用户名: 密码: 验证码:
ZnO纳米材料的制备、物性及在染料敏化太阳能电池器件中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是透明、宽禁带半导体,具有高的激子束缚能,被广泛应用于蓝、紫外发光二极管、太阳能电池等器件上。但是要实现在光电子器件上的应用,有几个问题还待解决,一个是ZnO的p型掺杂;另一个是ZnO纳米结构的控制。本论文主要研究了三个方面的内容:
     (1)最近研究表明利用氮替代ZnO中的O是实现p型掺杂的最好方式,但实现N掺杂ZnO的p型转变仍旧很困难,另外,N掺杂ZnO样品的拉曼光谱中的275cm-1峰的起源一直有争议。为了探索以上两个问题,我们研究了N掺杂ZnO薄膜的光学、电学和磁性等性质。进而探索N掺杂ZnO薄膜中缺陷随氮气压的变化趋势以及275cm-1处拉曼峰的起源。扫描电镜(SEM)结果表明ZnO薄膜颗粒直径随氮气压的增加而减小。透射光谱结果表明ZnO的能带宽度随氮气压的增加而增加,这是由于N参入ZnO中,替代了O的位置造成的。PL光谱研究表明,在低的氮气压下,样品含有N替代O形成No受主缺陷和锌间隙(Zni)缺陷。当氮气压增高后,锌间隙缺陷逐渐消失,而No受主仍能观察到。同时,X射线光电子谱(XPS)表明,No受主缺陷的数目随氮气压的增加而减少。275cm-1处拉曼峰只有在氮气压低于30Pa时才出现,其强度随氮气压的增加而减弱,这一变化趋势与光致发光光谱以及X射线光电子谱中所对应的No缺陷的变化趋势一致。电学性质测量表明,N掺杂ZnO薄膜的电阻率、载流子浓度以及电子迁移率随氮气压变化很明显。另外,我们也研究了在不同氩气气压下制备的ZnO薄膜的拉曼光谱,结果进一步表明275cm-1处拉曼光谱与N掺杂有关。从实验结果分析来看,我们认为275cm-1处拉曼峰的起源是Zni-No复合缺陷。
     (2)我们首次利用电化学方法,改变电解液中甲醇的浓度实现了对ZnO形貌以及物理性质的控制。随着电解液中甲醇浓度的增加,ZnO的形貌从薄膜逐渐变成纳米片状和纳米颗粒堆积状。X射线衍射(XRD)表明,ZnO晶体生长方向随甲醇浓度的增加从(002)方向转变为(102)再转变为(101)方向。同时,ZnO的光学、电学性质也随着甲醇浓度的改变而改变。比如:Zn0的光学能带从3.31eV增加到3.53eV,电阻率增加,载流子浓度减少。XPS研究表明,随着电解液中甲醇浓度的增加,ZnO样品中的Zn(OH)2的含量也增加,因此,ZnO的光学、电学性质也随着改变。我们也研究了ZnO形貌随甲醇浓度改变而变化的机制。从XPS结果,我们发现随着电解液中甲醇浓度的增加,样品含有亚硝酸根和硝酸根离子,这种离子易吸附在ZnO的极性面(0001)面,限制这个方向的生长速度,其它方向的生长速度则相对增加,从而改变了ZnO的形貌。
     (3)纳米材料和纳米技术的发展为提高太阳能电池的效率以及降低成本提供了坚强的后盾和技术支持。最近,对太阳能电池进行了大量的研究并取得一定的成果。为了增加光电极的比表面积和吸收更多的光子,我们制备了三维多级结构的ZnO,比如纳米花、纳米灌木丛等纳米结构。我们对ZnO纳米花的形成机制以及其光学性质进行了详细的研究。在太阳能电池研究中,为了避免ZnO与燃料之间进行反应,我们利用原子层沉积(ALD)方法在ZnO表面沉积了一层很薄的TiO2。为了验证TiO2沉积在ZnO表面,我们采用了透射电镜和光致发光光谱技术。我们比较了以不同纳米结构的ZnO/TiO2核壳结构为基的染料敏化太阳能电池(DSSC)的光电转化性能。实验结果表明,以纳米灌木丛结构为基的DSSC的光电转化效率比纳米薄膜提高了近40%。研究表明,以纳米灌木丛结构为基的DSSC效能的提高主要是由于:首先,纳米灌木丛结构具有较大的比表面积,能吸附更多的染料,吸收更多的光子,进而能提高电池的光电流密度。其次,灌木丛结构具有纳米线结构,其结构具有直接的电子传输路径,从而提高电子的传输几率,大大降低电子的复合几率。最后,灌木丛结构由于其具有更强的光散射效应,因此能吸收更多的光子。
ZnO is a transparent semiconductor with a wide band gap of3.37eV and large exciton binding energy of60meV which can be utilized for blue and ultraviolet light emitting diodes, laser diodes, and solar cells. The critical setbacks to the fulfillment of utilizing ZnO in such devices are the absence of reliable and reproducible p-type ZnO and controlling the morphology of ZnO nanostructures. In this dissertation, the main discussion and conclusions on ZnO are as following:
     (1) Nitrogen substitution of lattice oxygen has been recognized as a potentially effective method. However, it remains difficult to achieve good quality p-type conduction in N-doped ZnO. Since the electrical properties of N-doped ZnO are sensitive to the sites of nitrogen in the host lattice, studying the influence of N-doping on the lattice dynamics of ZnO will help to better understand the doping mechanism. In addition, the origin of the additional Raman mode at275cm-1remains controversial to this point. An understanding of this vibration mode would help to clarify the N-doping mechanisms in ZnO. A systematic investigation on the optical properties of N-doped ZnO thin films was performed in order to understand the origin of an additional Raman mode at275cm-1. This Raman peak was observable only at N2pressures lower than30Pa during PLD deposition. Its intensity decreased with an increase of N2pressures and eventually vanished at pressures above30Pa. N substitution of O (No) was identified by photoluminescence and x-ray photoelectron spectroscopy and correlated well with the Raman intensity. The electrical measurements showed significant changes in resistivity, charge carrier concentration, and mobility due to the presence of N acceptors. Investigations on undoped ZnO films grown in Ar without N2further confirm that N doping plays a key role in the Raman scattering. The experimental data indicate that the Raman mode originates from NO related complexes, likely in the form of Zni-No. These investigations help to understand the doping mechanisms and underlying physics of the additional Raman mode in the ZnO films.
