用户名: 密码: 验证码:
纳米路面混凝土的全寿命性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国民经济的发展,公路交通运输呈现出“大流量、重型化”特点,而沥青路面的质量和数量难以满足要求,从而为混凝土路面的发展提供了良好机遇。目前,混凝土路面在我国高等级公路中的应用越来越广泛,故对其性能进行深入系统的研究具有重要的意义。根据可持续发展的理念,混凝土路面结构设计要以路面全寿命周期的性能与成本作为衡量路面性能和经济性优劣的指标,即要体现“全寿命设计”的思想。
     纳米材料是一门新兴的并正在迅速发展的材料学科。由于其小尺寸,纳米材料在结构、物理和化学等方面具有许多独特的性质,已经成为当今材料科学领域研究的热点,被科学家们誉为“21世纪最有前途的材料”。纳米材料为发展多功能土木工程材料和改善传统土木工程材料的性能开辟了一条崭新的途径。然而,目前纳米材料在土木工程材料领域的研究与应用还很少。
     本文利用纳米材料的特殊性能,提出在普通路面混凝土中掺入适量的纳米材料,研制具有良好力学性能和耐久性能的纳米路面混凝土,并对其全寿命性能进行深入系统的研究。同时对PP纤维混凝土以及纳米材料与PP纤维混掺混凝土的相关性能进行了对比研究。主要研究内容如下:
     首先,通过试验分析确定掺加纳米材料、PP纤维以及两者混掺时混凝土的制备工艺;在普通路面混凝土配合比的基础上,确定纳米混凝土、PP纤维混凝土、纳米材料与PP纤维混掺混凝土的配合比;对各种混凝土的力学性能进行试验研究,分析纳米材料的种类和掺量对混凝土强度的影响规律,揭示纳米材料对混凝土强度的改善机理,进一步对混凝土的抗折强度与抗压强度的关系进行分析。
     其次,采用滚珠轴承法对各种混凝土的耐磨性进行试验研究,分析纳米材料的种类和掺量对混凝土耐磨性的影响规律,揭示纳米材料对混凝土耐磨性的改善机理;建立混凝土的耐磨性与其强度之间的关系。
     第三,分别采用压汞法和NEL法对各种混凝土的孔结构和抗渗性进行试验研究,分析纳米材料的种类和掺量对混凝土孔结构和抗渗性的影响规律,揭示纳米材料对混凝土孔结构和抗渗性的改善机理;建立混凝土的抗渗性与其强度以及孔结构之间的关系。
     第四,采用快冻法对各种混凝土的抗冻性进行试验研究,分析纳米材料的种类和掺量对混凝土抗冻性的影响规律,揭示纳米材料对混凝土抗冻性的改善机理;建立混凝土的冻融累积损伤模型,并采用该模型计算各种混凝土的使用寿命。
     第五,采用三分点法对各种混凝土的弯曲疲劳性能进行试验研究,建立各种混凝土的疲劳方程,并由此计算混凝土的理论疲劳寿命和理论应力水平;分析纳米材料的种类和掺量对混凝土弯曲疲劳性能的影响规律,揭示纳米材料对混凝土弯曲疲劳性能的改善机理;研究PZT阵列对纳米混凝土梁的弯曲疲劳累积损伤的监测,分析PZT信号在疲劳损伤过程中不同阶段的规律,发现了PZT信号中的声发射现象;采用落球法对各种混凝土的抗冲击性能进行试验研究。
     最后,综合路面结构全寿命周期费用分析、路面使用性能评价和预测、路面结构可靠度和耐久性设计等方面构建了混凝土路面结构的全寿命设计理论框架,提出了混凝土路面结构全寿命设计流程;给出了普通混凝土路面和纳米混凝土路面板厚的可靠度和耐久性设计示例。
In recent years, so long highway has been constructed to meet the requirement of economy development in Mainland China. Most of highway was constructed using asphalt materials. However, asphalt materials are so expensive. Concrete pavement will play an important role in construction of pavement in the future, like that in the USA. Additionally, life-cycle design method is very critical for pavement because the maintenance action leads to increase in cost in many aspects, such as materials, labors, cars and drivers.
     Nano-materials attract more and more attention due to their unique characteristics. It has been proven that nano-particles can improve the performance of many materials. However, the research and application of nano-materials in civil engineering is so limited at present.
     This thesis proposes the concrete containing nano-particles for pavement. Its mechanical properties, durability and fatigue resistance are experimentally studied. For comparison, plain concrete, the concrete containing polypropylene (PP) fibers and the concrete containing both nano-particles and PP fibers are also involved in this thesis. Finally, life-cycle performance design for pavement structure using concrete containing nano-particles is also conducted. The main contents are listed as follows.
     First, the fabrication techniques of concretes only containing either nano-particles or PP fibers and the concrete containing both nano-particles and PP fibers are studied. Based on the mix proportion of plain pavement concrete, the mix proportion of concretes only containing either nano-particles or PP fibers and the concrete containing both nano-particles and PP fibers are investigated. Then the compressive and flexural strengths are experimentally studied, and the micro-structure of nano-concrete is also experimentally obtained using SEM technique. The influence of variety and amount of nano-particles on concrete strength is analyzed, and the mechanism of nano-particles improving concrete strength is interpreted. The relationship between flexural strength and compressive strength of concrete is analyzed.
     Second, the abrasion resistance of various concretes is experimentally investigated using ball bearing method. The effect of various nano-particles with different contents on abrasion resistance of concrete is analyzed, and the improvement mechanism of abrasion resistance of nano-concrete is discussed. The relationship between abrasion resistance and the strength of concrete is obtained.
     Third, the impermeability and pore structure of various concretes are experimentally studied using NEL method and mercury intrusion porosimetry. The influence of type and amount of nano-particles on impermeability and pore structure of concrete is analyzed, and the mechanism of nano-particles improving impermeability and pore structure of concrete is explained. The relationships of impermeability with the strength and pore structure of concrete are obtained.
     Fourth, the frost resistance of various concretes is experimentally investigated using fast freezing/thawing method. The effect of various nano-particles with different contents on frost resistance of concrete is analyzed, and the improvement mechanism of frost resistance of nano-concrete is discussed. The freezing/thawing cumulative damage model of concrete is obtained, and the service lives of various concretes are calculated using this model.
