用户名: 密码: 验证码:
MWCNTs/TiO_2复合光催化剂优化制备及在光降解中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从制备工艺、碳纳米管修饰改性和纳米TiO2掺杂改性三方面进行了MWCNTs/TiO2复合光催化剂的优化制备研究,通过其对模拟污染物甲基橙的光催化降解效果来研究考察不同制备工艺参数和改性条件对催化活性的影响,并选出催化活性最高的制备工艺和改性方法,最终应用于1,2,4-三氯苯的光催化降解。
     以甲基橙为模拟污染物,通过考察不同制备工艺条件下复合光催化剂催化活性的差异,对比筛选出溶胶—凝胶法最佳制备工艺参数为:煅烧温度500℃、煅烧时间3h、溶胶体系pH值为3、固着剂聚苯乙烯磺酸钠投加量5g/L、碳纳米管投加量为TiO2质量的1.5%。采用微波辐照法、空气煅烧氧化法、硝酸氧化法及硝酸氧化与空气煅烧联用法对多壁碳纳米管进行了修饰改性,并研究考察多壁碳纳米管不同管长、管径结构和不同改性方法对复合光催化剂催化活性的影响,结果表明,复合光催化剂催化活性随碳纳米管管径的变大和管长的变长而逐渐增强;微波辐照和硝酸氧化与空气煅烧联用两种改性方法对提高复合光催化剂催化活性作用较大,其中N2载气环境下700W微波辐照功率改性碳纳米管制备的复合光催化剂催化活性最高。过渡金属离子掺杂纳米TiO2实验研究表明,Fe3+、Cr3+和Zr4+三种离子掺杂对复合光催化剂光催化活性的提高均有一定的促进作用;其中以Fe3+效果最好,Cr3+次之,而Zr4+对催化活性提高作用甚微。应用制备的高催化活性复合光催化剂光催化降解1,2,4-三氯苯的实验表明,与普通纳米TiO2光催化剂相比,复合光催化剂具有更高的光催化降解效果。
     总之,经过优化制备的高催化活性复合光催化剂将弥补传统光催化氧化技术中半导体催化剂存在的缺陷,对于治理氯苯类有机污染物及其他持久性有机污染物造成的环境污染具有潜在的应用价值。
In this paper, the optimizing preparations such as preparation technology,modification of mutil-walled carbon nanotubes, doping modification of TiO2 of the composite photocatalysts (TiO2/MWCNTs) were investigated. The effects of photocatalytic activity with different preparation and modification had been studied, according to the photodegradation of the goal pollutant methyl orange.The composite photocatalysts with the highest photocatalytic activity were selected, and also had been used in the photodegradation of 1,2,4-trichlorobenzene.
     Using methyl orange as the target pollutant and acoording to the difference of photocatalytic activities among the composite photocatalysts under different preparation technologies the best preparation technology of sol-gel method was selected, which was calcinated at temperature of 500℃for 3h, when pH=3,pss dosage 5g/L and multi-walled carbon nanotubes dosage 1.5%.
     Adopting four different methods:microwave radiation, air-calcined oxidation, nitric acid oxidation and nitric oxide associated with the use of air-calcined to modified the multi-walled carbon nanotubes, and the effects of photocatalytic activity with multi-walled carbon nanotube of different length and diameter and different preparation and modification also had been studied. The results showed that photocatalytic activity of the composite photocatalysts would be better with the larger tube diameter and the longer tube length. Microwave radiation and nitric oxide associated with the use of air-calcined were the best methods, which had greater roles to improve photocatalytic activity of the composite photocatalysts. Photocatalytic activity of the composite photocatalysts with multi-walled carbon nanotube was highest which was modified with microwave radiation under the power of 700W.
     The effects of photocatalytic activity with various transitional metal ions with doping modification of TiO2 had been also studied, and the results showed that the doping of three transitional metal ions(Fe3+,Cr3+,Zr4+) could improve photocatalytic activity of the composite photocatalysts. Among the three transitional metal ions, photocatalytic activity of the composite photocatalysts with Fe3+doping was the highest, and the Cr3+doping was lower. Photocatalytic activity of the composite photocatalysts with Zr4+ doping was lowest.
     The composite photocatalysts with highest photocatalytic activity was used in the photodegradation of 1,2,4-trichlorobenzene, and the results showed that the composite photocatalysts had higher photocatalytic activity than TiO2.
     The composite photocatalysts with highest photocatalytic activity under the optimizing preparation will make up the defects of the traditional semiconductor photocatalytic oxidation catalyst, and will also have potential applications in the treatment of environmental pollution with chlorobenzene organic pollutants and other persistent organic pollutants.
