用户名: 密码: 验证码:
聚合物/α-磷(膦)酸锆纳米复合材料的制备与结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-磷酸锆(α-ZrP)是一种层状无机化合物,不仅在客体插入其层间后能保持稳定的层板,而且还具备离子交换容量大,长径比可有效控制,粒子尺寸分布较窄等优点,很适合应用于制备聚合物/层状无机纳米复合材料。但是,由于α-ZrP结晶度较高,层间距较小,很难在聚合物基体中均匀分散和剥离,本文对如何改善α-ZrP与高聚物基体间的相容性做了如下研究。
     1.以溶胶-凝胶回流法合成层状化合物α-ZrP,然后采用正丁胺“层离-插层”的方法对其进行有机修饰。该有机化处理的α-ZrP与聚乙烯醇(PVA)共混制得PVA/α-ZrP纳米复合材料。通过对上述纳米复合材料进行微观结构和形貌表征及一系列性能测试,发现聚乙烯醇和α-ZrP分子间形成了很强的氢键作用,当PVA基体中含有0.8 wt%的α-ZrP时,复合材料的拉伸强度和断裂伸长率分别比纯PVA提高了17.3%,26.6%,热稳定性也显著增强。
     2.通过改变反应物磷酸溶液的浓度,制备长径比及比表面积不同的α-ZrP。精确测定α-ZrP的长径比和比表面积大小,探究纳米α-ZrP表面形态及长径比对PVA诸多性能的影响。研究表明,随着α-ZrP长径比的增大,PVA/α-ZrP纳米复合膜的拉伸强度和断裂伸长率显著提高,但当其长径比过大时,对应的高比表面能导致α-ZrP在聚合物基体中的大量团聚,从而破坏了复合材料各方面的性能。
     3.通过酸性高锰酸钾的氧化在淀粉的糖环上引入羧基,利用羧基强的电负性来增强氧化淀粉(OST)和聚乙烯醇之间的氢键作用力,改善它们的相容性。此外为了制备性能更加优良的淀粉基材料,本章实验中还用纳米层状磷酸锆(α-ZrP)与氧化淀粉和聚乙烯醇共混,改善复合膜的力学性能和阻水性能。结果表明POST-ZrPn系列复合膜的性能优于PST-ZrPn系列。在POST-ZrPn系列复合薄膜中,随着α-ZrP含量的增加,拉伸强度(σb)和断裂伸长率(εb)也逐渐增加,α-ZrP含量为1.5 wt%时,复合膜的σb和εb同时达到最大值15.1 MPa和53%,同时α-ZrP的加入也增强了复合膜的阻湿性能和热稳定性。
     4.采用氟配法合成层状苯膦酸锆(ZrPP),经发烟硫酸磺化后,在ZrPP层间苯环上引入磺酸基团。通过负电荷基团(ZrPP中的磺酸基)和正电基团(壳聚糖的氨基)之间的静电作用增强磺化苯膦酸锆与壳聚糖之间的相互作用和相容性。研究发现随着纳米粒子ZrSP填充量的增加,壳聚糖的拉伸强度(σb)和断裂伸长率(εb)也逐渐增加。ZrSP含量为0.6 wt%时,σb和εb同时达到最大值64 MPa和56%,同时ZrSP的加入也改善了复合膜的阻湿性能和热稳定性。
α-zirconium phosphate (α-ZrP), Zr(HPO_4)_2 H_2O, is kind of layered inorganic, it will still keep its well-ordered structure when the guests are inserted into the interlayers. Because of its high ion-exchange capacity, tunnable aspect ratio and narrow size distribution,α-ZrP is suitable to prepare polymer/layered inorganic nanocomposites. However, higher crystallinity and aspect ratio corresponds to higher particle aggregations and bad dispersions. In order to improve the compatibility betweenα-ZrP and polymers, we have carried out the work as follows:
     1. In this work,α-ZrP was prepareded and exfoliated by n-Butylamine at first. And then a series of nanocomposite films that consisted of PVA and layered e-α-ZrP were prepared by a solution casting method. The results from XRD and SEM indicated that the PVA and e-α-ZrP possess good miscibility, which results from hydrogen bonding. Compared to the pure PVA, the tensile strength and elongation at break of the nanocomposite films increased by 17.3%、26.6% respectively.