     (2) A unique approach has been developed to deposit ZnO with tunable morphology and physical properties by introducing methanol in an electrochemical process. As the methanol increases in the aqueous electrolyte, the growth mode of ZnO transforms from thin films to nanostructures, corresponding to crystalline orientation change from (002), to (102), and then to (101). These structural changes are accompanied by significant variations of optical and electrical properties, including the widening of band gap from3.31eV to3.53eV, increase of resistivity, and decrease of charge carrier concentration. Compositional analysis indicates that the samples grown at higher methanol concentrations contain Zn(OH)2which is likely responsible for the band gap change. The growth mechanism is discussed in terms of the impact of methanol on the chemical reaction, i.e. the change of growth mode results from the adsorption of nitrate ions on the polar surface of ZnO. This finding helps to grow specific ZnO nanostructures with desired morphologies and properties for device applications.
     (3) The advancement of nanomaterials and nanotechnology has provided huge potential to improve solar cell performance with an expectation of reducing the cost and improving the cell efficiency. Significant research has been done on nanorod based solar cells in recent years. In order to increase surface area and improve the light trapping effect for cell efficiency enhancement,3-D hierarchical ZnO nanostructures and ZnO/TiO2core-shell structures including nanorods, nanosheets, and nanoshrubs have been developed by using a solution based, two-step deposition process. The extremely large surface area is expected to improve dye loading and charge injection along with the improved light trapping, all of which helps to increase the energy conversion efficiency. Dye-sensitized solar cells were demonstrated based on the core-shell hierarchical nanostructures. The efficiency of the nanoshrub structures was increased by40%. This improved performance is attributed to the larger surface area and light trapping effects in nanoshrub core-shell structures. First, the enhanced photon absorption associated with the augmented surface area results in increased dye loading and light absorption, leading to an increase in JSC. Second, the network of crystalline ZnO nanorods and their direct contact with the electrode increase the efficiency of electron collection, which also helps to reduce charge recombination at the same time. Finally, the hierarchical nanostructures increase the light-harvesting efficiency by light scattering enhancement and trapping.
引文
[1]叶志镇,吕建国,张银珠,何海平.氧化锌半导体材料掺杂技术与应用[M].浙江大学出版社.2008
    [2]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.2005,98,041301
    [3]C. H. Bates, W. B. White, and R. Roy. New high-pressure poly-morph of zinc oxide [J]. Science 1962,137,993.
    [4]P. Schroer, P. Kruger, and J. Pollmann, First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS [J]. Phys. Rev. B 1993,47,6971.
    [5]N. Ashkenov, B. N. Mbenkum, C. Bundesmann. et al., Infrared dielectric functions and phonon modes of high-quality ZnO films [J]. J. Appl. Phys.2003,93, 126.
    [6]M. Koyano, P. QuocBao, L. T. ThanhBinh, L. HongHa, N. NgocLong, and S. Katayama, Photoluminescence and Raman Spectra of ZnO Thin Films by Charged Liquid Cluster Beam Technique [J]. Phys. Status Solidi A 2002,193,125.
    [7]Z. L. Wang, Nanostructures of Zinc Oxide [J]. Mater. Today 2004,7,26.
    [8]Z. W. Pan, Z. R. Dai, and Z. L. Wang, Nanobelts of semiconducting oxides [J].Science 2001,291,1947.
    [9]Z. L. Wang, Zinc Oxide Nanostructures:Growth, Properties and Applications [J]. J. Phys.:Condens. Matter 2004,16, R829.
    [10]Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, ZnO nanowire growth and devices [J]. Mater. Sci. Eng., R.2004, 47,1.
    [11]M. H. Huang Samuel Mao, Henning Feick.et al., Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science 2001,292,1897.
    [12]Chang Shi Lao, Pu Xian Gao, Ru Sen Yang, Yue Zhang, Ying Dai, Zhong L. Wang. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface [J]. Chemical Physics Letters 2005,417,359.
    [13]Yi Xi, Jinhui Song, Sheng Xu, Rusen Yang, Zhiyuan Gao, Chenguo Hu and Zhong Lin Wang. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators [J]. J. Mater. Chem.,2009,19,9260.
    [14]Zhao F, Zheng JG, Yang X, Li X, Wang J, Zhao F, Wong KS, Liang C, Wu M. Complex ZnO nanotree arrays with tunable top, stem and branch structures [J]. Nanoscale.2010,2,1674-83.
    [15]Pu Xian Gao and Zhong Lin Wang. High-Yield Synthesis of Single-Crystal Nanosprings of ZnO[J]. Small 2005,1,945.
    [16]Jun Zhang, Yongdong Yang, Baolong Xu, Feihong Jiang, Jianping Li. Shape-controlled synthesis of ZnO nano-and micro-structures [J]. Journal of Crystal Growth 2005,280,509.