     Fifth, the flexural fatigue performance of various concretes is experimentally studied using four-point bending method. The fatigue equations of various concretes are proposed, and the theoretical fatigue lives and theoretical stress level of various concretes are calculated using the fatigue equations. The influence of kind and amount of nano-particles on flexural fatigue performance of concrete is analyzed, and the mechanism of nano-particles improving flexural fatigue performance of concrete is interpreted. Furthermore, the flexural fatigue accumulative damage of concrete beam containing nano-particles is monitored using PZT array. The PZT signals at different stage in the whole fatigue damage evolution process are analyzed, and the acoustic emission events are observed. The impact resistance of various concretes is experimentally investigated using drop weight method.
     Finally, the theoretical frame of life-cycle design of concrete pavement structure is proposed, in which life-cycle cost analysis of pavement structure, evaluation and prediction of pavement performance, and reliability and durability design of pavement structure are involved. The flow chart of life-cycle design of concrete pavement structure is proposed. An example for designing a pavement slab thickness of plain concrete and nano-concrete is demonstrated based on reliability and durability indices, respectively.
引文
1 黄晓明. 水泥路面设计. 北京: 人民交通出版社, 2003: 163~169, 177~201
    2 陈瑜, 张大千. 水泥混凝土路面磨损机理及其耐磨性. 混凝土与水泥制品, 2004, (2): 16~19
    3 P. Maydl. Towards “Sustainable” Engineerings, Preface of Sustainable Engineering, Structural Engineering International, 2004, 14(3): 175
    4 叶文亚, 李国平, 范立础. 桥梁全寿命成本初步分析. 公路, 2006, (6): 101~104
    5 张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001: 14~25
    6 徐江萍, 申爱琴, 姚爱玲. 掺增折剂混凝土疲劳性能的研究. 西安公路交通大学学报, 1999, 19(2): 14~17
    7 张晏清. 普通混凝土表面强化的研究. 建筑材料学报, 1999, 2(1): 33~36
    8 刘巽伯.《混凝土及其制品耐磨性试验方法》国家标准介绍. 房材与应用, 1998, (1): 46~47
    9 谢勇成. 提高水泥混凝土路面的耐磨技术. 国外公路, 1998, 18(1): 33~38
    10 陈瑜, 周士琼. 道路粉煤灰高性能混凝土耐磨性试验研究. 混凝土, 2001, (2): 7~10
    11 Cengiz Duran Atis. High Volume Fly Ash Abrasion Resistant Concrete. Journal of materials in civil engineering, 2002, 14(3): 274~277
    12 谢志金. 提高水泥混凝土路面耐磨性的初步研究. 建筑材料学报, 1999, 2(4): 340~343
    13 钟秉章, 朱强. 聚丙烯纤维混凝土在水利水电工程上的应用探讨. 水利规划设计, 2002, (1): 54~58
    14 L. Chen, S. Mindess, D. R. Morgan, et al. Comparative toughness testing of fiber reinforced concrete. D. J. Stevens, et al. Testing of Fiber reinforced Concrete. ACI, 1995: 47~75
    15 陈栓发, 张登良, 张洁, 等. 聚丙烯纤维混凝土路用性能研究. 东北公路, 2001, 24(2): 23~25
    16 孙家瑛, 魏涛, 王学文. 聚丙烯纤维对混凝土路用性能的影响. 混凝土, 2001, (6): 57~59
    17 马骉, 罗乙. 网状聚丙烯纤维在超薄水泥混凝土路面中的应用. 公路, 2004, (5): 150~152
    18 汪洋, 杨鼎宜, 周明耀. 聚丙烯纤维混凝土的研究现状与趋势. 混凝土, 2004, (1): 24~26
    19 Zeng-Qiang Shi, D. D. L. Chung. Improving the abrasion resistance of mortar adding latex and carbon fibers. Cement and Concrete Research, 1997, 27(8): 1149~1153
    20 Rafat Siddique. Effect of fine aggregate replacement with Class F fly ash on the abrasion resistance of concrete. Cement and Concrete Research, 2003, (33): 1877~1881
    21 T. R. Naik, S. S. Singh, R. N. Kraus, B. W. Ramme. Manufacture of masonry products containing large amounts of fly ash. Spec. Publ.-Am. Concr. Inst., 2001, (SP-199): 163~184
    22 T. R. Naik, S. S. Singh, B. W. Ramme. Mechanical properties and durability of concrete made with blended fly ash. ACI Mater. J., 1998, 95(4): 454~462
    23 K. M. Hadchti, R. L. Carrasquillo. Abrasion resistance and scaling resistance of concrete containing fly ash. Research report 481-3, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin. Austin, Tex. Aug. 1988: 185
    24 R. S. Barrow, K. M. Hadchti, P. M. Carrasquillo, R. L. Carrasquillo. Temperature rise and durability of concrete containing fly ash. Proceedings of the CANMET/ACI 3rd International Conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete, Trondheim, Norway, V. M. Malhotra, ed., ACI, Detroit, 1989, 1(SP-114): 331~348
    25 T. R. Naik, B. W. Ramme, J. H. Tews. Pavement construction with high volume class C and class F fly ash concrete. ACI Materials Journal, 1995, 92(2): 200~210
    26 Rafat Siddique. Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research, 2004, (34): 487~493
    27 T. R. Naik, S. S. Singh, M. M. Hossain. Abrasion resistance of high-volume fly ash concrete systems. Rep. No. 176 Prepared for EPRI, Center for By-products Utilization, Univ. of Wisconsin-Milwaukee, Milwaukee, 1993
