用户名: 密码: 验证码:
镁合金熔体15kHz超声净化工艺及超声凝固的物理模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金具有优良的机械性能,在现在工业领域得到了广泛的应用。但是镁及镁合金的化学性质活泼,熔炼时易发生氧化燃烧。目前镁及其合金熔体纯净度低,严重影响镁合金材料的性能。因此,研究高效去除镁合金中非金属夹杂物的方法具有重要的意义。
     本文通过夹杂物相对面积分数分析和电导率检测的方法,研究了15kHz超声的处理工艺条件对AZ80和GW103K两种镁合金熔体中夹杂物凝聚沉降效果的影响,给出了两种合金超声净化的优化条件;同时采用超声处理对氯化铵饱和水溶液析出行为的影响物理模拟了15kHz超声凝固的行为。研究得出以下主要结论:
     1.纯镁熔体中存在大量的氧化物夹杂,其夹杂物的形态主要为球状、块状、条带状、链状和以上各种形态组成的群落状;AZ80镁合金中的夹杂物主要为MgO和少量Mn、Zn和Y的氧化物;GW103K合金中的夹杂物主要是Y和Zr的氧化物和MgO组成;
     2.15kHz超声处理AZ80和GW103K镁合金熔体可以实现氧化夹杂物的凝聚,加速沉降,提高净化效率;净化效果与超声功率、处理时间和熔体的静置时间和熔体温度密切相关。适当提高处理功率和延长处理后的静置时间可以增强净化效果,但处理时间过长不能提升净化效果;
     3.对于650℃的AZ80镁合金熔体,200W超声处理30s并静置60s后可以达到较好的净化效果。此时,凝固组织中82%以上的夹杂物已经沉降到底层,而未经超声处理,静置240s的凝固组织只有65%左右的夹杂物沉降到底层;对于680℃的GW103K合金超声处理60s,熔体静置60s,200W时净化效果比较明显;此时,70%的夹杂物沉降到底层;710℃和730℃时,超声功率160W净化效果比较理想;沉降到底层的夹杂量分别为74%和65%;适当的超声处理时间(本实验30s)可以较好地净化熔体,延长超声处理时间对GW103K合金进一步净化的效果则表现不明显;
     4.本实验中,电导率值在铸锭截面上的分布表征了超声处理熔体的净化程度。在AZ80和GW103K两种镁合金中,电导率值都随铸锭上夹杂物面积百分数值的增加而降低。本实验中电导率的变化幅度在AZ80合金中为10%IACS~14%IACS,GW103K合金中为6.0%IACS~8.4%IACS;
     5.不同功率15kHz超声处理氯化铵溶液减慢了氯化铵溶液的降温速度;超声处理缩短了烧杯底部出现氯化铵颗粒的时间和溶液白浊化开始的时间,提高了烧杯底部出现氯化铵颗粒时的温度和白浊化开始的温度,并且改变了氯化铵晶体形态;
     6.增大超声处理功率,氯化铵饱和溶液开始白浊化的时间和烧杯底部出现氯化铵颗粒的时间显著缩短,这表明,超声处理显著提高了结晶形核速度和晶粒长大行为;导致析出晶粒的形态明显圆整化,细化。
Magnesium and the magnesium alloys have many advanced mechanical properties. So it' s widely used in modern industry. But magnesium has active chemical properties, it is burning often when smelting magnesium or magnesium alloy. The low purification of magnesium and magnesium alloy effect the meterial properties greatly. So to study more effective methods to remove the oxide inclusion from the molten magnesium alloy has important meaning.