    [17]Xiang Yang Kong, Yong Ding, Rusen Yang and Zhong Lin Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts [J] Science,2005, 303,1348.
    [18]Aleksandra B. Djurisic, Wallace C. H. Choy, Vellaisamy Arul Lenus Roy, Yu Hang Leung, Chung Yin Kwong, Kok Wai Cheah, Tumkur Krishnaswamy Gundu Rao, Wai Kin Chan, Hsian Fei Lui, and Charles Surya. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures [J] Adv. Funct. Mater. 2004,14,856.
    [19]Zhong Lin Wang. ZnO nanowire and nanobelt platform for nanotechnology [J]. Materials Science and Engineering:R:Reports.2009,64,33.
    [20]Keyue Wu, Qingqing Fang, Weina Wang, M. Allan Thomas, and Jingbiao Cui. On the origin of an additional Raman mode at 275 cm-1 in N-doped ZnO thin films [J]. J. Appl. Phys.2012,111,063530.
    [21]Cheol Hyoun Ahn, Young Yi Kim, Dong Chan Kim, Sanjay Kumar Mohanta, and Hyung Koun Cho. A comparative analysis of deep level emission in ZnO layers deposited by various methods [J]. J. Appl. Phys.2009,105,013502.
    [22]T. Minami, H. Sato, H. Nanto, and S. Takata, Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering [J]. Jpn. J. Appl. Phys.1985, 24,L781.
    [23]J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan. High field electron transport properties of bulk ZnO [J]. J. Appl. Phys.1991, 86,6864.
    [24]A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle. First-principles study of native point defects in ZnO [J]. Phys. Rev. B 2000,61,15019.
    [25]C. G. Van de Walle. Defect analysis and engineering in ZnO [J]. Physica B 2001, 308-310,899.
    [26]H. Kato, M. Sano, K. Miyamoto, and T. Yao. Growth and characterization of Ga-doped ZnO layers on_a-plane sapphire substrates grown by molecular beam epitaxy [J]. J. Cryst. Growth 2002,237-239,538.
    [27]O. F. Schirmer and D. Zwingel. The yellow luminescence of zinc oxide [J]. Solid State Commun.1970,8,1559.
    [28]O. F. Schirmer. The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide [J]. J. Phys. Chem. Solids 1968,29,1407.
    [29]A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin. Preparation and characterization of Li-doped ZnO films [J]. J. Vac. Sci. Technol. A 1991,9,286.
    [30]Y. Kanai. Admittance Spectroscopy of ZnO Crystals Containing Ag [J]. Jpn. J. Appl. Phys., Part 1 1991,30,2021.
    [31]C. H. Park, S. B. Zhang, and S.-H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective [J]. Phys. Rev. B 2002,66,073202.
    [32]K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki. Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE [J]. J. Cryst. Growth 2000,209,526.
    [33]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett.2002,81,1830.
    [34]Jinzhong Wang, Vincent Sallet, Francois Jomard, Ana M. Botelho do Rego, Elangovan Elamurugu, Rodrigo Martins, Elvira Fortunato. Influence of the reactive N2 gas flow on the properties of rf-sputtered ZnO thin films [J]. Thin Solid Films 2007,515,8780.
    [35]Xin-Li Gu, Hitoshi Tabata, Tomoji Kawai. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source [J]. Journal of Crystal Growth 2001,223,135.
    [36]Tianpeng Yang, Jiming Bian, Hongwei Liang, Jingchang Sun, Xinsheng Wang, Weifeng Liu, Yuchun Chang, Guotong Du. High quality p-type ZnO films grown by low pressure plasma-assisted MOCVD with N2O rf plasma doping source [J]. journal of materials processing technology,2008,204,481.
    [37]W. Liu, S.L. Gu, J.D. Ye, S.M. Zhu, Y.X. Wu, Z.P. Shan, R. Zhang, Y.D. Zheng, S.F. Choy, G.Q. Lo, X.W. Sun. High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO [J] Journal of Crystal Growth 2008,310,3448.
    [38]Zhi-Zhen Ye, Jian-Guo Lu, Han-Hong Chen, Yin-Zhu Zhang, Lei Wang, Bing-Hui Zhao, Jing-Yun Huang. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering [J]. Journal of Crystal Growth 2003,253,258.
    [39]K. Minegishi, Y. Kaiwai, Y. Kikuchi, K. Yano, M. Kasuga and A. Shimizu. Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition [J]. Jpn. J. Appl. Phys.1997,36, L1453.
    [40]Yinzhu Zhang, Jianguo Lu, Lanlan Chen, Zhizhen Ye. Properties of N-doped ZnO thin films in annealing process [J] Solid State Communications 2007,143,562.
    [41]Chongmu LEE, Jongmin LIM, Suyoung PARK, Hyounwoo KIM. Growth of nitrogen-doped p-type ZnO thin films prepared by atomic layer epitaxy [J]. RARE METALS.2006,25,110.
    [42]Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. Dye-Sensitized Solar Cells [J]. Chem.Rev.2010,110,6595.
    [43]Brian O'Regan and Michael Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353,737.
    [44]M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphrybaker, E.Mueller, P.Liska, N.Vlachopoulos, M.Graetzel. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc. 1993,115,6382.
    [45]M. Law, L. E. Greene, J. C Johnson, R. Saykally and P. D. Yang. Nanowire dye-sensitized solar cells [J]. Nature,2005,4,455.
