用户名: 密码: 验证码:
ZnO基纳米结构的制备及其在染料敏化电池的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中我们采用热蒸发法制备垂直可控的ZnO纳米线阵列,通过简单的旋涂钛酸四丁酯水解溶液并进行退火处理,成功在ZnO纳米线阵列上生长TiO2壳层结构。利用扫描电子显微镜,高分辨透射电镜,X射线衍射以及光致发光谱等各种测试手段详细分析了ZnO纳米结构的各种形貌、结构和性能。主要得到以下结论:
     (1)通过对衬底进行各种预处理方式研究分析以及生长机理的探讨,我们得到了垂直性好的ZnO纳米线阵列。
     (2)通过对籽晶层薄膜和生长工艺参数的调节,我们实现了对ZnO纳米线阵列的可控生长。我们发现,籽晶层薄膜的取向性和晶粒大小直接影响纳米线垂直取向和直径大小,分析了各工艺参数变化影响纳米线整列形貌的原因。解释了籽晶层在生长过程中所起的作用。
     (3)我们首次实现了通过简单旋涂烧结法制备ZnO/TiO2的核壳结构,该方法简单方便,可复制性强,可以应用在其他材料的核壳结构生长。
     (4)包覆TiO2后的纳米线阵列制成的太阳能染料敏化电池性能对比纯ZnO纳米线阵列,我们取得了良好的光电转化效率~3%,转化效率增长50%,主要原因可以解释为包覆TiO2后,在TiO2和ZnO之间由于一定的电子浓度差,从而形成了自建电势,在一定程度上优化了电池的光电转化效率。
Here we synthesized the well vertical-orientated ZnO nanowire arrays by thermal evaporation. Besides, we realized the preparation of the ZnO/TiO2 core-shell nanostructure, using simple spin-coating the hydrolyzate and anneal. The morphology, structure and property of these samples were characterized in details through Scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and photoluminescence spectra. From the result of measurements, we have several conclusions as follows:
     (1) With the help of analyzing different preprocessing methods and the growth method, we realized the preparation of the well vertical-orientated ZnO nanowire arrays
     (2)We achieved the controllable growth of the ZnO nanowire array. If we changed the ZnO seed layer or the parameter of the growth, we can get different ZnO nanowire. We concluded that the seed layer played an important role on the diameter and the vertical-orientated direction of ZnO nanowire array, we also explained the mechanism.
     (3) We first used the sample spin-coating and anneal to realize the ZnO core shell nanostructure. This method was highly reproducible and can be applied to grow other core-shell materials.
     (4) TiO2 shell did an important role in improving the performance of the DSSCs. The overall conversion efficiency of the ZnO/TiO2 core shell cell can be attained to-3.0%, and it may be obviously increased by-50%compared with sample of only ZnO nanowire array sample. The most important reason may be attributed the potential field, which was formed by the different electron density in the two materials.
引文
[1]J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally and P. D. Yang. Single nanowire laser. Journal of Physics Chemical B,2001,105(46):11387-11390.
    [2]Z. L. Wang and J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312:241-246.
    [3]A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin. ZnO nanotube based dye sensitized solar cells. Nano Letters,2007,7(8):2182-2187.
    [4]J. Wang, X. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong. Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters,2006,88:233106.
    [5]C. M. Lieber and Z. L.Wang. Functional nanowires. MRS BULLETIN,2007,32(2):99-108.
    [6]L. Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. ADVANCED MATERIALS,2003,15(5):464-466.
    [7]X.Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen and T.H. Wang. Enhanced Optical and Sensing Properties of One-Step Synthesized Pt-ZnO Nano flowers. Journal of Physical Chemistry C,2010,114(43):18607-18611.
    [8]C.H. Bates, W.B. White, R. Roy, New high-pressure polymorph of zinc oxide. Science,1962, 137:993.
    [9]A. F. Kohan, G. Ceder and D. Morgen. First-principles study of native point defects in ZnO. Physics Review B 2000,61 (22):151019.
    [10]E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. Denbaars and J. S. Speck Journanl of Apply Physics 2000,82,5427.
    [11]L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. Journal of Physics Chemical,1984,80:4402-4409.
    [12]X. D. Wang, Y. Ding, C. J. Summers and Z. L. Wang, large scale synthesis of six nanometer wide ZnO nanobelts. Journal of Physics Chemical B,2004,108(26):8772-8777.