     2. In this work, by controlling the concentration of phosphoric acid, three different aspect ratios crystalline a-ZrP have been prepared. The results indicated that higher concentration of phosphoric acid corresponded to higer crystallinity and aspect ratio ofα-ZrP. Based on the present study, higher aspect ratios can lead to significant improvements in tensile strength, elongation at break and heat distortion temperature, but overhigh aspect ratio would result in bad dispersions ofα-ZrP which can deteriorate the film properties.
     3. By introducing the carboxyl on starch sugar-ring, the hydrogen bonding and electrostatic interaction between oxidized starch (OST) and PVA were enhanced. Two series of nanocomposite films (POST-ZrPn and PST-ZrPn) were prepared by a solution casting method. The results from FT-IR, XRD and SEM indicated that the films of POST-ZrPn possessed better miscibility than PST-ZrPn, which resulted in improvement in mechanical properties, thermal stability and water-resistivity. Tensile strength and elongation at break of of the PVA/OST nanocomposite films increased from 6.6 to 15.1 MPa,35% to 63% asα-ZrP content increased from 0 to 1.5 wt%. However, higher loading ofα-ZrP resulted in aggregations ofα-ZrP and theσ_b,ε_b deteriorated. The presence ofα-ZrP also decreased the moisture uptake and increased the degradation temperatures of the nanocomposites.
     4. In this paper, zirconium sulphophenyl phosphonate (ZrSP) was synthesized in HF solution and characterized to prepare a series nanocomposites in which ZrSP was used as nanofiller. The results from FT-IR, SEM and XRD indicated that strong interaction between ZrSP and chitosan formed during the film-forming process, and the ZrSP could uniformly dispersed in chitosan matrix when ZrSP loading in the composites was less than 2 wt%. Additionally, because of the enhanced interfacial interaction between the fillers and matrix, the tensile strength, elongation at break, water resistance and thermal stability of the CS based nanocomposites were improved synchronously.
引文
[1]Borchert H, Baerns M. The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane. Journal of Catalysis,1997, 168,315-320.
    [2]Matsude T, Udagawa M, Kunou I. Modification of the interlayer in lanthaun-niobium oxide and its catalytic reactions. Journal of Catalysis,1997,168,26-34.
    [3]Brandao L S, Mendes L C, Medeiros M E. Thermal and Mechanical Properties of Poly(ethylene terephthalate)/Lamellar Zirconium Phosphate Nanocomposites. Journal of Applied Polymer Science, 2006,102,3868-3876.
    [4]Fornes T D, Hunter D L, Paul D R. Effect of sodium montmorillonite source on nylon6/clay nanocomposites. Polymer,2004,45,2321-2331.
    [5]Chavarria F, Paul D R. Comparison of nanocomposites based on nylon6 and nylon66. Polymer,2004, 45,8501-8515.
    [6]Xie S B, Zhang S M, Liu H J. Effects of processing history and annealing on polymorphic struture of nylon6/montmorillonite nanocomposites. Polymer,2005,46,5417-5427.
    [7]王留阳,何素芹,朱诚身,等.尼龙66/蒙脱土纳米复合材料的制备与表征.中国塑料,2001,15,23-26.
    [8]陈伟,冯莉,瞿保钧.原位聚合法制备聚丙烯酸甲酯/ZnA1层状双氢氧化物插层纳米复合材料及其形貌特征.高等学校化学学报,2003,24,1920-1922.
    [9]Hsueh H B, Chen C Y. Preparation and properties of LDHs/polyimide nanocomposites. Polymer,2003, 44,1151-1161.