    [46]A. B. F. Martinson, J. M. Elam, J. T. Hupp and M. J. Pellin. ZnO Nanotube Based Dye-Sensitized Solar Cells [J]. Nano Lett.2007,7,2183.
    [47]Olga Dulub, Lynn A. Boatner, Ulrike Diebold. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001□)-O, (10 1□ 0), and (112□ 0) surfaces [J]. Surface Science 2002,519,201.
    [48]E. Hosono, S. Fujihara, I. Honma and H. Zhou. The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells [J]. Adv. Mater.2005,17,2091.
    [49]Xiangyan Wang, Zhipeng Tian, Tao Yu, Hanmin Tian, Jiyuan Zhang, Shikui Yuan, Xiaobo Zhang, Zhaosheng Li, and Zhigang Zou. Effective electron collection in highly (110)-oriented ZnO porous nanosheet framework photoanode [J]. Nanotechnology.2010,21,065703.
    [50]H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai and W. F. Hsieh. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications [J]. J. Phys. Chem. C,2008,112,16359.
    [51]S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell [J]. Nano Lett.2011, 11,666.
    [52]F. Xu, M. Dai, Y. N. Lu and L. T. Sun. Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C 2010,114,2776.
    [53]J. H. Qiu, M. Guo and X. D. Wang. Electrodeposition of Hierarchical ZnO Nanorod-Nanosheet Structures and Their Applications in Dye-Sensitized Solar Cells [J]. ACS Appl. Mater. Interfaces,2011,3,2358.
    [54]Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou, and G. Z. Cao. ZnO Nanostructures for Dye-Sensitized Solar Cells [J]. Adv. Mater.2009,21,4087.
    [55]Y. J. Shin, J. H. Lee, J. H. Park, N. G. Park. [J] Chem Lett.2007,36,1506.
    [56]Zi Qin, Yunhua Huang, Qingliang Liao, Zheng Zhang, Xiaohui Zhang, Yue Zhang. Stability improvement of the ZnO nanowire array electrode modified with Al2O3 and SiO2 for dye-sensitized solar cells [J] Materials Letters 2012,70,177.
    [57]Matt Law,Lori E. Greene, Aleksandra Radenovic, Tevye Kuykendall, Jan Liphardt, and Peidong Yang. ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B 2006,110,22652.
    [58]K. Park, Q. F. Zhang, B. B. Garcia, X. Y. Zhou, Y. H. Jeong and G. Z. Cao. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells [J]. Adv. Mater.2010,22,2329.
    [1]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices [J] J. Appl.Phys.2005,98,041301.
    [2]M. D. McCluskey, S. J. Jokela, Defects in ZnO [J]. J. Appl. Phys.2009,106, 071101.
    [3]S. Limpijumnong, X. Li, S. H. Wei, S. B. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2:Their vibrational frequencies and effects on p doping of ZnO [J]. Appl. Phys. Lett.2005,86,211910.
    [4]M. S. Oh, D. K. Hwang, Y. S. Choi, J. W. Kang, S. J. Park, C. S. Hwang, K. I. Cho, Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering [J]. Appl. Phys. Lett.2008,93,111905.
    [5]J. B. Cui, M. A. Thomas, Y. C. Soo, H. Kandel, T. P. Chen, Effects of nitrogen on the growth and optical properties of ZnO thin films grown by pulsed laser deposition [J]. J. Phys. D:Appl. Phys.2009,42,155407.
    [6]F. Friedrich, M. A. Gluba, N. H. Nickel, Identification of nitrogen and zinc related vibrational modes in ZnO [J]. Appl. Phys. Lett.2009,95,141903.
    [7]G. Kaczmarczyk, A. Kaschner, A. Hoffmann, C. Thomsen, Impurity-induced modes of Mg, As, Si, and C in hexagonal and cubic GaN [J]. Phys. Rev. B,2000,61, 5353.
    [8]A. Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, B. K. Meyer, Nitrogen-related local vibrational modes in ZnO:N [J]. Appl. Phys. Lett.2002,80,1909.
    [9]X. Q. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R. P. H. Chang, Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition [J] J. Cryst. Growth 2001,226,123.
    [10]F. J. Manjon, B. Mari, J. Serrano, A. H. Romero, Silent Raman modes in zinc oxide and related nitrides [J]. J. Appl. Phys.2005,97,053516.
    [11]J. B. Wang, H. M. Zhong, Z. F. Li, W. Lu, Raman study of N+-implanted ZnO [J]. Appl. Phys. Lett.2006,88,101913.
    [12]L. Artus, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, M. Callahan, Isotopic study of the nitrogen-related modes in N+-implanted ZnO [J]. Appl. Phys. Lett.2007,90,181911.
    [13]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J] Appl. Phys. Lett.2003,83,1974.
    [14]K. Y. Wu, Q. Q. Fang, W. N. Wang, C. Zhou, W. J. Huang, J. G. Li, Q. R. Lv, Y. M. Liu, Q. P. Zhang, H. M. Zhang, Influence of nitrogen on the defects and magnetism of ZnO:N thin films [J]. J. Appl. Phys.2010,108,063530.
    [15]J. G. Yu, H. Z. Xing, Q. Zhao, H. B. Mao, Y. Shen, J. Q. Wang, Z. S. Lai, Z. Q. Zhu, The origin of additional modes in Raman spectra of N-implanted ZnO [J]. Solid State Commun.2006,138,502.
    [16]C. Z. Wang, Z. Chen, H. Q. Hua, D. Zhang, Effect of the oxygen pressure on the microstructure and optical properties of ZnO films prepared by laser molecular beam epitaxy [J]. Physica B 2009,404,4075.