     In this paper, the relative area fraction of inclusion and the electric conductivity is used to character the best factors in 15kHz ultrasonic purification processing of AZ80 and Mg-10Gd-5Y-0.6Zr Magnesium Alloy Melts. The separation of NH_4Cl saturated solution after ultrasonic treatment physical analogue the solidity precessing. The following results were summarized:
     1. There are a large number of oxidation inclusions in magnesium which distribute with the spot-type, massive, line-type, stripline-type and combination of several patterns; The inclusions in magneisum alloys AZ80 are MgO and oxidation of Mn, Zn, Y; The oxidations of Y and Zr, MgO are the main inclusions in GW103K alloys;
     2. 15kHz ultrasonic processing on AZ80 and GW103K alloys can get the oxide inclusion gathering, accelerate them deposition, improve the purification efficiency and it is closely related with the treating time、holding time and metal temperature.Fairly increase power and the holding time can improve the purification degree. If the holding time is too long, an adverse result can be got;
     3. Meltal temperature 650℃, treating time30s, holding time60s, the ultrasonic power 200W can greadly improve the purification degree of AZ80 alloy and above 82% of inclusions deposited in the bottom layer. Hoever, 65% of inclusions deposited in the bottom laye just by holding time 240s. Melt temperature 680℃, treating time 60s, holding time60s, ultrasonic power 200W; The best purification condition is that 70% of inclutions deposite in bottom layer. Matal temperature 710℃and 730℃, The best purification conditions are that 74% and 65% of inclutions deposited in bottom layer individuals.Treating time 30s can bring a better purification condition, extending treating time can not improve the purification degree;
     4. The electric conductivities of metal ingots can character the purification conditions in this paper. The electric conducties are all reducing with the increasing of area fraction of inclusion in AZ80 and GW103k alloy. The electric conducties is between 10%IACS~14%IACS in AZ80 alloy and between 6.0%IACS~8.4IACS in GW103K alloy;
     5. The cooling rate of NH_4Cl saturated solution is reduced by 15kHz ultrasonic treatment; The opacification start time and the NH_4Cl grain present time on the beaker base be cut down The NH_4Cl grain present temperature and the opacification start temperature rised. and the crystal morphology of NH_4Cl be alternated;
     6. The opacification start time and the NH_4Cl grain present time can be shorted down notablely, when the ultrasonic is improving Power. It indicates that 15kHz ultrasonic treatment.can notablely increase the nucleate rate and the growing behavior of crystal grain; so it lead to that the shape of particle become rounded and grain size became smaller.
引文
1.陈振华.镁合金,北京:材料科学与工程出版中心[M],2004,23-60.
    2.阎峰云,张玉海.镁合金的发展及其应用,现代制造技术与装备[M],2007.4,1-107.
    3.Mordike B L,Ebert T.Magnesium properties-applications-potentia[J],Materials Science and Engineering,2001,302(5):37-45.
    4.Clow B B,Pro.cInt,Conf On.Magnesium Alloys and Their Applications[M],Oberursel Germany:DGM Informations gcsellschagt,1992:13-65.
    5.曹荣昌,柯伟,徐永波,等.Mg合金的最新进展及应用前景[J],金属学报,2001,37(7):673-685.
    6.卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J],铸造设备研究,2003,8(1):34-37.
    7.张土宏,许沂,王忠堂,等.镁合金成形加工技术[J],世界科技研究与发展,2003,23(6):18-21.
    8.Sakamot M.Mechanism of Non Combustibility and Ignition of Cabearing Mg[C],Proceedings of the Fifth Asian Foundry Congress,1998,136(6):380-389.
    9.乐启炽,张新建,崔建忠.镁合金及其成形工艺与应用状况[J],材料导报,2002,16(12):12.
    10.张津,张宗和等.镁合金及应用[M],北京:材料科学与工程出版中心,2004,283-307.
    11.刘正,张奎,,曾小勤.镁基轻质合金理论基础及其应用[M],北京:机械工业出版社,2002,37-39.
    12.孙明,吴国华,王玮.镁合金纯净化研究现状与展望[J],材料导报,2008,22(4).
    13.杨守志,孙德堃,何方箴.固液分离[M],北京:北京冶金出版社,2008,1-63.
    14.张丁非,彭建,丁培道.镁及镁合金的资源,应用及其发展现状[J],材料导报,2004,18(4):72.