    [10]O'Leary S, O'Hare D, Seeley G. Delamination of layered double hydroxides in polar monomers:New LDH-acrylate nanocomposites. Chem Commun,2002,45,1506-1507.
    [11]Tagaya H, Takeshi K, Are K. Preparation of new organic-inorganic nanocomposite by intercalation of organic compounds into MoO_3 by ultrasound. Mater Res Bull,1995,30,1161-1171.
    [12]Lira-Cantu M, Gomez-Romero P. The polyaniline-V_2O_5 system:improvement as insertion electrode in lithium batteries. J Inorganic Materials,1999,1,111-116.
    [13]Herenilton P O, Carlos F O G, Carlos A B. Electrochromic and conductivity properties:a comparative study between melanin-like/V_2O_5 and polyaniline/V_2O_5 hybid materials. J Non-Cryst Solids,2002, 273,193-197.
    [14]Clearfield A, Robert B D. Pillaring of layered zirconium and titanium phosphate. Inorg Chem,1998, 27,3237-3240.
    [15]Clearfield A, Thakur D S. Zirconium and titanium phosphate as catalysts. A Review Appl Cat,1986, 26,1-10.
    [16]Ma X B, Fu X K. Synthesis of the novel layered amorphous and crystalline zirconium phosphate-phosphonates and the catalytic activities in hydrogenation. J Mol Catal A:Chem,2004, 208,129-133.
    [17]Clearfield A, Robert M T, Debra K. Intercalation of n-alkylamines by α-zirconium phosphate. J Chem Faraday Trans,1985,81,545-552.
    [18]Ha B, Char K, Jeon H S. Intercalation mechanism and interlayer structure of hexadecylamines in the confined space of layered alpha-zirconium phosphates. Journal of Physical Chemistry B,2005,51, 24434-24440.
    [19]Duan X, Li F, He J. Some factors influencing the morphology of α-zirconium phosphates and its intercalation reactions with a bifunctional thioether amine. J Porous Mater,2002,9,5-16.
    [20]Kumar C V, Chaudhari A. Efficient renaturation of immobilined methemoglobin at the galleries of α-zirconium phosphate. J Am Chem Mater,2001,13,238-240.
    [21]Benhamza H, Barboux P, Baohauss A. Sol-gel synthesis of Zr(HPO_4)_2·H_2O. J Mater Chem,1991,1, 681-685.
    [22]Alberti G, Torracca E. Crystalline insoluble salts of polybasic metals-Ⅱ. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. J Inorg Nucl Chem,1968,30,317-322.
    [23]Costantino U. Inorganic ion exchange materals. Boca Raton:CRC Press,1982,2,111-116.
    [24]Yaroslavtsev A B, Nikonenko V V. Ion transfer in membrane and ion exchange materials. Uspekhi Khimii,2003,72,438-470.
    [25]Miura N, Yamazoe N. Proton condutors. Cambridge:Cambridge University Press,1992,527-533.
    [26]Alberti G, Carbone A, Palombar R. Sensors Actuat. B-Chem,2002,86,150-154.
    [27]Yang C, Srinivasan S, Arico Ascreti P, Baglio V, Antonucci V. Preparation and performance study of PTFE/Nafion-Zr(HPO_4)_2 and PTFE/Nafion-TEOS composite membranes. Electrochemical and Solid State Letters,2001,4, A31-A34.
    [28]Casciola M. Comprehensive Supramolecular Chemistry.1996,7,355-378.
    [29]Zhou D M, Chen H Y. The electrochemistry polymerzation of redox dye-nile blue for the amperometric detemination of hemoglobin. Electroanalysis,1997,9,399-402.
    [30]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装.高等学校化学学报,2001,6,1057-1065.
    [31]Ferragine C, Cafarelli P. J Thermal Anal Calorim,1998,53,189-206.
    [32]Giannoccaro P, Degiglio E, Garagano M, Ferragine C. Intercalation compounds of a-zirconium hydrogen phosphate with Rh~(3+) ions and Rh~(3+)-diamine complexes. Part Ⅱ. Their behaviour towards CO, CO_2 and H_2 and their use in the CO catalytic oxidation J Mol Catal A:Chem,1996,2,135-144.