    [17]J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, Y. D. Ye, Raman study of lattice dynamic behaviors in phosphorus-doped ZnO films [J]. Appl. Phys. Lett.2006,88,101905.
    [18]H. E. Nian, S. H. Hahn, K. K. Koo, E. W. Shin, E. J. Kim, Sol-gel derived N-doped ZnO thin films [J]. Mater. Lett.2009,63,2246.
    [19]M. A. Thomas, J. B. Cui, Electrochemical Route to p-Type Doping of ZnO Nanowires [J]. J. Phys. Chem. Lett.2010,1,1090.
    [20]H. B. Zeng, W. P. Cai, J. L. Hu, G. T. Duan, P. S. Liu, Y. Li, Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation [J]. Appl. Phys. Lett.2006,88,171910.
    [21]S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, C. W. Litton, Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal [J]. J. Appl. Phys.2003,93,756.
    [22]B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett. 2003,83,1635.
    [23]A. Teke, U. Ozgiir, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, Excitonic fine structure and recombination dynamics in single-crystalline ZnO [J]. Phys. Rev. B 2004,70,195207.
    [24]J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann, M. Lerch, U. Haboeck, A. Hoffmann, C. Thomsen, Zn interstitial related donors in ammonia-treated ZnO powders [J]. Phys. Rev. B 2007,76,195203.
    [25]M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, R. Sauer, Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide [J]. Phys. Rev. B 2008,77,125215.
    [26]D. Tainoff, B. Masanelli, P. Melinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, P. Martin, Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO [J]. Phys. Rev. B 2010,81,115304.
    [27]M.A. Thomas, J. B. Cui, Investigations of acceptor related photo luminescence from electrodeposited Ag-doped ZnO [J]. J. Appl. Phys.2009,105,093533.
    [28]Y. R. Ryu, T. S. Lee, H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett.2003,83,87.
    [29]A. Travlos, N. Boukos, C. Chandrinou, H. S. Kwack, L. S. Dang, Zinc and oxygen vacancies in ZnO nanorods [J]. J. Appl. Phys.2009,106,104307.
    [30]S. Zhong, W. Y. Zhang, X. P. Wu, B. X. Lin, Z. X. Fu, Effect of Annealing Temperature on Structural and Optical Properties of N-Doped ZnO Films [J] Chin. Phys. Lett.2008,25,2585.
    [31]M. Ding, Zhao, B. Yao, B. H. Li, Z. Z. Zhang, D. Z. Shen, The p-type ZnO film realized by a hydrothermal treatment method [J]. Appl. Phys. Lett.2011,98,062102.
    [32]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett.2002,81,1830.
    [33]P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, X. W. Fan, Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films [J]. Appl. Surf. Sci.2008,254,2900.
    [34]A. Zuener, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hofmann, U. Haboeck, M. Strassburg, M. Dworzak, Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO [J] Phys. Status Solidi B 2002,234, R7.
    [35]M. Ding, D. X. Zhao, B. Yao, B. H. Li, Z. Z. Zhang, D. Z. Shen, The p-type ZnO film realized by a hydrothermal treatment method [J]. Appl. Phys. Lett.2011,98, 062102.
    [36]L. J. Wang, N. C. Giles, Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy [J]. Appl. Phys. Lett. 2004,84,3049.
    [37]K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer, Donor-acceptor pair transitions in ZnO substrate material [J]. Physica B 2002,1308,945.
    [38]G. Xiong, K. B. Ucer, R. T. Williams, J. Lee, D. Bhattacharyya, J. Metson, P. Evans, Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal [J]. J. Appl. Phys.2005,97,043528.
    [39]D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, W. Harsch, G. Cantwell, Optical properties of ZnO crystals containing internal strains [J]. J. Lumin. 1999,82,173.
    [40]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straβburg, M. Dworzak, U. Haboeck, A. V. Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO [J]. Phys. Status Solidi B 2004,241,231.
    [41]D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, K. Nordlund, Evidence for Native-Defect Donors in n-Type ZnO [J]. Phys. Rev. Lett. 2005,95,225502.
    [42]A. Janotti, C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor [J]. Rep. Prog. Phys.2009,72,126501.
    [43]E. C. Lee, Y. S. Kim, Y. G. Jin, K. J. Chang, Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B 2001,64,085120.
    [44]A. Janotti, C. G. Van de Walle, New insights into the role of native point defects in ZnO [J]. J. Cryst. Growth 2006,287,58.
    [45]A. Janotti, C. G. Van deWalle, Temperature dependence of Raman scattering in ZnO [J]. Phys. Rev. B 2007,75,165202.
    [46]Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, H. H. Hng, B. K. Tay, Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films [J]. J. Cryst. Growth 2003,252,265.
    [47]N. Hasuike, H. Fukumura, H. Harima, K. Kisoda, H. Matsui, H. Saeki, H. Tabata, Raman scattering studies on ZnO doped with Ga and N (codoping), and magnetic impurities [J]. J. Phys.:Condens. Matter 2004,16, S5807.
    [48]J. Serrano, F. J. Manjon, A. H. Romero, A. Ivanov, M. Cardona, R. Lauck, A. Bosak, M. Krisch, Phonon dispersion relations of zinc oxide:Inelastic neutron scattering and ab initiocalculations [J]. Phys. Rev. B 2010,81,174304.
    [49]J. Serrano, A. H. Romero, F. J. Manjon, R. Lauck, M. Cardona, A. Rubio, Pressure dependence of the lattice dynamics of ZnO:An ab initio approach [J]. Phys. Rev. B 2004,69,094306.