引文
[1]瑞恩P.施瓦茨巴赫,菲利普M.施格文,迪特尔M.英博登.环境有机化学.王连生.第一版.北京:化学工业出版社,2004,804
    [2]Wang M J, Jones K C. Behaviour and fate of chlorobenzens (CBs) introduced into soil-plant systems bysewage sludge application:a teview. Chemosphere, 1994,28(7):1325-1360
    [3]Hansch C, Leo A, Taft R W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem.Soc,1994, (2):1777-1791
    [4]章思规主编.实用精细化学品手册有机卷.第一版.北京:化学出版社,1996,6-9
    [5]《中国商品大辞典》编辑委员会.中国商品大辞典.第一版.北京:中国商业出版社,1994,1156-1157
    [6]Wang M, McGrath S P, Jones K C. The chlorobenzens content of archived sewage sludges. Sci Total Environ,1992,121 (2):159-175
    [7]Bailey R E. Global hexachlorobenzens emission. Chemosphere,2001, 43(2):167-182
    [8]李国刚.持久性有机污染物在中国的环境监测现状.中国环境监测,2004,20(4): 53-60
    [9]Jonathan L B. Hexachlorobenzens in the global environment:Emissions, levels, distribution, trends and processes. Science of the Total Enviroment,2005, 349(1-3):1-44
    [10]Word Health Organization.WHO"Toxicological appraisal of halogenated aromatic compounds following groundwater pollution". Report on a WHO working group. Copenhagen:Regional Office for Europe,1980,58
    [11]胡枭,胡永梅,樊耀波等.土壤中氯苯类化合物的迁移行为.环境科学,2000,21(6): 13-18
    [12]Lee C, Fang M. Sources and disitribution of cholorobenzens and hexachlorobutadiene in surficial sediments along the coast of Southwestern Taiwan.Chemosphere,1997,35(9):2039-2050
    [13]Lee C, Song H, Fang M. Concentrations of chlorobenzens, hexachlorobutadiene, and heavy metals in surfacial sediments of Kaohsiung coast, Taiwan, Chemosphere,2000,41(6):889-899
    [14]Oliver B G, Nicole K D. Chlorobenzens in sediments, water and selected fish from Lakes Superior, Huron, Erie and Ontaro. Environ Sci Technol,1982, 16(8):532-536
    [15]Schwarzenbach R P, Mnlnar-Kubica E, Giger W, et al. Distribution, residence time and fluxes of tetrarchloroethylene and 1,4-dichlorobenzens in Lake Zurich, Switzerland. Environ Sci Technol,1979,13(11):1367-1373
    [16]Rogers H R, Campbell J A, Crathorne B, et al. The occurrence of chlorobenzenes and permethrins in twelve UK sewage sludges. Water Res,1989, 23(7):913-921
    [17]蔡全英,莫测辉,吴启堂等.部分城市污泥中氯苯类化合物的初步研究.环境化学,2002,21(2):139-143
    [18]万大娟,李顺义,舒月红等.耕作土壤中多氯代有机污染物的含量与分布特征一以珠江三角洲部分地区为例.环境科学学报,2005,25(8):1078-1084
    [19]郑明辉,包志成,张兵等.大同市地表水及工业水废水中氯苯和酚类化合物的监测.中国环境监测,2000,16(4):35-38
    [20]Boyd E M, Killham K, Wright J, et al. Toxicity assessment of xenobiotic contaminated groundwater Using lux modified pseudomonas fluorescens. Chemosphere,1997,35(9):196-198
    [21]周霞,余刚,张祖麟等.北京通惠河水和表层沉积物中氯苯类有机污染现状.环境科学,2005,26(2):117-120
    [22]Masunaga S, Urushigawa Y, Yonezawa Y. The behavior of chlorobenzens in Ise Bay estimated from their concentration in various environmental media. Wat Res,1991,25(3):289-297
    [23]Meharg A A, Wright J, Osborn D. Chlorobenzes in rivers draining industrial catchments. Sci Toal Environ,2000,251(1):243-253
    [24]Wang M, Jones K C. Occurrence of Chlorobenzens in nine United Kingdom retail vegetables. J Agric Food Chem,1994,42(10):2322-2328
    [25]Oliver B G, Niimi A J. Biocentration of chlorobenzens from water by rainbow trout:Correlations with partition coefficients and environmental residuces. Eviron Sci Tec,1983,17(5):287-291
    [26]Lebel G L, Williams D T. Determination of halogenated contaminants in human adipose tissue.J Assoc of Anal Chem,1986,69(3):451-458
    [27]Williams D T, Lebel G L, Junkins E. Organohalogen residues in human autopsy samples from six Ontario municipalities. J Assoc of Anal Chem,1988, 71(2):410-414
    [28]Jan J. Chlorobenzens residues in human fat and milk bull. Environ Contam Toxicol,1983,30(1):595-599
    [29]Mattbew M L, Don M. An assessment of the environmental fate and exposure of benzenes and the chlorobenzens in Canada.Chemosphere,1999, 38(8):1777-1796
    [30]Peter P, Lutz B, Petra Keil, et al. Chlorobenzens and hexachlorocyclohexanes(HCHs) in the atmosphere of a UK estuary. Mar Pollut Bull,1989,20(6):276-281