    [33]Karlsson M, Andersson C, Hjortkjaer J. Hydroformylation of propene and 1-hexene catalysed by a a-zirconium phosphate supported rhodium-phosphine complex. J Mol Catal A:Chem,2001,166, 337-343.
    [34]Droagone R, Galli P, Massucci M A. Preparation and characterization of histidine and iron-histidine a-zirconium phosphate intercalation compounds, catalytic behaviour of the iron derivatives in oxidation reactions with H_2O_2. J Mater Chem,2003,13,834-840.
    [35]Karlsson M, Andersson C, Hjortkjaer J. Hydroformylation of propene and 1-hexene catalysed by a-zirconium phosphate supported rhodium-phosphine complex. J Mol Catal A:Chem,2001,166, 337-343.
    [36]Nino M E, Giraldo S A, Paez-Mozoo E A.Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in a-zirconium phosphate. J Mol Catal A:Chem,2001,175,139-151.
    [37]Curini M, Epifano F, Marcotullio M C, Rosati O, Tsadjout A. Synthetic Commun,2002,32,355-362.
    [38]Das G, Prabbu K A. Immobilization of cane amylase and acid phosphatase on tricalcium phosphate (TCP) gel. Enzyme Microb Technol,1990,12,625-630.
    [39]Kumar C V, Chaudhan A. Protein immobilized at the galleries of layered a-zirconium phosphate: Structure and activity studies. J Am Chem Soc,2000,122,830-837.
    [40]Ren L, He J, Zhang S, Evans D G, Duan X. Immobilization of penicillin G acylase in layered double hydroxides pillared by glutamate ions. J Mol Catal B,2002,18,3-11.
    [41]Yang Y J, Liu C H, Wu H X. Preparation and properties of poly(vinyl alcohol)/exfoliated a-zirconium phosphate nanocomposite films. Polym Test,2009,28,371-377.
    [42]Yang Y J, Liu C H. Effects of a-zirconium phosphate aspect ratio on the properties of polyvinyl alcohol nanocomposites. Polym Test,2009,28,801-807.
    [43]Yang Y J, Liu C H, Chang P R, Chen Y, Anderson D P. Properties and structural characterization of oxidized starch/PVA/a-zirconium phosphate composites. J Apply Polym Sci,115,1089-1097.
    [44]Yang Y J, Liu C H, Wu H X, Li Rui. Preparation and characterization of films based on zirconium sulfophenyl phosphonate and chitosan. Carbohydrate Research,2010,1,148-153.
    [45]Boo W J, Sun L Y, Liu J. Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Composites Science and Technology,2007,2,262-269.
    [46]Brandao L S, Mendes L C, Medeiros M E, Sirelli L, Dias M L. Thermal and mechanical properties of poly(ethylene terephthalate)/lamellar zirconium phosphate nanocomposites. J Apply polym Sci, 2006,102,3868-3876.
    [1]Vaia R A, Jandt K D, Kramer E J, Giannelis E P. Microstructural evolution of melt intercalated polymer organically modified layered silicates nanocomposites. Chem Mater,1996,8,2628-2635.
    [2]Kojima Y, Usuki A M, Kawasumi A, Okada T,Kurauchi A, Kamigaito O. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci Part A:Polym Chem,1993,31, 983-986.
    [3]Kaczmarek H, Podgorski A. The effect of UV-irradiation on poly(vinyl alcohol) composites with montmorillonite. Journal of Photochemistry and Photobiology A:Chemistry,2007,191,209-215.
    [4]Kim J, Creasy T S. Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polym Test,2004,23,629-636.
    [5]Tyan H L, Liu Y C, Wei K H. Enhancement of imidization of poly(amic acid) through forming poly(amic acid)/organoclay nanocomposites. Polymer,1999,40,4877-4886.