    [13]J. B. Cui and U. Gibson. Thermal modification of magnetism in cobalt-doped ZnO nanowires grown at low temperatures. Physical Review B,2006,74:045416.
    [14]Y.X. Du, F.G. Zeng. Aging effects on the optical properties of an individual Zn-rich ZnO nanowire. Journal of Alloys and Compounds,2011,509(4):1275-1278.
    [15]X. Liu, X. H. Wu, H. Cao and R. P. H. Chang. Growth mechanism and properties of ZnO nanorods synthesized by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2003,95(6),3141.
    [16]H.Y.Shih, T. T. Chen, Y. C. Chen, T. H. Lin, L. W. Chang and Y. F. Chen. Size dependent photoelastic effect in ZnO nanorods. Applied Physics Letters,2009,94:021908.
    [17]W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, H. J. Lee. Fabrication and electrical characteristic of high performance ZnO nanorod field effect transistors. Applied Physics Letters,2004, 85:5051-5054.
    [18]S Zuo, X Li, W. H Liu, YN He, Z. H Xiao, C. C Zhu. Field Emission Properties of the Dendritic Carbon Nanotubes Film Embedded with ZnO Quantum Dots. Journal of Nanomaterials, 2011:382068.
    [19]S.B Park, B.G Kim, J.Y Kim, T. H Jung, D. G Lim, J.H Park, J Park. Field-emission properties of patterned ZnO nanowires on 2.5D MEMS substrate. Applied Physics A-Materials Science & Processing,2011,102(1):169-172.
    [20]C J Lee, T J Lee, S C Lyu, YZhang, H Ruh, H J Lee. Field emission from well aligned Zinc oxide nanowires grown at low temperature. Applied Physics Letters,2002,81(19):3648-3650.
    [21]H. Huang y, Y. Zhang, L. Liu, Controlled synthesis and field emission properties of ZnO nano structures with different morphologies. Journal of Nanoscience and Nanotechnology,2006,6(3): 787-790.
    [22]Y H Huang, X D Bai, Y Zhang. Field emission properties of individual ZnO nanowires studied in situ by transimission electron microscopy. Journal of Physics Comdens Matter,2007,19: 176001.
    [23]Y H Huang, Y Zhang, Y S Gu. field emission of a single in doped ZnO nanowire. J Physics Chemical C,2007,111:9039-9043.
    [24]A Akyol, M Bayramoglu. Photocatalytic performance of ZnO coated tubular reactor Journal of Hazardous Materials 2010,180(1-3),466-473.
    [25]N Daneshvar, D Salari, A R Khataee. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alter native catalyst to TiO2. Journal of Photochemistry and photo biology A: Chemistry,2004,162:317-322.
    [26]J Nishio, M Tokumura, H T Znad. Photocatalutic degradation of azo dye with zinc oxide in an external UV light irradiation slurry photoreactor. Jounal of Photochemistry and Photobiology A:Chemistry,2004,162:317-322.
    [27]J L Yang, S J An, W Park. Photocatalysis using ZnO thin films and nanoneedles growm by metal organic chemical vapor deposition. Advanced Materials,2004,16:1661-1664.
    [28]M Law, L Greee, J C Johnson, R Saykally, P D Yang. Nanowire dye-sensitized solar cells. Nature Material 2005,4:454-459.
    [29]P D Yang, H Q Yan, S Mao. Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials,2002,12(2):322-331.
    [30]S Y Li, C Y Lee, T Y Tseng. Copper-catalyzed ZnO nanowires on silicon (100) grown by Vapor liquid solid process. Journal of Crystal Growth 2003,247(2-4):357-362.
    [31]JJ Qi, Y Zhang, Y Huang. Doping and defects in the formation of single crystal ZnO nanodisks. Applied Physics Letters,2006,89:252115.
    [32]Y Dai, Y Zhang, Q K Li. Synthesis and optical properties of tetrapod like Zinc oxide nanorods. Chemical Physics Letter,2002,358(1-2):82-86.
    [33]Y H Huang, Y Zhang, J He, Y Dai, Y S Gu, C Zhou. Fabrication and characterization of ZnO comb like nanostructures. Ceramics International,2006,32(5):561-566.
    [34]B Y Geng, G Z Wang, Z Jiang, T Xie, S H Sun, G W Meng, L D Zhang. Synthesis and optical properties of S doped ZnO nanowires. Applied Physics Letters,2003,82(26):4791-4793.
    [35]Z Y Fan, D W Wang, P C Chang, W Y Tseng, J G Lu, ZnO nanowire field effect transistor and oxygen sensing property. Applied Physics Letters,2004,85(24):5922-5925.