    [50]S. J. Lim, S. J. Kwon, H. Kim, High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO [J]. Appl. Phys. Lett.2007, 91,183517.
    [51]X. Y. Yang, A. Wolcott, G. M. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting [J]. Nano. Lett.2009,9,2331.
    [52]P. Erhart, K. Albe, Diffusion of zinc vacancies and interstitials in zinc oxide [J]. Appl. Phys. Lett.2006,88,201918.
    [53]A. Escobedo-Morales, U. Pal, Curr. Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures [J]. Appl. Phys.2011,11,525.
    [54]X. Zhang, Y. H. Cheng, L. Y. Li, X. Zuo, H. Liu, G. H. Wen, L. Li, R. K. Zheng, and S. P. Ringer, Evidence for high-Tc ferromagnetism in Znx(ZnO)1-x granular films mediated by native point defects [J]. Phys. Rev. B 2009,80,174427.
    [55]C. Lee, S. Y. Park, J. Lim, and H. W. Kim, Growth of p-type ZnO thin films by using an atomic layer epitaxy technique and NH3 as a doping source [J]. Mater. Lett. 2007,61,2495.
    [56]C.-F. Yu, S.-H. Chen, S.-J. Sun, and H. Chou, Influence of the substrate temperature on the electrical and magnetic properties of ZnO:N thin films grown by pulse laser deposition [J]. J. Phys. D:Appl. Phys.2009,42,035001.
    [1]S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, Vertical ZnO nanorod/Si contact light-emitting diode [J]. Appl. Phys. Lett.,2011,98,093110.
    [2]Kewei Liu, Makoto Sakurai, Masakazu Aono, Pinecone-shaped ZnO nanostructures:Growth, optical and gas sensor properties [J]. Sen. Actuators B,2011, 157,98-102.
    [3]K. Zhong, J. Xu, J. Su and Y. L. Chen, Upconversion luminescence from Er-N codoped of ZnO nanowires prepared by ion implantation method [J] Appl. Surf. Sci., 2011,257,3495.
    [4]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nanowire dye-sensitized solar cells [J]. Nature Mater.,2005,4,455.
    [5]Y. F. Gao, M. Nagai, Y. Masuda, F. Sato and K. Koumoto, Electrochemical deposition of ZnO film and its photoluminescence properties [J]. J. Cryst. Growth., 2006,286,445.
    [6]J. Y. Lao, J. Y. Huang, D. Banerjee. et. al. Novel ZnO Nanostructures [J]. Proc. of SPIE.2003,5219,99
    [7]Y. Li, G. W. Meng and L. D. Zhang, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl. Phys. Lett.2000,76,2011.
    [8]Y. P. Fang, X. G. Wen, S. H. Yang, Q. Pang, L. Ding, J. N. Wang and W. K. Ge, Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates [J]. J. Sol-Gel Sci. Tech.2005,36,227.
    [9]H. W. Suh, G. Y. Kim, Y. S. Jung and W. K. Choi, Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis [J]. J. Appl. Phys.2005, 97,044305.
    [10]J. Dai, C. X. Xu, L. X. Sun, Z. H. Chen, J. Y. Guo and Z. H. Li, Multiphoton absorption-induced optical whispering-gallery modes in ZnO microcavities at room temperature[J]. J. Phys. D:Appl. Phys.2011,44,025404.
    [11]R. J. Mendelsberg, M. W. Allen, S. M. Durbin and R. J. Reeves, Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO [J] Phys. Rev. B,2011,83,205202.
    [12]P. C. Chang, Z. Y. Fan, D. W. Wang, W. Y. Tseng, W. A. Chiou, J. Hong and J. G. Lu, [J] Chem. Mater.2004,16,5133-5137.
    [13]J. B. Cui and U. J. Gibson, Enhanced Nucleation, Growth Rate, and Dopant Incorporation in ZnO Nanowires [J]. J. Phys. Chem. B 2005,109,22074.
    [14]A. I. Inamdar, S. H. Mujawar, S. R. Barman, P. N. Bhosale and P. S. Patil, The effect of bath temperature on the electrodeposition of zinc oxide thin films via an acetate medium [J]. Semicond. Sci. Technol.,2008,23,085013-085018.
    [15]T. Pauporte, E. Jouanno, F. Pelle, B. Viana and P. Aschehoug, Key Growth Parameters for the Electrodeposition of ZnO Films with an Intense UV-Light Emission at Room Temperature [J]. J. Phys. Chem. C 2009,113,10422-10431.
    [16]S. N. Sun, B. Mari, H. L. Wu, M. Mollar and H. N. Cui, Morphology and photoluminescence study of electrodeposited ZnO films [J] Appl. Surf. Sci.2010,257, 985-989.
    [17]J. B. Cui, Y. C. Soo, and T. P. Chen and U.J. Gibson, Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowire Arrays [J]. J. Phys. Chem. C 2008, 112,4475-4479.
    [18]T. Pauporte and D. Lincot, Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition I. Deposition in Perchlorate Medium [J]. J. Electrochem. Soc.2001, 148,C310.
    [19]H. Cui, M. Mollar and B. Mari, Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties [J]. Opt. Mater.2011,33,327.
    (20)T. Pauporte and D. Lincot, Electrodeposition of semiconductors for optoelectronic devices:results on zinc oxide [J] Electrochim. Acta 2000,45,3345.
    [21]Z. G. Chen, Y. W. Tang, L. S. Zhang and L. J. Luo, Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells [J] Electrochim. Acta 2006,51,5870.