    15.丁文江.镁合金科学与技术[M],北京:科学出版社,2007:23-44.
    16.Thomson J P.etal Effect of C2C16 on mechanical properties and microstructure of gravity permanent mold cast AZ91[J],Warrendale USA:Theminerals,Metals and materials society,2005:335.
    17.Emadi D,Thomson J P,Sadayappan K,et al.Effects of grain refinement and melt filtration on the mechanical properties of sand and permanent mold cast magnesium AZ91 alloy[C],in Magnesium technology,2005,335-339.
    18.Housh S E,Petrovich V.Magnesium refining a fluxless alternative[J],Soc Auto Eng,1992:24.
    19.翟春泉,曾小勤.镁合金的开发与应用[J],机械工程材料,2002,16(5):12.
    20.吴国华,翟春泉,卢晨.镁合金稀土化合物熔剂及其生产方法[P],CN03128916.9,2003.
    21.郭旭涛,李培杰,熊玉华.稀土在铝、镁合金中的应用[J],材料工程,2004,(8):60.
    22.薛向东,金奇庭,朱文芳,等.超声对污泥流变性及凝聚脱水性的影响[J],环境科学学报,2006,26(6):897-902.
    23.任朝华.超声凝聚技术处理造纸废水的研究[J],西南造纸,2006,35(1):37-38.
    24.Smythe M.C,Wakeman R.J.The use of ultrasonic fields as a filtration and dewatering aid [J].Ultrasonics,2000,38(6):657-661.
    25.Farmer A.D,Collings A.F,Jameson G.J.Effect of ultrasound on surface cleaning of silicaparticles[J],International Journal of Mineral Processing,2000,60(4):101-102.
    26.NYVLT J,AEK S.Effect of ultrasonics on agglomeration[J],Crystal Research Technology,1995,30(8):1055-1063.
    27.Woodside S.M,Piret J.M,Grschl M,Benes E,Bowen B.D.Acoustic force distribution inresonators for ultrasonic particle separation[J],American Institute of Chemical Engineers,1998,44(9):1976-1984.
    28.Page J.H,Cowan M.L,Weitz D.A.Diffusing acoustic wave spectroscopy of fluidized suspensions[J],Physica B,2000,279(2):130-133.
    29.Doubrovski V.A.,Dvoretski K.N.Ultrasonic wave action upon the red blood cell agglutination in vitro[J],Ultrasound in Medicine&Biology,2000,26(4):655-659.
    30.Pohl E.E,Rosenfeld E.H,Pohl P,Millner R.Effects of ultrasound on agglutination and aggregation of human erythrocytes in vitro[J],Ultrasound in Medicine & Biology,1995,21(5):711-719.
    31.巨宏博,罗致诚,杨继庆,等.超声驻波作用时间对血液沉降的影响[J],第四军医大学学报,2001,22(5):471-473.
    32.巨宏博,罗致诚,张建保,等.超声驻波场加速血沉的作用机制[J],第四军医大学学报,2002,23(1):87.
    33.李增新,超声强化生化分离技术应用进展[J],生物学杂志,2005,22(1):4-36.
    34.刘红,超声法去除水中悬浮物的可能性[J],环境科学动态,1996,1(3):21.
    35.白晓清,赫冀成.超声波作用下微粒凝聚过程参数的研究[J],东北大学学报(自然科学版),2001,22(8):413-416.
    36.赵忠兴,张辽远.超声振动对铸造合金结晶过程的影响[J],沈阳工业学院学报,1997,16(3):24-25.
    37.马大献,现代声学理论基础[M],北京:科学出版社,2001,56-57.
    38.金长善,超声工程[M],哈尔滨:哈尔滨工业大学出版社,1989,42-43.
    39.钱盛友,王鸿樟,孙福成.声流现象的研究及其应用[J],应用声学,1997,16(6):38-42.