    [36]L Vayssieres, K Keis, S E Lindquist, A Hagfeldt. Purpose-Built Anisotropic Metal Oxide Material:3D Highly Oriented Microrod Array of ZnO. Journal of Physics Chemical B,2001 105(17):3350-3352.
    [37]L Vayssieres. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials,2003,15(5):463-467.
    [38]Q L Liao, Y Yang, L S Xia, Y Zhang, Y H Huang, Z Qin. High intensity, plasma-induced emission from large area ZnO nanorod array cathodes Physics of Plasmas 2008,15(11):114505.
    [39]X Feng, L Feng, M Jin, J Zhai, L Jiang, D B Zhu, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. Journal.of American. Chemistry. Socience.2004,126(1):61-64.
    [40]Y R Lin, S S Yang, S Y Tsai, H C Hsu, S T Wu,I C Chen, Visible photoluminescence of ultra-thin ZnO nanowire at room temperature. Crystal Growth Design,2006,6:1951-1955.
    [41]L E Geene, B D Yuhas, M Law, D Zitoun, P D Yang, Solution-Grown Zinc Oxide Nanowires. Inorganic Chemistry,2006,45(19):7534-7543.
    [42]X M Liu, Y C Zhou. Seed-mediated synthesis of uniform ZnO nanorods in the presence of polyethylene glycol. Journal of Crystal Growth,2004,270(2-4):527-534.
    [43]X X Liu, Z G Jin, S J Bu, J Zhao, K Yu, Preparation of ZnO nanorods and special lath-like crystals by aqueous chemical growth (ACG) method. Material Science and Engineering: B,2006,129(1-3):139-143.
    [44]Y Tak, K Yong. Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method. Journal of Physics Chemical B,2005,109(41):19262-19269.
    [45]H Zhang, D Yang, Y Ji, Y J Ji, X Y Ma, J Xu, D L Que. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process. Journal of Physics Chemical B,2004,108(13):3954-3958.
    [46]M Izaki, S. Watase, H. Takahashi. Room-temperature ultraviolet light-emitting zinc oxide micropatterns prepared by low-temperature electrodeposition and photoresist. Applied Physics Letters,2003,83(24):4930-4932.
    [47]J B Cui, U J Gibson. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays. Applied Physics Letters,2005,87(13):133108.
    [48]B Mari, M Mollara, A Mechkour. Optical properties of nanocolumnar ZnO crystals. Microeletronics Journal,2004,35:79-82.
    [49]Z Gui, J Liu, Z Wang. From muticomponent precursor to nanoparticle nanoribbons of ZnO. Journal of Physics Chemical B,2005,109(3):1112-1117.
    [50]H M Zhong, J B Wang, M Pan. Preparation and photoluminescence of ZnO nanorod. Materials Chemistry and Physics,2006,97(1-3):390-393.
    [51]R.S. Wagner, W.C. Ellis. Vapor liquid solid mechanism of single crystal growth. Apply Physics Letter,1964,4:89-91.
    [52]G W Sears. Growth mechanism for mercury whiskers. Acta Metallurgica,1955,3(4): 361-366.
    [53]张跃一维氧化锌纳米线材料北京科学出版社.2010,193-195.
    [54]Z L Wang. Functional oxide nanbelts:Materials, properties and potential applications in nansystems and biotechnology. Annual Review of Physical Chemistry,2004,55(1):159-201.
    [55]F C Frank. The influence of dislocation on crystal growth. Discussion of Faraday Socience, 1949,5:48-54
    [56]Z L Wang, X Y Kong, J M Zuo. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Physical Review Letter,2003,91:185502.
    [57]N Wang, Y H Tang, Y F Zhang. Si nanowires grown from silicon oxide. Chemical Physics Letters,1999,299:237-242.
    [58]H Q Le, S J Chus, Y W Koh, Growth of single crystal ZnO nanorods o GaN using an aqueous solution method. Applied Physics Letters,2005,87:101908.
    [59]RC Wang, CC Hsu, SJ Chen. The evolution of well-aligned amorphous carbon nanotubes and porous ZnO/C core-shell nanorod arrays for photosensor applications. NANOTECHNOLOGY, 2011,22(3):035704.
    [60]Hyun-Wook Ra, Dae Hyun Choi, Sang Hoon Kim, and Yeon-Ho Im, Formation and Characterization of ZnO/a-C Core-Shell Nanowires. Journal of Physics Chemistry:C 2009,113: 3512-3516.