    [6]Lee J, Lee K J, Jang J. Effect of silica nanofillers on isothermal crystallization of poly(vinyl alcohol): In-situ ATR-FTIR study. Polym Test,2008,27,360-367.
    [7]Strawhecker K E, Manias E. Structure and Properties of Poly(vinyl alcohol)/Na~+ Montmorillonite Nanocomposites. Chem Mater,2000,12,2943-2949.
    [8]Sue H J, Gam K T. Epoxy Nanocomposites Based on the Synthetic α-Zirconium Phosphate. Chem Mater,2004,16,242-249.
    [9]Boo W J, Sun L, Warren G L, Moghbelli E, Pham H, Clearfield A, Sue H J. Effect of Nanoplatelet Dispersion on Mechanical Behavior of Polymer Nanocomposites. Journal of Polymer Science:Part B: Polymer Physics,2007,45,1459-1469.
    [10]Murthy G S, Sivaiah M V, kumar S S. Adsorrtion of cesium on a composite inorganic exchanger zirconium phosphate-ammonium molybdophosphate. Journal Of Radioanalytical And Nuclear Chemistry,2004,206,109-114.
    [11]Baetsle L, Huys D. Ion exchange properties of zirconyl phosphates-Ⅱ:Ion exchange equilibria on zirconyl phosphate. J Inorg Nucl Chem,1961,21,133-137.
    [12]Hayashi A, Fujimoto Y, Ogawa Y, Nakayama H, Tsuhako M Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged a-zirconium phosphate. J Coll Interface Sci,2005,283, 57-63.
    [13]Dea S, Deb A, Dasb A, Dea S K. Transport and dielectric properties of a-zirconium phosphate-polyaniline composite. Materials Chemistry and Physics,2005,91,477-483.
    [14]Pan B C, Zhang Q R, Du W, Zhang W M, Pan B J, Zhang Q J, Xu Z W, Zhang Q X. Selective heavy metals removal from waters by amorphous zirconium phosphate:Behavior and mechanism. Water Research,2007,41,3103-3111.
    [15]Jung J H, Sohn H J. Preparation and characterization of mesoporous zirconium phosphates from alkyl phosphates. Microporous and Mesoporous Materials,2007,106,49-51.
    [16]Alberti G, Casciola M, Marmottini F, Vivani R. Preparation of Mesoporous zirconium Phosphate-Pyrophosphate with a Large Amount of Thermally Stable Acid Groups on the Pore Surface. Journal of Porous Materials,1999,6,299-305.
    [17]] Clearfield A, Duax W L, Medina A S, Smith G D, Thomas J R. On the Mechanism of Ion Exchange in Crystalline Zirconium Phosphates I. Sodium Ion Exchange of a-Zirconium Phosphate. J Phys Chem,1969,73,3424-3430.
    [18]Clearfield A, Medina A S, Duax W L, Garces J M. On the mechanism of ion exchange in crystalline zirconium phosphates-Ⅳ potassium ion exchange of α-zirconium phosphate. J Inorg Nucl Chem, 1972,34,329-337.
    [19]] Clearfield A, Jerus P. Kinetics of gas-solid reactions in α-zirconium phosphate H+/Na~+mixed diffusion coefficients. J Inorg Nucl Chem,1981,43,2117-2120.
    [20]] Sun L, Boo W J, Browning R L, Sue H J, Clearfield A. Effect of Crystallinity on the Intercalation of Monoamine in α-Zirconium Phosphate Layer Structure. Chem Mater,2005,179,5606-5609.
    [21]Sun L Y, Boo W J, Sue H J, Clearfield A. Preparation of a-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem,2007,31,39-43.
    [22]Bermudez R A, Colon Y, Tejada G A, Colon J L. Intercalation and Photophysical Characterization of 1-Pyrenemethylamine in Zirconium Phosphate Layered Materials. Langmuir,2005,21,890-895.
    [23]Jayasekara R, Harding I, Bowater I, Christie G B Y, Lonergan G T. Preparation, surface modification and characterization solution cast starch PVA blended films. Polymer Testing,2004,23,17-27.