    40.Anton Puskar.The use of hight-intensity ultrasonics[M],Elesevier Scientific publishing company,1982.
    41.冯若.超声手册[M],南京:南京大学出版社,1999:693-732.
    42.白晓清,赫冀成.超声波作用下金属液中微小夹杂物的凝聚过程[J],钢铁研究学报,2001,13(6):1-4.
    43.白晓清,赫冀成.超声波作用下具有中性浮升力的微粒凝聚分离[J],过滤与分离,2001,11(4):9-11.
    44.白晓清,赫冀成.流动液体中粒子的超声分离实验研究[J],过滤与分离[J],2001,11(4):1-3.
    45.H.M hertz.Standing-wave acoustics trap for nonintrusive position of microparticle[J],Appl.Phys,1995,78(8):4845-4849
    46.Martin Groschl.UItrasonic separation of suspended particles[C],2001 Ultrasonic Symposium,2001,649-659
    47.王新掌,雷银照.一种检测金属电导率的新方法[J],郑州工业大学学报,2001,22(2):62-63.
    48.任吉林.电磁无损检测[M],北京:航空工业出版社,1989,36-37.
    49.METCALFE G R.The use of eddy current flaw detectors with meter display for measuring the conductivity of aluminum alloy structures[J],British Journal of NDT,1988:(5),164-169.
    50.任吉林.涡流检测技术近20年的进展[J],无损检测,1998,22(5):21-125.
    51.张海波.功率超声对AZ81镁合金组织的影响[D],上海:上海大学,2004.
    52.上海市机械制造工艺研究所.金相分析技术[M],上海:上海科学技术文献出版社, 1987,67-89.
    53.胡汉起,金属凝固理论原理[M],北京:机械工业出版社,2000,10:80-106.
    54.Yoo M H,Agnew S R,Morris JR,Ho K M.Non-basal Slip Systems in HCP Metals and Alloys Source Mechanisms[J],Materials Science and Engineering A,2001,319-321.
    55.Koike J,Kobayashi T Mukai T,Watanabe H,Suzuki M,Maruyama K,Higashi K.The Activiy of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-grained AZ31B Magnesium Alloys[J],Acta Mater,2003,51:2055-2065.
    56.曾荣昌,韩恩厚,柯伟,等.变形镁合金AZ80的腐蚀疲劳机理[J],材料研究学报.2004,18(6):561-567.
    57.张承甫,龚建森,王凯歌.液态金属的净化与变质[M],上海:上海科技技术出版社,1989,5:97-120.
    58.黄玉光,吴国华,丁文江.固溶处理对差压铸造GW103K合金组织和性能的影响[J],特种铸造及有色合金,2009,29(3):232-236.
    59.毛卫民,甄子胜,陈洪涛.电磁搅拌参数对半固态AZ91D镁合金组织的影响[J],特种铸造及有色合金,2005,25(9):538-540.
    60.李元东,陈体军,马颖.触变成形AZ91D镁合金的组织与二次凝固行为[J],中国有色金属学报,2008,18(1):18-23.
    61.王其龙,吴国华,丁文江.净化及浇注工艺因素对Mg-Gd-Y-Zr合金流动性的影响[J],特种铸造及有色合金,2009,29(3):95-101.
    62.张绍兴,朱德云.含锆铸造镁合金中的夹砂[J],材料工程,1982,(04):28-29.
    63.张绍兴,朱德云.含锆铸造镁合金的夹杂物及偏析[J],特种铸造及有色合金,1983,(03):56-60.
    64.国家化肥质量监督检验中心.化肥标准化与质量检测[p],2008,(3):24-38.
    65.郭志超,李鸿,张缨.超声波对结晶过程的作用及机理[J],天津化工,2003,17(3):1-3.
    66.下地光雄(日),液态金属[M],科学出版社,1987:402-409.
    67.郭志超,王静敏,张缨.超声对结晶过程部分热力学和动力学性质的研究[J],河北化工,2003(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700