    [61]J Q Hu, Q Li, X M Meng, C S Lee, S T Lee. Thermal reduction route to the fabrication of coaxial Zn/ZrO nanocables and ZnO nanotubes. Chemistry of Materials,2003,15(1):305-308.
    [62]L. E Greene, M L Benjamin, Y D uhas, P D Yang. ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells, Journal of Physics Chemistry C 2007,111(50):18451-18456.
    [63]J H Li, D X Zhao, X Q Meng, Z Z Zhang, J Y Zhang, D Z Shen, Y M Lu, X W Fan. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method. Journal of Physical Chemistry B,2006,110(30):14685-14687.
    [64]S F Si, C H Li, X Wang. Fe2O3/ZnO core-shell nanorods for gas sensors. Sensors and Actuators B-Chemical 2006,119(1):52-56.
    [65]Y Tak, K Yong, A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method. Journal of Physical Chemistry C,2008,112(1):74-79.
    [66]M Warnken, K Lazar, M Wark. Redox behaviour of SnO2 nanoparticles encapsulated in the pores of zeolites towards reductive gas atmospheres studied by in situ diffuse reflectance UV/Vis and Mossbauer spectroscopy. Physical Chemistry Chemical Physics,2001,3(10):1870-1876.
    [67]S.W. Choi, J.Y. Park, S. S. Kim. Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology,2009,20(46):465603.
    [68]S. K. Panda, A. Dev. Chaudhuri S Fabrication and luminescent properties of c-axis oriented ZnO-ZnS core-shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. JOURNAL OF PHYSICAL CHEMISTRY C,2007,111(13):5039-5043.
    [69]Y Liu, C R Corla, S Liang. Journal of Electrical Materials,2000,299(1):60.
    [70]Brian O'Regan, Michael Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991 353 737-740
    [71]K Hara, T Sato, R Katoh. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. Journal of Physical Chemistry B,2003,107(2):597-606.
    [72]ABF Martinson, JW Elam, JT Hupp, ZnO nanotube based dye-sensitized solar cells. Nano Letters,2007,7(8):2182-2187.
    [73]CY Jiang, X W Sun, G Q Lo. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Applied Physics Letters,2007,90(26):263501.
    [74]J B Han, F R Fan, C Xu, S S Lin, M Wei, X,Duan, Z L Wang. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology,2010, 21(40):405205.
    [75]Y G Wei, C Xu, S Xu, C Li, W Z Wu, Z L Wang. Planar Waveguide-Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells. NANO LETTERS,2010,10(6):2091-2096.
    [76]J X Mou, W G Zhang, J Fan, D H eng, W Chen. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. Journal of Alloy and Compounds.2011,509(3):951-965.
    [77]J Chung, J Myoung, J Oh, S Lim. Synthesis of a ZnS Shell on the ZnO Nanowire and Its Effect on the Nanowire-Based Dye-Sensitized Solar Cells. JOURNAL OF PHYSICAL CHEMISTRY C,2010,114(49):21360-21365.
    [78]Q Zhang, C. S Dandeneau, X Zhou, G Cao. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials,2009,21:4087-4108.
    [79]A Qurashi. M. F Hossain, M Faiz, N Tabet, M. W Alam. R N Koteeswara. Fabrication of well-aligned and dumbbell-shaped hexagonal ZnO nanorod arrays and their dye sensitized solar cell applications. Journal of Alloys and Compounds,2010,503:L40-L43.
    [80]Y. H. Tong, Y. C. Liu, C. L. Shao and R. X. Mu, Structural and optical properties of ZnO nanotower bundles. Apply Physics Letter,2006,88:123111.
    [81]J S Jie, G Z Wang, Y M Chen. Synthesis and optical of well aliged ZnO nanorod array on an updoped ZnO film. Applied Physics Letters,2005,86(3):03190.
    [82]S. A Studenikin, N. Golego, M Cocivera. Fabrication of green and orange photo luminescent, undoped ZnO films using spray pyrolysis. Jouranl of. Apply. Physics,1998,84:2287.
    [83]X. L Wu, G. G Siu, C. L Fu, H. C Ong, Apply. Physics. Letters,2001,78,2285.
    [84]K Park, Q. F Zhang, B. B Garcia, X. Y Zhou, Y-H Jeong, G. Z Cao. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells. Advanced. Materials,2010,22: 2329-2332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700