    [22]J. A. von Windheim, H. Wynands, and M. Cocivera, Removal and Preparation of Electrodeposited Semiconductors for High Impedance Hall Effect Measurements [J] J. Electrochem. Soc.1991,138,3435.
    [23]K. P. Musselman, T. Gershon, L. S. Mende and J. L. M. Driscoll, Macroscopically uniform electrodeposited ZnO films on conducting glass by surface tension modification and consequent demonstration of significantly improved p-n heterojunctions [J]. Electrochim. Acta 2011,56,3758.
    [24]D. Pradhan and K. T. Leung, Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition [J]. Langmuir 2008,24,9707.
    [25]Y.F. Gao and M. Nagai, Morphology Evolution of ZnO Thin Films from Aqueous Solutions and Their Application to Solar Cells [J]. Langmuir 2006,22, 3936.
    [26]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, A comprehensive review of ZnO materials and devices [J] J. Appl. Phys.2005,98,041301.
    [27]M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films [J] Appl. Surf. Sci.2000,158,134.
    [28]B. Liu and H. C. Zeng, Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process [J]. J. Am. Chem. Soc.2004,126,16744.
    [29]D. Pradhan and K. T. Leung, Vertical Growth of Two-Dimensional Zinc Oxide Nanostructures on ITO-Coated Glass:Effects of Deposition Temperature and Deposition Time [J]. J. Phys. Chem. C 2008,112,1357.
    [30]J. Rousset, E. Saucedo and D. Linco, Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications [J]. Chem. Mater.2009,21,534.
    [31]M. S. Ivan, F. S. Francisco, D. Benjamin, B. Juan, T. Z. Ramon, E. Jamil and L. C. Claude, Determination of carrier density of ZnO nanowires by electrochemical techniques [J] Appl. Phys. Lett.2006,89,203117.
    [32]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y.P. Zhao and J. Z. Zhang, Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting [J] Adv. Funct. Mater.2009,19,1849.
    [33]J. Weng, Y. J. Zhang, G. Q. Han, Y. Zhang, L. Xua, J. Xu, X. F. Huang and K. J. Chen, Electrochemical deposition and characterization of wide band semiconductor ZnO thin film [J]. Thin Solid Film,2005,478,25.
    [34]L. F. Xu, Y. Guo, Q. Liao, J. P. Zhang and D. S. Xu, Morphological Control of ZnO Nanostructures by Electrodeposition [J]. J. Phys. Chem. B 2005,109,13519.
    [35]B. Q. Yang, P. X. Feng, A. Kumarl, R. S. Katiyarland M. Achermann, Structural and optical properties of N-doped ZnO nanorod arrays [J]. J. Phys. D:Appl. Phys.2009,42,195402.
    [36]J. C. Fuggle and D. Menzel, XPS, UPS and XAES studies of the adsorption of nitrogen, oxygen, and nitrogen oxides on W(110) at 300 and 100 K:I. Adsorption of N2, N2O and NO2N2O4 [J]. Surf. Sci.1979,79,1.
    [37]J. Torres, C. C. Perry, S. J. Bransfield and A. H. Fairbrother, Low-Temperature Oxidation of Nitrided Iron Surfaces [J]. J. Phys. Chem. B 2003,107,5558.
    [38]F. Xu, Y. N. Lu, Y. Xie and Y. F. Liu, Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution [J] Mater. Des. 2009,30,1704.
    [39]Z. F. Liu, Z. G. Jin, J. J. Qiu, X. X. Liu,W. B. Wu and W. Li. Preparation and characteristics of ordered porous ZnO films by a electrodeposition method using PS array templates [J]. Semicond. Sci. Technol.2006,21,60.
    [1]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp. Ordered semiconductor ZnO nanowire arrays and their photo luminescence properties [J]. Appl. Phys. Lett.2000, 76,2011.
    [2]W.□I. Park, G.-C. Yi. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN [J]. Adv. Mater.2004,16,87.
    [3]Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu. Optical properties of the ZnO nanotubes synthesized via vapor phase growth [J]. Appl. Phys. Lett.2003,83,1689.
    [4]Zhihong Jing, Jinhua Zhan. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates [J]. Adv. Mater.2008,20,4547.
    [5]M. Mo, J.□C. Yu, L. Zhang, S.-K.□A. Li. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J]. Adv. Mater.2005, 17,756.
    [6]J. B. Baxter, E. S. Aydil, [J] Sol. Energ. Mat. Sol. C 2006,90,607.
    [7]C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang. [J] Appl. Phys. Lett.2007,90,263501.
    [8]W. Chen, H. F. Zhang, I. M. Hsing, S. H. Yang, [J] Electrochem. Commun.2009, 11,1057.
    [9]Lori E. Greene, Matt Law, Joshua Goldberger, Franklin Kim, Justin C. Johnson, Yanfeng Zhang, Richard J. Saykally, Peidong Yang. [J] Angewandte Chemie International Edition.2003,42,3031.
    [10]J. B. Cui and U. J. Gibson. [J] Appl. Phys. Lett.2005,87,133108.
    [11]H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai and W. F. Hsieh, Formation of branched ZnO nanowires from solvothermal method and dye sensitized solar cells applications. [J] J. Phys. Chem. C,2008,112,16359.
    [12]S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos and H. J. Sung. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell [J] Nano Lett.,2011,11,666.
    [13]F. Xu, M. Dai, Y. N. Lu and L. T. Sun. Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. [J] J. Phys. Chem. C,2010,114,2776.
    [14]K. M. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, Defects in ZnO Nanorods Prepared by a Hydrothermal Method [J]. J. Phys. Chem. B 2006,110, 20865.