    28 B. W. Langan, R. C. Joshi, M. A. Ward. Strength and durability of concrete containing 50% Portland cement replacement by fly ash and other materials.Canadian Journal of Civil Engineering, 1990, 17(1): 19~27
    29 T. R. Naik, S. S. Singh, M. M. Hossain. Abrasion resistance of high-strength concrete made with class C fly ash. ACI Mater. J., 1995, 92(6): 649~659
    30 T. R. Naik, Shiw S. Singh, B. W. Ramme. Effect of Source of Fly Ash on Abrasion Resistance of Concrete. Journal of materials in civil engineering, 2002, 14(5): 417~426
    31 P. J. Tikalsky, P. M. Carrasquillo, R. L. Carrasquillo. Strength and durability considerations affecting mix proportioning of concrete containing fly ash. ACI Materials Journal, 1988, 85(6): 505~511
    32 T. C. Liu. Abrasion resistance of concrete. ACI Journal, Proceedings, 1981, 78(5): 341~350
    33 P. Laplante, P. C. Aifcin, D. Vezina. Abrasion resistance of concrete. Journal of Materials in Civil Engineering, 1991, 3(1): 19~30
    34 N. Ghafoori, H. Diawara. Abrasion resistance of fine aggregate replaced silica fume concrete, ACI Materials Journal, 1999, 96(5): 559~567
    35 Lulu Basheer, Joerg Kropp, David J. Cleland. Assessment of the durability of concrete from its permeation properties: a review. Construction and Building Materials, 2001, (15): 93~103
    36 P. Mohr, W. Hansen, E. Jensen, I. Pane. Transport properties of concrete pavements with excellent long-term in-service performance. Cement and Concrete Research, 2000, (30): 1903~1910
    37 Abdullah M. Alshamsi, Hassan D. A. Imran. Development of a permeability apparatus for concrete and mortar. Cement and Concrete Research, 2002, (32): 923~929
    38 M. G. Alexander, B. J. Magee. Durability performance of concrete containing condensed silica fume. Cement and Concrete Research, 1999, (29): 917~922
    39 P. K. Mehta, P. J. M. Monteiro. Concrete structure, properties and materials (2nd Ed.). New Jersey: Prentice Hall, 1993: 548
    40 冯乃谦, 刑锋. 高性能混凝土技术. 北京: 原子能出版社, 2000: 251~255, 272~278
    41 H. Toutanji, S. McNeil, Z. Bayasi. Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 1998, 28(7): 961~968
    42 Houssam A. Toutanji. Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Construction and Building Materials, 1999, (13): 171~177
    43 Wei-Hsing Huang. Properties of cement-fly ash grout admixture with bentonite, silica fume or organic fiber. Cement and Concrete Research, 1997, 27(3): 395~406
    44 G. Vondran, T. Webster. The relationship of polypropylene fiber reinforced concrete to permeability. ACI, 1987, (SP-108): 85~97
    45 B. H. Oh, S. W. Cha, B. S. Jang, S. Y. Jang. Development of high-performance concrete having high resistance to chloride penetration. Nuclear Engineering and Design, 2002, (212): 221~231
    46 Faguang Leng, Naiqian Feng, Xinying Lu. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 2000, (30): 989~992
    47 李淑进, 赵铁军, 吴科如. 混凝土渗透性与微观结构关系的研究. 混凝土与水泥制品, 2004, (2): 6~8
    48 ACI Committee 226. Silica fume in concrete. ACI Materials Journal, 1987, 84(2): 159~166
    49 M. D. Cohen, J. J. Olek. Silica fume in PCC-effects of form on engineering performance of Portland-cement concrete. Concr. Int: Des Construct, 1989, 11(11): 43~47
    50 蔡昊, 覃维祖, 刘西拉. 冻融循环作用下混凝土力学性能的损失. 工程力学, 1996, (增刊): 29~33
    51 Osama A. Mohamed, Kevin L. Rens, Judith J. Stalnaker. Factors Affecting Resistance of Concrete to Freezing and Thawing Damage. Journal of Materials in Civil Engineering, 2000, 12(1): 26~32
    52 姜双伦, 姬立德, 吴会强. 混凝土的冻融破坏与外加剂. 混凝土, 2001, (2): 54~55
    53 刘志勇, 马立国. 高强混凝土的抗冻性与寿命预测模型. 工业建筑, 2005, 35(11): 11~14
    54 蔡昊. 混凝土抗冻耐久性预测模型. 清华大学博士学位论文, 1998
    55 王彤, 鲁纯, 王先伟. 聚丙烯纤维混凝土路面耐久性的试验研究. 玻璃纤维, 2006, (1): 24~26
    56 王玲, 李刚. 纤维混凝土在冻融循环、冻融—氯盐共同作用下的耐久性试验研究. 混凝土, 2002, (12): 43~46
    57 B. B. Sabir. Mechanical properties and frost resistance of silica fume concrete. Cement and Concrete Composites, 1997, (19): 285~294
    58 田倩, 孙伟. 高性能水泥基复合材料抗冻性能的研究. 混凝土与水泥制品, 1997, (1): 12~15
    59 吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社, 1999: 43, 73~95
    60 E. J. Sellevold, F. F. Radjy. Condensed Silica fume in Concrete: Water Demand and Strength Development. ACI SP-79, 1983, (2): 677~694
    61 B. B. Sabir, K. Kouyiali Freeze-thaw durability of air-entrained CSF concrete. Cement and Concrete Composites, 1991, (13): 203~208
    62 P. C. Aitcin, D. Vezina. Resistance to freezing and thawing of silica fume concrete. Cement, Concrete and Aggregates, CCAGDP, 1984, 6(1): 38~42