    [24]Ha B, Char K, Jeon H S. Intercalation Mechanism and Interlayer Structure of Hexadecylamines in the Confined Space of Layered a-Zirconium Phosphates. J Phys Chem B,2005,109,24434-24440.
    [25]El-Khodary A, Oraby A H, Abdelnaby M M. Characterization, electrical and magnetic properties of PVA films filled with FeCl_3-MnCl_2 mixed fillers. Journal of Magnetism and Magnetic Materials,2008, 320,1739-1746.
    [26]Jia X, Li Y F, Zhang B, Cheng Q, Zhang S J. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Materials Research Bulletin,2008,43,611-617.
    [27]Park S J, Kim H C. Thermal Stability and Toughening of Epoxy Resin with Polysulfone Resin, Journal of Polymer Science:Part B:Polymer Physics.2001,39,121-128.
    [28]Kuljanin J, Comor M I, Djokovic V, Nedeljkovic J M. Synthesis and characterization of nanocomposite of polyvinyl alcohol and lead sulfide nanoparticles. Materials Chemistry and Physics, 2006,95,67-71.
    [1]LeBaron P C, Wang Z, Pinnavaia T J. Polymer-layered silicate nanocomposites:an overview. Applied Clay Science,1999,15,11-29.
    [2]Ogata N, Kawakage S, Ogihara T. Structure and thermal/mechanical properties of poly(ethylene oxide)-clay mineral blends. Polymer,1997,38,5115-5118.
    [3]Watari T, Yamane T, Moriyama S, Torikai T, Imaoka Y, Suehiro K, Tateyama H. Fabrication of (expandable mica)/nylon-6 composites. Materials Research Bulletin,1997,32,719-724.
    [4]Drummy L F, Koerner H, Farmer K, Tan A, Farmer B L, Vaia R A. High resolution electron microscopy of montmorillonite and montmorillonite/epoxy nanocompostes. J Phys Chem B,2005,109, 17868-17878.
    [5]Sue H-J, Gam K T, Bestaoui N, Spurr N, Clearfield A. Epoxy nanocomposites based on the synthetic α-Zirconium Phosphate. Chem Mater,2004,16,242-249.
    [6]Sheng N, Boyce M C, Parks D M, Rutledge G C, Abes J I, Cohen R E. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer,2004,45,487-506.
    [7]Luo J I, Daniel M I. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol,2003,63,1607-1616.
    [8]Weon J I, Sue H -J. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposites. Polymer,2005,46,6325-6334.
    [9]Vlasveld D P N, Jong M D, Bersee H E N, Gotsis A D, S J Picken. The relation between rheological and mechanical properties of PA6 nano- and micro-composites. Polymer,2005,46,10279-10289.
    [10]M Okoshi, H Nishizawa. Flam retardancy of nanocomposites. Fire Mater,2004,28,423-429.
    [11]Sun L Y, Boo W J, Sun D Z, Clearfield A, Sue H -J. Preparation of exfoliated epoxy/α-Zirconium 、phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater,2007,19, 1749-1754.
    [12]Osman M A, Atallah A. Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer,2006,47,2357-2368.
    [13]Sun L Y, Boo W J, Clearfield A, Sue H -J. Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New Journal of Chemistry,2007,31,37-43.
    [14]Yang Y J, Liu C H, Wu H X. Preparation and properties of poly(vinyl alcohol)/a-zirconium phosphate blend films. Polymer Testing,2009,28,371-377.
    [15]Trobajo C, Khainakov S A, Espina A, Garcia J R. On the synthesis of a-Zirconium phosphate. Chem Mater,2000,12,1787-1790.
    [16]Boo W J, Sun G L, Warren E, Clearfield A, Sue H -J. Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer,2007,48,1075-1082.
    [17]Sun L Y, Boo W J, Browning R L, Clearfield A, Sue H -J. Effect of crystallinity on the intercalation of monoamine in a-Zirconium phosphate layer structure. Chem Mater,2005,17,5606-5609.