    [15]A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, Defect emissions in ZnO nanostructures [J]. Nanotechnology 2007,18,095702.
    [16]A. B. Djurisic and Y. H. Leung, Optical Properties of ZnO Nanostructures [J] Small 2006,2,944.
    [17]L. S. Vlasenko and G. D. Wathins, Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO [J]. Phys. Rev. B 2005,71, 125210.
    [18]X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett.2001,78,2285.
    [19]E. G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc oxide [J]. J. Appl. Phys.1978,49,1188.
    [20]M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, R. Sauer, Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide [J]. Phys. Rev. B 2008,77,125215.
    [21]D. Tainoff, B. Masanelli, P. Melinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, P. Martin, Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO [J]. Phys. Rev. B 2010,81,115304.
    [22]M.A. Thomas, J. B. Cui, Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO [J]. J. Appl. Phys.2009,105,093533.
    [23]Y. R. Ryu, T. S. Lee, H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J] Appl. Phys. Lett.2003,83,87.
    [24]A. Travlos, N. Boukos, C. Chandrinou, H. S. Kwack, L. S. Dang, Zinc and oxygen vacancies in ZnO nanorods [J]. J. Appl. Phys.2009,106,104307.
    [25]S. Zhong, W. Y. Zhang, X. P. Wu, B. X. Lin, Z. X. Fu, Effect of Annealing Temperature on Structural and Optical Properties of N-Doped ZnO Films [J]. Chin. Phys. Lett.2008,25,2585.
    [26]M. Ding, Zhao, B. Yao, B. H. Li, Z. Z. Zhang, D. Z. Shen, The p-type ZnO film realized by a hydrothermal treatment method [J]. Appl. Phys. Lett.2011,98,062102.
    [27]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett.2002,81,1830.
    [28]P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, X. W. Fan, Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films [J]. Appl. Surf. Sci.2008,254,2900.
    [29]A. Zuener, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hofmann, U. Haboeck, M. Strassburg, M. Dworzak, Optical Properties of the Nitrogen Acceptor in Epitaxial ZnO [J]. Phys. Status Solidi B 2002,234, R7.
    [30]M. Ding, D. X. Zhao, B. Yao, B. H. Li, Z. Z. Zhang, D. Z. Shen, The p-type ZnO film realized by a hydrothermal treatment method [J]. Appl. Phys. Lett.2011,98, 062102.
    [31]L. J. Wang, N. C. Giles, Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy [J]. Appl. Phys. Lett. 2004,84,3049.
    [32]K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer, Donor-acceptor pair transitions in ZnO substrate material [J]. Physica B 2001,308,945.
    [33]G. Xiong, K. B. Ucer, R. T. Williams, J. Lee, D. Bhattacharyya, J. Metson, P. Evans, Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal [J]. J. Appl. Phys.2005,97,043528.
    [34]D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, W. Harsch, G. Cantwell, Optical properties of ZnO crystals containing internal strains [J]. J. Lumin. 1999,82,173.
    [1]Matt Law, Lori E. Greene, Justin C. Johnson, Richard Saykally and Peidong Yang. Nanowire dye-sensitized solar cells [J]. Nat. Mater.2005,4,455.
    [2]Alex B. F. Martinson, Jeffrey W. Elam, Joseph T. Hupp, and Michael J. Pellin. ZnO Nanotube Based Dye-Sensitized Solar Cells [J]. Nano lett.2007,7,2183.
    [3]Hsin-Ming Cheng, Wei-Hao Chiu, Chia-Hua Lee, Song-Yeu Tsai, and Wen-Feng Hsieh. Formation of branched ZnO nanowires from solvothermal method and dye sensitized solar cells applications [J]. J. Phys. Chem. C 2008,112,16359.
    [4]Seung Hwan Ko, Daeho Lee, Hyun Wook Kang, Koo Hyun Nam, Joon Yeob Yeo, Suk Joon Hong, Costas P. Grigoropoulos, and Hyung Jin Sung. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell [J]. Nano Lett.2011,11,666.
    [5]Feng Xu, Min Dai, Yinong Lu, and Litao Sun. Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C 2010,114,2776.
    [6]Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. Dye-Sensitized Solar Cells [J]. Chem. Rev.2010,110,6595.
    [7]Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, and Michael Gratzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency [J]. Science.2011, 334,629.
    [8]Jarl Nissfolk, Kristofer Fredin, Anders Hagfeldt, and Gerrit Boschloo. Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions [J]. J. Phys. Chem. B,2006,110,17715.
    [9]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.2005,98,041301.
    [10]Yu-Ju Shin, Jung-Hun Lee, Ji-Hye Park, and Nam-Gyu Park. [J] Chem. Lett. 2007,36,1506.
    [11]Zi Qin, Yunhua Huang, Qingliang Liao, Zheng Zhang, Xiaohui Zhang, Yue Zhang. Stability improvement of the ZnO nanowire array electrode modified with A12O3 and SiO2 for dye-sensitized solar cells [J]. Mater. Lett.2012,70,177.
    [12]Matt Law, Lori E. Greene, Aleksandra Radenovic, Tevye Kuykendall, Jan Liphardt, and Peidong Yang. ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B 2006,110,22652.
    [13]Kwangsuk Park, Qifeng Zhang, Betzaida Battalla Garcia, Xiaoyuan Zhou,Yoon-Ha Jeong, and Guozhong Cao. Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells [J]. Adv. Mater.2010,22,2329.
    [14]M. A. Thomas and J. B. Cui, Core-shell nanowire arrays of metal oxides fabricated by atomic layer deposition [J]. J. Vac. Sci. Technol. A 2012,30,01A116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700