    63 Y. I. Cheng, Feldman, et al. Dependance of frost resistance on the pore structure of mortar containing silica fume. AC1 Journal, Technical Paper, 1985, 82(68): 765~774
    64 G. G. Carette, V. M. Malhotra. Mechanical properties, durability and drying shrinkage of Portland cement concrete containing silica fume. Cement, Concrete and Aggregates, CCAGDP, 1983, 5(1): 3~13
    65 金伟良, 赵羽习. 混凝土结构耐久性. 北京: 科学出版社, 2002: 74~82
    66 宋拥军. 含气量对混凝土抗冻性能的影响.中国三峡建设,1999, (11):45~47
    67 M. K. Lee, B. I. G. Barr. An overview of the fatigue behavior of plain and fibre reinforced concrete. Cement & Concrete Composites, 2004, (26): 299~305
    68 Subramaniam V. Kolluru, Edward F. O’Neil, John S. Popovics, Surendra P. Shah. Crack Propagation in Flexural Fatigue of Concrete. Journal of Engineering Mechanics, 2000, 126(9): 891~898
    69 Jin-Keun Kim, Yun-Yong Kim. Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, 1996, 26(10): 1513~1523
    70 Bin Mu, Kolluru V. Subramaniam, S. P. Shah. Failure Mechanism of Concrete under Fatigue Compressive Load. Journal of materials in civil engineering, 2004, 16(6): 566~572
    71 仰建岗, 刘伟, 王秉纲. 钢纤维混凝土弯曲疲劳性能研究. 公路交通科技, 2002, 19(2): 35~37
    72 石小平, 姚祖康, 李华, 等. 水泥混凝土的弯曲疲劳特性. 土木工程学报, 1990, 23(3): 11~22
    73 李永强, 车惠民. 在等幅重复应力作用下混凝土弯曲疲劳性能研究. 铁道学报, 1999, 21(2): 76~79
    74 陈忠达, 梁峰, 刘根昌, 等. 硅粉路面混凝土的疲劳特性. 长安大学学报(自然科学版), 2005, 25 (1): 1~5
    75 曹诚, 刘家彬. 聚丙烯纤维对混凝土动力学特性的影响研究. 混凝土, 2000, (5): 43~45
    76 陈拴发. 聚丙烯纤维混凝土弯曲疲劳性能. 西安公路交通大学学报, 2001, 21(2): 18~20
    77 W. Sun, J. Liu, H. Qin, Y. Zhang, Z. Jin, M. Qian. Fatigue performance and equations of roller compacted concrete with fly ash. Cement and Concrete Research, 1998, 28(2): 309~315
    78 李顺凯, 蔡安兰, 严生. 改性聚丙烯纤维砂浆和混凝土的性能试验. 南京工业大学学报, 2004, 26(3): 58~61
    79 A. M. Alhozaimy, P. Soroushian, F. Mirza. Mechanical Properties of Polypropylene Fiber Reinforced Concrete and the Effects of Pozzolanic Materials. Cement and Concrete Composites, 1996, (18): 85~92
    80 N. Banthia, C. Yan, K. Sakai. Impact resistance of fiber reinforced concrete at subnormal temperatures. Cement and Concrete Composites, 1998, (20): 393~404
    81 M. C. Nataraja, N. Dhang, A. P. Gupta. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cement and Concrete Research, 1999, (29): 989~995
    82 S. Mindess, G. Vondran. Properties of concrete reinforced with fibrillated polypropylene fibers under impact loading. Cement and Concrete Research, 1988, (18): 109~115
    83 孙家瑛. 聚丙烯纤维对高性能混凝土抗折强度、抗冲击性能影响研究. 混凝土, 1999, (6): 19~21
    84 胡紫日, 史小兴, 王新民, 等. 高等级公路桥面铺装新型纤维混凝土的研究与应用. 混凝土与水泥制品, 2004, (4): 36~37
    85 G. D. Manolis, P. J. Gareis, A. D. Tsonos, J. A. Neal. Dynamic properties ofpolypropylene fiber-reinforced concrete slabs. Cement and Concrete Composites, 1997, (19): 341~349
    86 陈德玉, 谭克锋. 聚丙烯微纤维混凝土的性能研究. 混凝土与水泥制品, 2004, (3): 38~40
    87 许并社. 纳米材料及应用技术. 北京: 化学工业出版社, 2004
    88 叶青. 纳米 SiO2 与硅粉的火山灰活性的比较. 混凝土, 2001, (3): 19~22
    89 肖会刚. 添加超细粒材料智能混凝土的制备工艺及多功能特性研究. 哈尔滨工业大学硕士学位论文, 2002: 13~23, 30~33
    90 熊国宣, 邓敏, 宋碧涛, 等.纳米材料在混凝土中应用的思考. 混凝土与水泥制品, 2002, (5): 18~21
    91 夏军武, 夏大明, 王守祥. 纳米材料和纳米技术在建筑领域中的应用. 工业建筑, 2002, 32(12): 44~45
    92 王景贤 , 王立久 . 纳米材料在混凝土中的应用研究进展 . 混凝土 , 2004(11): 18~21
    93 扶名福, 熊进刚, 宋固全. 纳米材料在混凝土中的研究与应用—第十三届全国结构工程学术会议特邀报告. 工程力学, 2004, (s1): 48~51
    94 叶青. 纳米复合水泥结构材料的研究与开发. 新型建筑材料, 2001,(1):4~6
    95 陈荣升, 叶青. 掺纳米 SiO2 与掺硅粉的水泥硬化浆体的性能比较. 混凝土, 2002, (1): 7~10
    96 叶青,张泽南,孔德玉,等.掺纳米 SiO2 和掺硅粉高强混凝土性能的比较.建筑材料学报, 2003, 6(4):381~385
    97 叶青, 张泽南, 陈荣升, 等. 纳米 SiO2 与水泥硬化浆体中 Ca(OH)2 的反应. 硅酸盐学报, 2003, 31(5): 517~522
    98 季韬, 黄与舟, 郑作樵. 纳米混凝土物理力学性能研究初探. 混凝土, 2003, (3): 13~14
    99 杜应吉, 韩苏建, 姚汝方, 等. 应用纳米微粉提高混凝土抗渗抗冻性能的试验研究. 西北农林科技大学学报(自然科学版), 2004, 32(7): 107~110
    100 王冲, 蒲心诚, 刘芳, 等. 纳米颗粒材料在水泥基材料中应用的可行性研究. 新型建筑材料, 2003, (2): 22~23
    101 王立久, 王宝民. 纳米 SiO2 对硅酸盐水泥性能影响实验研究. 大连理工大学学报, 2003, 43(5): 666~669
    102 李颖,唐明,聂元秋.纳米级 SiOx 与硅灰对水泥浆体需水量的影响. 沈阳建筑工程学院学报(自然科学版), 2002, 18(4): 278~281
    103 唐明, 巴恒静, 李颖. 纳米级 SiOx 与硅灰对水泥基材料的复合改性效应研究. 硅酸盐学报, 2003, 31(5): 523~527
    104 仲晓林, 李顺凯, 孙跃生, 等. 纳米粘土材料对水泥混凝土性能的影响. 混凝土, 2004, (5): 62~63
    105 冯奇, 巴恒静, 范征宇, 等. 微粉增强水泥基复合材料的早期界面显微结构研究. 复合材料学报, 2003, 20(4): 72~76
    106 冯奇, 梁传栋, 刘光明. 纳米 SiO2 粉在水泥基复合材料中的试验研究. 材料科学与工程学报, 2004, 22(2): 224~227
    107 葛耀君, 李惠, 沈锐利, 等. 大型桥梁全寿命结构设计理论与方法. 建筑学科发展战略研究: 建筑、环境与土木工程学科发展战略研究报告, 2005
    108 刘黎萍, 孙立军. 沥青路面全寿命结构设计方法概述. 同济大学学报, 2003, 31(9): 1044~1048
    109 K. Ozbay, N. A. Parker, D. Jawad, S. Hussain. Guidelines for Life Cycle Cost Analysis: Final Report. U.S. Department of Transportation Faderal Highway Administration, FHWA-NJ-2003-012, 2003