    [1]Soma C, Bishwabhusan S, Lwao T, Lisa M M, Richard A G. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles. Macromolecules,2005,38,61-68.
    [2]Junjie G, Milford A H. Selected Morphological and Functional Properties of Extruded Acetylated Starch-Polylactic Acid Foams. Ind Eng Chem Res,2005,44,3106-3115.
    [3]Olene M D, Angela M G, Elizabeth A F, Toni M B, Neal R M, George C F. Extrusion Conditions Affect Chemical Composition and in Vitro Digestion of Select Food Ingredients. J Agric Food Chem. 2004,52,2989-2996.
    [4]Iuliana S, Maria C P, Ruxanda B, Cornelia V. Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch. Polymer Degradation and Stability,2008,93,1884-1890.
    [5]Olivier M, Emmanuelle S, Luc A, Yves C. Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch-Starke,2001,53,372-380.
    [6]Yoon S Y, Deng Y L. Experimental and Modeling Study of the Strength Properties of Clay-Starch Composite Filled Papers. Ind Eng Chem Res,2007,46,4883-4890.
    [7]Lee S Y, Chen H, Hanna M A. Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Industrial Crops and Products,2008, 28,95-106.
    [8]Giannakas A, Spanos C G, Vaimakis A. Preparation, characterization and water barrier properties of PS/organo-montmorillonite nanocomposites. European Polymer Journal,2008,44,3915-3921.
    [9]Magalhaes N F, Andrade C T. Thermoplastic corn starch/clay hybrids:Effect of clay type and content on physical properties. Carbohydrate Polymers,2009,75,712-718.
    [10]Chen Y, Cao X D, Chang P R, Huneault M A. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrate Polymers,2008,73,9-17.
    [11]Angellier H, Molina-Boisseau S, Dufresne A. Mechanical Properties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber. Macromolecules,2005,38,9161-9170.
    [12]Cinelli P, Chiellini E, Lawton J W, Imam S H. The efficacy of photostabilizers on the color change of wood filled plastic composite. Polymer Degradation and Stability,2006,91,1147-1155.
    [13]Zhao G H, Liu Y, Fang C L, Zhang M, Zhou C Q, Chen Z D. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability,2006,91,703-711.
    [14]Dubief D, Samain E, Dufresne A. Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate)Nanocomposite Materials. Macromolecules,1999,32,5765-5771.
    [15]Khan M A, Bhattacharia S K, Kader M A, Bahari K. Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydrate Polymers,2006, 63,500-506.
    [16]Huang T G, Jiang Q M, Zhang B L. Henan Chem Ind,2006,11,26-28.
    [17]Chattopadhyay S, Singhal R S, Kulkarni P R. Optimisation of conditions of synthesis oxidised starch from corn and amaranth for use in film-forming applications. Carbohydrate Polymers,1997,34, 203-212.
    [18]Tang S W, Zou P, Xiong H G, Tang H L. Effect of nano-SiO_2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers,2008,72,521-526.
    [19]Li J H, Vasanthan T. Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker. Food Res Int,2003,36,381-386.
    [20]Ha B, Char K, Jeon H S. Intercalation mechanism and interlayer structure of hexadecylamines in the confined space of layered of α-zirconium phosphates. J Phys Chem B,2005,109,24434-24440.
    [21]Yoshimura M k, Takaya T, Nishinari K. Rheological studies on mixtures of corn starch and konjac-glucomanman. Carbohydrate Polymers,1998,35,71-79.
    [22]Jia X, Li Y F, Zhang B, Cheng Q, Zhang S J. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Materials Research Bulletin,2008,43,611-617.
    [1]Alberti G. Syntheses, crystalline structure, and ion-exchange properties of insoluble acid salts of tetravalent metals and their salt forms. Acc Chem Res,1978,11,163-170.
