnology,1:204-208.
    Britto DT,Kronzucker HJ.2002.NH4+toxicity in higher plants:A critical review.Journal of Plant Physiology,159:567-584.
    Cao T,Xie P,Ni LY,et al.2007.The role of NH4+toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin,China.Marine and Freshwater Research,58:581-587.
    Congming L,Jianhua Z.2000.Photosynthetic CO2assimilation,chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants.Plant Science,151:135-143.
    Dai GZ,Shang JL,Qiu BS.2012.Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes.Global Change Biology,18:1571-1581.
    Domínguez-Valdivia MD,Aparicio-Tejo PM,Lamsfus C,et al.2008.Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and-sensitive plants.Physiologia Plantarum,132:359-369.
    Gross EM,Erhard D,Ivnyi E.2003.Allelopathic activity of Ceratophyllum demersum L.and Najas marina ssp.intermedia(Wolfgang)Casper.Hydrobiologia,506:583-589.
    Huang ZA,Jiang DA,Yang Y,et al.2004.Effects of nitrogen deficiency on gas exchange,chlorophyll fluorescence,and antioxidant enzymes in leaves of rice plants.Photosynthetica,42:357-364.
    Jampeetong A,Brix H.2009a.Nitrogen nutrition of Salvinia natans:Effects of inorganic nitrogen form on growth,morphology,nitrate reductase activity and uptake kinetics of ammonium and nitrate.Aquatic Botany,90:67-73.
    Jampeetong A,Brix H.2009b.Effects of NH4+concentration on growth,morphology and NH4+uptake kinetics of Salvinia natans.Ecological Engineering,35:695-702.
    Kitoh S,Shiomi N,Uheda E.1993.The growth and nitrogen fixation of Azolla filiculoides Lam.in polluted water.Aquatic Botany,46:129-139.
    K9rner S,Vermaat JE,Veenstra S.2003.The capacity of duckweed to treat wastewater.Journal of Environmental Quality,32:1583-1590.
    Lichtenthaler HK,Buschmann C.2001.Chlorophylls and carotenoids:Measurement and characterization by UV-VIS spectroscopy.Current Protocols in Food Analytical Chemistry,39:1230-1235.
    Lombardo P,Cooke GD.2003.Ceratophyllum demersumphosphorus interactions in nutrient enriched aquaria.Hydrobiologia,497:79-90.
    Melzer A.1999.Aquatic macrophytes as tools for lake management.Hydrobiologia,395-396:181-190.
    Milroy SP,Bange MP.2003.Nitrogen and light responses of cotton photosynthesis and implications for crop growth.Crop science,43:904-913.
    Monselise EBI,Kost D.1993.Different ammonium-ion uptake,metabolism and detoxification efficiencies in two Lemnaceae.Planta,189:167-173.
    Shapiro J.1973.Blue-green algae:Why they become dominant.Science,179:382-384.
    Su SQ,Zhou YM,Qin JG,et al.2012.Physiological responses of Egeriadensa to high ammonium concentration and nitrogen deficiency.Chemosphere,86:538-545.
    Wang C,Zhang SH,Wang PF,et al.2008.Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans(Lour.)Hara.Aquatic Toxicology,87:88-98.
    Wu S,Xie P,Wang S,et al.2006.Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River.Science in China Series D,49:126-134.
    Zhu Z,Yuan H,Wei Y,et al.2014.Effects of ammonia nitrogen and sediment nutrient on growth of the submerged plant Vallisneria natans.CLEAN Soil,Air,Water,43:1653-1659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700