    110 M. A. Ehlen. BridgeLCC 2.0 Users Manual: Life-Cycle Costing Software for the Preliminary Design of Bridges. U. S. A., Department of Commerce Technology Administration, National Institute of Standards and Technology, NIST GCR 03-853, 2003
    111 D. Singh, Robert L. K. Tiong. Development of life cycle costing framework for highway bridges in Myanmar. International Journal of Project Management, 2005, (23): 37~44
    112 孙立军, 刘黎萍, 张宏超, 等. 基于性能的沥青路面全寿命设计方法. 同济大学学报(自然科学版), 2003, 31(7): 833~837
    113 罗芳艳, 孙立军. 基于使用性能的沥青路面结构设计方法研究. 中国公路学报, 2001, 14(增刊): 35~38
    114 刘黎萍, 王雷, 朱霞, 等. 贴现率对沥青路面结构优化设计的敏感性分析. 山东交通学院学报, 2005, 13(3): 5~7
    115 F. Puertas, T. Amat, A. Fernández-Jiménez, T. Vázquez. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibers. Cement and Concrete Research, 2003, 33(12): 2031~2036
    116 中华人民共和国行业标准. 公路水泥混凝土路面设计规范(JTG D40-2002). 北京: 人民交通出版社, 2002: 8, 53
    117 姚祖康. 公路设计手册-路面(第二版). 北京: 人民交通出版社, 1999: 10~13, 298~306
    118 中华人民共和国行业标准. 公路水泥混凝土路面施工技术规范(JTG F30-2003). 北京: 人民交通出版社, 2003: 6~13, 17~22
    119 严家伋. 道路建筑材料(第三版). 北京: 人民交通出版社, 2000: 88~109
    120 Ping-Kun Chang, Yaw-Nan Peng. Influence of mixing techniques on properties of high performance concrete. Cement and concrete research, 2001, (31): 87~95
    121 R. S. Khalaf. Technique multi-step concrete mixing. Mater. Struct., 1995, (12): 230~234
    122 Zupancic Andreja, Lapasin Romano, Kristoffersson Annika. Rheological properties of aqueous a-Al2O3 suspensions: influence of dispersant concentration. Can. J. Chem. Eng., 1999, (4): 627~636
    123 Liu Baoju, Xie Youjun, Zhou Shiqiong, Yuan Qianlian. Influence of ultrafine fly ash composite on the fluidity and compressive strength of concrete. Cement and concrete research, 2000, (30): 1489~1493
    124 吴永根, 马国靖, 蔡良才, 等. 自密实道面混凝土弯曲疲劳特性. 混凝土, 2005, (1): 40~42
    125 廖宪廷, 何元, 杨序纲, 等. PP 纤维水泥复合材料的界面行为(I)——耐磨性能研究. 建筑材料学报, 1999, 2(4): 324~328
    126 Hui Li, Hui-gang Xiao, Jie Yuan, Jing-ping Ou. Microstructure of cement mortar with nano-particles. Composites Part B: engineering, 2004, (35): 185~189
    127 李炳培. 对水泥路面混凝土配合比设计的探讨. 广东土木与建筑, 2003, (11): 50~52
    128 蒋广京. 砼路面抗折强度和疲劳极限的影响因素分析. 交通科技, 2004, (1): 44~46
    129 T. R. Naik, S. S. Singh, M. M. Hossain. Abrasion resistance of concrete as influenced by inclusion of fly ash. Cemenet and Concrete Research, 1994, 24(2): 303~312
    130 陈健, 赵志宏, 张苏东. 耐磨混凝土及其应用研究. 混凝土与水泥制品, 2001, (4): 16~18
    131 N. P. Suh. An Overview of the Delamination Theory of Wear. Wear, 1977,(44): 1~16
    132 J. D. Gates. Two-body and three-body abrasion: A critical discussion. Wear, 1998, (214): 139~146
    133 S. G. Roberts. Depths of cracks produced by abrasion of brittle materals. Scripta Materialia, 1999, 40(1): 101~108
    134 Information bulletin: IB75. Abrasion resistance. http://www.holcim.com/ Upload/NZ/Publications/ECS _Abrasion_resisting. pdf, 2004: 1~3
    135 L. P. Witte, J. E. Backatrom. Some properties affecting the abrasion resistance of air-entrained concrete. ASTM Proceedings, 1951, (51): 1141~1155
    136 Odd E. Gjorv, Torger Baerland, Heinrich R. Ronning. Abrasion resistance of high-strength concrete pavements. Concrete International, 1990, 12(1):45~48
    137 Cengiz Duran Atis. Abrasion-Porosity-Strength Model for Fly Ash Concrete. Journal of materials in civil engineering, 2003, 15(4): 408~410
    138 A. Nanni. Abrasion resistance of roller-compacted concrete. ACI Materials Journal, 1989, 86(53): 559~565
    139 M. Sadegzadeh, C. L. Page, R. J. Kettle. Surface microstructure and abrasion resistance of concrete. Cement and Concrete Research, 1987, 17(4): 581~590
    140 A. Nanni. Curing of roller-compacted concrete: strength development. Journal of Transporation Engineering, ASCE, 1988, 114(6): 684~694
    141 中华人民共和国国家标准. 混凝土及其制品耐磨性试验方法(滚珠轴承法)(GB/T 16925-1997). 北京: 中国标准出版社, 1997
    142 杨斌. 混凝土及其制品耐磨性试验方法. 中国标准化, 1998, (5): 10~11
    143 X. Li, D. D. L. Chung. Improving Silica Fume for Concrete by Surface Treatment. Cement and Concrete Research, 1998, 28(4): 493~498
    144 Lu Cui, Jong Herman Cahyadi. Permeability and pore structure of OPC paste. Cement and Concrete Research, 2001, (31): 277~282
    145 B. Zhang. Relationship between Pore Structure and Mechanical Properties of Ordinary Concrete under Bending Fatigue. Cement and Concrete Research, 1998, 28(5): 699~711
    146 A. B. Abell, K. L. Willis, D. A. Lange. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials. Journal of Colloid and Interface Science, 1999, (211): 39~44