    [2]Alberti G, Constantino U, Allulli S, Tomassini N. Crystalline Zr(R-PO_3)_2 and Zr(R-OPO_3)_2 compounds (R=organic radical):A new class of materials having layered structure of the zirconium phosphate type. J Inorg Nucl Chem,1978,40,1113-1117.
    [3]Raveau B. Rev Inorg Chem,1987,9,37-42.
    [4]A Clearfield, G Smith. Crystallography and structure of α-zirconium bis(monohydrogen orthophosphate) monohydrate.Inorg Chem,1969,8,431-436.
    [5]Wu H X, Liu C H, Chen J G, Chang P R, Chen Y, Anderson D P. Structure and properties of starch/zirconium phosphate nanocomposite films.Carbohyd Polym,2009,77,358-364.
    [6]Yang Y J, Liu C H, Wu H X. Preparation and properties of poly(vinyl alcohol)/exfoliated α-zirconium phosphate nanocomposite films. Polym Test,2009,28,371-377.
    [7]Sue H J, Gam K T. Epoxy Nanocomposites Based on the Synthetic α-Zirconium Phosphate Layer Structure. Chem Mater,2004,16,242-249.
    [8]Sue H J, Gam K, Bestaoui N, Clearfield A, Miyamoto M, Miyatake N. Fracture behavior of a-zirconium phosphate-based epoxy nanocomposites. Acta Materialia,2004,52,2239-2250.
    [9]Clearfield A, Berman J R. J Inorg Nucl Chem,1981,43,2141-2142.
    [10]Clearfield A, Duax W L, Garces J M, Medina A S. J Inorg Nucl Chem,1972,34,329-337.
    [11]Sun L, Boo W J, Browning R L, Sue H J, A Clearfield. Effect of Crystallinity on the Intercalation of Monoamine in a-Zirconium Phosphate Layer Structure. Chem Mater,2005,17,5606-5609.
    [12]Leenstra W R, Amicangelo J C. Synthesis, Characterization, and Interlayer Distance Study of Zirconium Phosphonates with Stoichiometric Variation of Methyl and p-Aminobenzyl Pendant Groups. Inorg Chem,1998,37,5317-5323.
    [13]Vermeulen L A, Fateen R Z, Robinson P D. Single Crystal Structure Determination of a New Zirconium N-Ethylpyridinium Phosphonate:Zr(O_3PCH_2CH_2NC_5H_5)(F~-)_3. Inorg Chem,2002,41, 2310-2312.
    [14]Wang X J, Lieberman M. Zirconium-Phosphonate Monolayers with Embedded Disulfide Bonds. Langmuir,2003,19,7346-7353.
    [15]Wong D W S, Gastineau F A, Gregorski K S, Tillin S J, Pavlath A E. Chitosan-lipid films: microstructure and surface energy. J Agric Food Chem,1992,40,540-544.
    [16]Hoagland P D, Parris N. Chitosan/Pectin laminated films. J Agric Food Chem,1996,44,1915-1919.
    [17]Hosokawa J, Nishiyama M, Yoshihara K, Kubo T. Biodegradable film derived from chitosan and homogenized cellulose. Ind Eng Chem Res,1990,29,800-805.
    [18]Yang C Y, Clearfield A. React Polym Ion Exch Sortents,1987,5,13-21.
    [19]傅相锴,罗必奎,雷庆英.磷酸锆及其衍生物催化剂在有机反应中的应用.应用化学,1991,8,6-12.
    [20]Clearfield A, Wang J D, Tian Y, Stein E. Synthesis and Stability of Mixed Ligand Zirconium Phosphonate Layered Compounds. Journal of Solid State Chemistry,1995,117,275-289.
    [21]Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym Int,2004,53,911-918.
    [22]Pearson F G, Marchessault R H, Liang C Y. Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci,43,1960,101-116.
    [23]Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q. Largely Improved Tensile Properties of Chitosan Film via Unique Synergistic Reinforcing Effect of Carbon Nanotube and Clay. J Phys Chem B,2008,112,3876-3881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700