    147 张驰, 周永进. 多孔材料的性能与孔结构. 重庆师范学院学报(自然科学版), 1998, 15(增刊): 54~56
    148 M. J. Mosquera, D. Benítez, S. H. Perry. Pore structure in mortars applied on restoration effect on properties relevant to decay of granite buildings. Cement and Concrete Research, 2002, (32):1883~1888
    149 Kiyofumi Kurumisawa, Kyoji Tanaka. Three-dimensional visualization of pore structure in hardened cement paste by the gallium intrusion technique. Cement and Concrete Research, 2006, (36): 330~336
    150 L’. Bágel’, V. ?ivica. Relationship between pore structure and permeability of hardened cement mortars: on the choice of effective pore structure parameter. Cement and Concrete Research, 1997, 27(8): 1225~1235
    151 Kyoji Tanaka, Kiyofumi Kurumisawa. Development of technique for observing pores in hardened cement paste. Cement and Concrete Research, 2002, (32): 1435~1441
    152 C. S. Peon, Y. L. Wong, L. Lam. The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars. Construction and Building Materials, 1997, 11(7-8): 383~393
    153 Sidney Diamond. Aspects of concrete porosity revisited. Cement and Concrete Research, 1999, (29): 1181~1188
    154 G. J. Verbeck. Pore structure-significance of tests and properties of concrete and concrete making materials. ASTM Special Tech. Publ., 1982, 169(A): 211~219
    155 P. K. Mehta, D. Manmohan. Pore size distribution and permeability of hardened cement paste. 7th International Symposium of the Chemistry of Cement, Paris, III, VII. Paris: International Congress on the Chemistry of Cement, 1980: 1~5
    156 S. Li, D. M. Roy. Investigation of relations between porosity, pore structure and Cl- diffusion of fly ash and blended cement pastes. Cem. Concr. Res., 1986, 16(5): 749~759
    157 B. K. Nyame, J. M. Illston. Relationships between permeability and pore structure of hardened cement paste. Mag. Concr. Res., 1981, 116(33): 139~146
    158 赵铁军, 李淑进. 混凝土的强度与渗透性. 建筑技术, 2002, 33(1): 20
    159 M. Pigeon. The Durability of HS/HPC. Proceedings of the 4th International Symposium on Utilization of High-Strength High-Performance Concrete, Paris, May, 1996: 39~45
    160 J. Armaghani, T. Larsen, D. Romano. Aspects of concrete strength and durability, Transp. Res. Rec., 1992, (1335): 63~69
    161 Linhua Jiang, Yugang Guan. Pore structure and its effect on strength of high-volume fly ash paste. Cement and Concrete Research, 1999, (29): 631~633
    162 C. Shi. Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res., 1996, 26(12): 1789~1799
    163 廉慧珍,童良,陈恩义.建筑材料物相研究基础.北京:清华大学出版社,1996: 105~125
    164 British Standard (BS 7591-1:1992). Porosity and pore size distribution of materials―Part 1: Method of evaluation by mercury porosimetry. BSI 07-1999
    165 J. M. Khatib, P. S. Mangat. Influence of superplasticizer and curing on porosity and pore structure of cement paste. Cement & Concrete Composites, 1999, (21): 431~437
    166 B. H. Oh. Characteristics and application of high durability concrete. Proceeding of ACI International Conference on Design and Material and Recent Advances in Concrete Technology, ACI, 1997, (SP-172): 871~898
    167 Xinying Lu. Application of the Nernst-Einstein equation to concrete. Cement and Concrete Research, 1997, 27(2): 293~302
    168 苏晓宁. 混凝土抗冻性研究. 沈阳农业大学硕士学位论文, 2005: 6~9
    169 H. Cai, X. Liu. Freeze-thaw durability of concrete: ice formation process in pores. Cement and Concrete Research, 1998, 28 (9): 1281~1287
    170 赵霄龙, 卫军, 黄玉盈. 混凝土冻融耐久性劣化与孔结构变化的关系. 武汉理工大学学报, 2002, 24(12): 14~17
    171 陈静云, 刘洋, 李玉华, 等. 水泥路面冻融破坏机理和对策研究. 东北公路, 2003, 26(1): 14~16
    172 张子明, 王嘉航, 宋智通. 寒冷气候下混凝土的破坏机理. 红水河, 2004, 23(1): 67~70
    173 李金玉, 曹建国, 徐文雨, 等. 混凝土冻融破坏机理的研究. 水利学报, 1999, (1): 41~49
    174 潘钢华, 孙伟, 姜阳. 高强混凝土抗冻性的理论和实验研究. 硅酸盐学报, 1999, 27(6): 637~643
    175 T. C. Powers. A working hypothesis for further studies of frost resistance of concrete, J. Am. Concr. Soc., 1945, (16): 245~271
    176 T. C. Powers. Basic consideration pertaining to freezing-and-thawing tests. Proc. ASTM. 1955, (55): 1132~1155
    177 Vesa Penttala, Fahim Al-Neshawy. Stress and strain state of concrete during freezing and thawing cycles. Cement and Concrete Research, 2002, (32): 1407~1420
    178 G. Fagerlund. International cooperative test of the critical degree of saturation method of assessing the freeze/thaw resistance of concrete. Material and Strucutre, 1977, 10(58): 231~253
    179 C. G. Litvan. Phase transitions of adsorbates: IV. Mechanism of frost action in hardened cement paste, J. Am. Ceram. Soc. 1971, (55): 38~42.
    180 Roumiana Zaharieva, Francois Buyle-Bodin, Eric Wirquin. Frost resistance of recycled aggregate concrete. Cement and Concrete Research, 2004, (34): 1927~1932
    181 杨荣俊, 申臣良, 杨玉启, 等.高性能混凝土的抗冻性研究及其工程应用. 第五届全国混凝土耐久性学术交流会, 2000: 209~216
    182 曹建国, 李金玉, 林莉, 等. 高强混凝土抗冻性的研究. 建筑材料学报, 1999, 2(4): 292~297
    183 E. Okada, M. Hisake, R Kazame Y. Kazane, K. Hattori. Freeze-thaw resistance of Superplasticized concretes in development in the use of superplasticizers. ACI, 1981, (SP-68): 215~231
    184 ACI Committee 201. Guide of Durable Concrete. ACI manual of concrete practice, ACI 201, 2R-92, 1992
    185 W. Sun, Y. M. Zhang. Damage and damage resistance of high strength concrete under the action of load and freezing-thawing cycles. Cement and Concrete Research, 1999, 29(6): 1519~1523
    186 J. Marchand, R. Gagne, S. Jacobsen, et al. Frost resistance of high-performance concrete. Canadian Journal of Civil Engineering, 1996, 23(5): 1070~1080
    187 关宇刚, 孙伟, 缪昌文. 基于可靠度与损伤理论的混凝土寿命预测模型:模型验证与应用.硅酸盐学报, 2001, 29(6): 535~540
    188 李兆霞. 损伤力学及其应用. 北京: 科学出版社, 2002
    189 关宇刚, 孙伟, 缪昌文. 冻融疲劳作用下高强混凝土劣化特征点的分析. 东南大学学报(自然科学版), 2001, 31(6): 25~29
    190 J. Stefan, C. G.. Hans. High strength concrete freeze-thaw testing and cracking. Cement and Concrete Research, 1995, 25(8): 1775~1780
    191 李金玉, 彭小平, 邓正刚, 等. 混凝土抗冻性的定量化设计. 混凝土, 2000, (9): 61~65
    192 赵永利, 孙伟. 混凝土材料疲劳损伤方程的建立. 重庆交通学院学报, 1999, 18(1): 17~22
    193 季天剑, 王辉, 陈荣生. 再生水泥混凝土疲劳性能. 交通运输工程学报, 2002, 2(2): 16~18
    194 T. C. C. Hsu. Fatigue of plain concrete. ACI Journal, 1981, 78(4): 292~305.
    195 Dong-I1 Chang, Won-Kyu Chai. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures. Nuclear Engineering and Design, 1995, (156): 201~207.
    196 G. B. Batson, C. Ball, L. Bailey. E. Landers, J. Hook. Flexural fatigue strength of steel fiber reinforced concrete beams. J. Am. Concr. Inst., 1972, (69): 673~677
    197 T. C. C. Hsu. Fatigue and microcracking of concrete. Mater. Struct., 1984, 17(97): 51~54
    198 欧阳辉, 伍颖, 杨军. 钢纤维对混凝土疲劳性能增强的研究. 安全与环境工程, 2004, 11(1): 71~73
    199 李为杜, 童寿兴. 混凝土受力声发射特性. 无损检测, 1987, 9(5): 125
    200 孙伟, 严云. 高强砼与钢纤维高强砼冲击和疲劳特性及其机理的研究. 土木工程学报, 1994, 27(5): 20~27
    201 B. H. Oh. Fatigue-life distributions of concrete for various stress levels. ACI Mater. J., 1991, 88(2): 122~128
    202 Z. P. Bazant, W. F. Schell. Fatigue Fracture of High Strength Concrete and Size Effect. Center for Advanced Cement Based Materials, Northwestern University, Evanston, Illinois 60208, March, 1992: 34
    203 C. D. Johnston, R. W. Zemp. Flexural fatigue performance of steel fiber reinforced concrete―influence of fiber content, aspect ratio and type. ACIMater. J., 1991, 88(4): 374~383
    204 A. E. Naaman, H. Hammoud. Fatigue characteristics of high performance fiber-reinforced concrete. Cem. Concr. Compos., 1998, (20): 353~363
    205 M. Grzybowski, C. Meyer. Damage accumulation in concrete with and without fiber reinforcement. ACI Mater. J., 1993, 90(6): 594~604
    206 J. Zhang, H. Stang. Fatigue performance in flexure of fiber reinforced concrete. ACI Mater. J., 1998, 95(1): 58~67
    207 陈应波, 卢哲安, 张全林. 层布式钢纤维混凝土路面板弯曲疲劳性能研究. 武汉大学学报(工学版), 2004, 37(4): 40~44
    208 谢建斌, 何天淳, 程赫明, 等. 循环荷载下路面用钢纤维混凝土的弯曲疲劳研究. 兰州理工大学学报, 2004, 30(2): 104~109
    209 Zongcai Deng. The fracture and fatigue performance in flexure of carbon fiber reinforced concrete. Cement & Concrete Composites, 2005, (27): 131~140
    210 P. B. Cachim. Experimental and numerical analysis of the behaviour of structural concrete under fatigue loading with applications to concrete pavements. PhD thesis, Faculty of Engineering of the University of Porto, 1999: 246
    211 高镇同. 疲劳应用统计学. 北京: 国防工业出版社, 1986: 82~90
    212 高建明, 孙伟. 钢纤维砼抗折疲劳寿命分布规律的研究. 东南大学学报, 1997, 27(1): 96~100
    213 S. P. Singh, S. K. Kaushik. Fatigue strength of steel fibre reinforced concrete in flexure. Cement & Concrete Composites, 2003, (25): 779~786
    214 B. H. Oh. Fatigue analysis of plain concrete in flexure. J. Struct. Eng. ASCE, 1992, 112(2): 273~288
    215 G. Spadea, F. Bencardino. Behavior of fiber-reinforced concrete beams under cyclic loading. J. Struct. Eng., 1997, 123(5): 660~668
    216 Khaled Marar, Ozgur Eren, Tahir Celik. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Materials Letters, 2001, (47): 297~304
    217 于骁中, 谯常忻, 周群力. 岩石和混凝土断裂力学. 长沙: 中南工业大学出版社, 1999
    218 刘学文. 用声发射技术评估材料损伤的研究. 北方交通大学博士学位论文, 1996
    219 Weiping Liu, V. Giurgiutiu. Automation of data collection for PWAS-based structural health monitoring. SPIE International Symposia on Smart Structures & Materials. Mar. 6-10. 2005, San Diego, California, USA, 5765 (129): 1139~1147
    220 Buli Xu, V. Giurgiutiu. Efficient Electromechanical (E/M) Impedance Measuring Method for Active Sensor Structural Health Monitoring. SPIE International Symposia on Smart Structures & Materials. Mar. 6-10. 2005, San Diego, California, USA, 5765(30): 271~280
    221 Bin Lin, V. Giurgiutiu. Review of In-situ Fabrication Methods of Piezoelectric Wafer Active Sensor for Sensing and Actuation Applications. SPIE International Symposia on Smart Structures & Materials. Mar. 6-10. 2005, San Diego, California, USA, 5765(4): 1033~1044
    222 J. Doane, V. Giurgiutiu. An Initial Investigation of the Large Strain and Fatigue Loading Behavior of Piezoelectric Wafer Active Sensors. SPIE International Symposia on Smart Structures & Materials. Mar. 6-10. 2005, San Diego, California, USA, 5765(130): 1148~1159
    223 G. Song, H. Gu, Y. L. Mo, T. Hsu, H. Dhonde, R. R. H. Zhu. Health Monitoring of a Concrete Structure Using Piezoceramic Materials. SPIE International Symposia on Smart Structures & Materials. Mar. 6-10. 2005, San Diego, California, USA, 5765(13): 108~119
    224 V. Giurgiutiu, C. A. Rogers. Electromechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation Proc. Int. Workshop on Structural Health Monitoring (Stanford University, Stanford, USA), 1997: 433~444
    225 C. K. Soh, K. K. Tseng, S. Bhalla, A. Gupta. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures, 2000, (9): 533~542
    226 王余刚, 骆英, 柳祖亭. 全波形声发射技术用于混凝土材料损伤监测研究. 岩石力学与工程学报, 2005, 24(5): 803~807
    227 千力. 基于声发射技术的混凝土损伤评估. 华中科技大学硕士学位论文, 2005
    228 邵永波. 声发射技术在钢丝绳损伤检测中的应用研究. 东北大学博士学位论文, 1999
    229 纪洪广, 裴广文, 单晓云. 混凝土材料声发射技术研究综述. 应用声学, 2002, 21(4): 1~5
    230 陈兵, 吕子义, 周钟鸣. 水泥基复合材料微结构破坏声发射研究. 无损检测, 2004, 26(4): 184~187
    231 S. W. Hearn, C. K. Shield. Acoustic emission monitoring as a nondestructive testing technique in reinforced concrete. ACI Materials Journal. 1997, 94(6): 510~519
    232 D. Peterson. Life-Cycle Cost Analysis of Pavements. Synthesis of Highway Practice 122, NCHRP, 1985
    233 孙立军. 沥青路面结构行为理论. 上海: 同济大学出版社, 2003
    234 张慧丽, 黄晓明, 窦慧娟. 路面设计全寿命周期费用分析(LCCA)的基本原理研究. 交通科技与经济, 2006, (5): 8~10
    235 任勇. 基于生命周期费用的沥青路面预防性养护时机研究. 长安大学硕士学位论文, 2006
    236 刘黎萍, 孙立军. 沥青路面结构设计中的寿命周期费用分析. 山东交通学院学报, 2002, 10(2): 53~58
    237 王忠仁. 路面管理系统的车辆运营费模型. 北京建筑工程学院学报, 1992, (2): 62~69
    238 李珍玉. 可靠度理论在水泥混凝土路面工程中的应用和研究. 湖南大学硕士学位论文, 2005
    239 姚祖康. 路面管理系统. 北京: 人民交通出版社, 2001
    240 王忠仁, 姚祖康. 车辆轮胎损耗模型. 中国公路学报, 1993, 6(1): 10~11
    241 段力. 高等级公路路面管理辅助决策系统研究. 西南交通大学硕士学位论文, 2004
    242 胡群芳. 公路路面结构使用性能评价与预测研究. 郑州大学硕士学位论文, 2003
    243 郝大力. 路面性能的评价与分析研究. 长安大学博士学位论文, 2000
    244 曾胜. 路面性能评价与分析方法研究. 中南大学博士学位论文, 2003
    245 刘文. 水泥混凝土路面结构可靠性设计与评估研究. 郑州大学硕士学位论文, 2004
    246 孙立军, 刘喜平. 路面使用性能的标准衰变方程. 同济大学学报, 1995, 23(5): 512~518
    247 R. W. Day. Pavement deterioration: case study. International Journal of Rock Mechanics & Mining Sciences & Geomechanics, 1996, 5(33): 224
    248 潘玉利. 路面管理系统原理. 北京: 人民交通出版社, 1998
    249 中华人民共和国行业标准. 公路水泥混凝土路面养护技术规范(JTJ 073.1-2001). 北京: 人民交通出版社, 2001
    250 廖晓锋. 高速公路路面管理系统研究和设计. 长安大学硕士学位论文, 2006
    251 M. W. Sayers, T. D. Gillespie, C. A. V. Queiroz, The International Road Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements, Technical paper number 45, the World Bank, 1986
    252 刘喜平, 孙立军. 环境因素对路面使用性能的影响. 同济大学学报, 1996, 24(4): 398~404
    253 殷建军, 李晓明. 网级路面养护维修管理系统的设计. 西安交通大学学报, 2000, 20(1): 1~7
    254 谭国立. 高等级公路路面使用性能的预测方法. 中南汽车运输, 2000, (3):
    33~34
    255 W. Pterson. Road Deterioration and Maintenance Effects. The Johns Hopkins University Press, Baltimore and London, 1987: 246~300
    256 战高峰, 阮炯正, 董伟智. 水泥混凝土路面耐久性设计研究. 公路交通科技, 2000, 17(增刊): 10~12
    257 唐伯明, 姚祖康, 沈惠生, 等. 水泥混凝土路面结构参数的变异性分析. 中国公路学报, 1996, 9(4): 17~22
    258 谈至明, 姚祖康, 刘伯莹. 水泥混凝土路面结构可靠性设计方法. 公路, 2002, (8): 7~10
    259 中华人民共和国国家标准. 公路工程结构可靠度设计统一标准(GB/T 50283-1999). 北京: 中国计划出版社, 1999
    260 陈朝晖, 刘西拉. 关于结构耐久性终结标准设置方法的探索. 四川建筑科学研究, 1998, (1): 2~6
    261 李田, 刘西拉. 混凝土结构耐久性设计方法的研究. 建筑结构学报, 1998, 19(4): 40~45
    262 刘文, 李清富, 胡群芳. 水泥混凝土路面结构耐久性设计研究. 郑州大学学报(工学版), 2005, 26(4): 66~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700