    [31]Rogers H R, Crathorne B, Leatherland T M. Occurrence of chlorobenzens isomers in the water colum of a UK estuary. Mar Pollut Bull,1989, 20(5):276-281
    [32]Mark H H, Carrie L M, Michille,T D. Seasonal and spatial trends of certain chlorobenzens isomers in the Michigan atmosphere. Atmospheric Enviroment, 1997,31(4):567-573
    [33]Prelra W E, Rostad C E, Chiou C T, et al. Contamination of estuarine water, biota and sediment by halogenated organic compounds:a field study. Environ Sci Technol,1988,22(7):772-778
    [34]吕锡武,孔青青.紫外微臭氧处理饮用水中有机优先污染物.中国环境科学,1997,17(4):377-380
    [35]周明华,吴祖成.难降解芳香化合物废水的电催化处理.环境科学,2003,24(2): 121-124
    [36]周文敏,佛得黔,孙宗光.水中有限控制污染物黑名单.中国环境监测,1990,6(4): 1-3
    [37]Davide Vione, Claudio Minero, Valter Maurino, et al. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst.Applied Catalysis B:Environmental,2005,58(2):79-88
    [38]Piscopo A, Robert D, Weber J V. Comparison between the reactivity of commercial and synthetic TiO2 photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry,2001,139(2):253-256
    [39]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Natrue,1972,238(2):37-38
    [40]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 power. Am Chem Soc,1997,99(1):303-309
    [41]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第一版.北京:化学工业出版社,2002,25-285
    [42]Huber R, Moser J E, Gratzel M, et al. Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chem Phys,2002,285(1):39-45
    [43]刘守新,刘鸿.光催化及光电催化基础与应用.第一版.北京:化学工业出版社,2006,168-175
    [44]T K Kim, M N Lee. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films,2005,475(2):171-177
    [45]Sopyan I, Watanabe M, Murasawa S, et al. Efficient TiO2 powder and film photocatalysts rutile crystal structure. Chem Lett,1996,289(1):69-70
    [46]Sclafani A, Herrmann J M. Compasion of the photoelectronic and photocatalysic activities of varlous anatase and rutile forms of titania in pure liquid organic prase and in aqueous solution. J Phys Chem,1996, 100(32):13655-13661
    [47]Beydoun D, Amal R, Low G, et al. Role of nanoparticle in photocatalysis. Nanoparticle Research,1999,1(1):439-458
    [48]Bilkley I B, Gonzalez C T, Lee J S, et al. A structural investigation of titanium dioxide photocatalysis. Colid. StateChem,1991,92(1):178-190
    [49]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:Principles, Mechanisms, and Selected Results. Chem Rev,1995,95(3):736-758
    [50]Linsebigler A L. Photocatalysis on TiO2 surface:principles, mechanisms and selected result. ChemRev,1995,95(3):735-758
    [51]任成军,李大成,周大利等.纳米TiO2的光催化原理及应用.四川有色金属,2004,18(2):19-23
    [52]Ken-ichi Ishibashi, Fujishima Akira, Toshiya Watanabe, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Potochemistry and Photobiology A:Chemistry,2000,134(1):139-142
    [53]姜月顺,李铁津.光化学.第一版.北京:化学工业出版社,2004,100-101
    [54]李志军,王红英.纳米二氧化钛的制备方法.山西化工,2006,26(2):47-49
    [55]Leinen D, fernandez A, Espios J R, etal. Ion beam induced chemical vapor deposition for the preparation of thin film oxides. Thin Solid Films,1994, 241(2):198-201
    [56]李文军,李文荻,赵君芙等.低压MOCVD法制备TiO2薄膜的研究.微细加工技术,2000,1(3):63-69
    [57]Hoffimann M R, Martin S T, Choi W, etal. Environmental applications of semiconductor photocatalysis. Chem.Rev,1995,95(1):69-96
    [58]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. Solar Ener.Engineering, 1997,119(2):101-107
    [59]罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展.地球科学-中国地质大学学报,2000,25(5):536-541
    [60]Tanaka K. Effect of crystallinity of TiO2 on its photocatalytic action. Chem.Phys.Lett,1991,187(1):73-76
    [61]Nazceruddin M K, Kay A, Rodicio L. Conversion of light to electricity by cis-x2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ)charge-transfer sensitizers(X=Cl-,Br-,I-,CN-,andSCN-)on nanocrystalllines TiO2 electrodes. J.Amer.Chem.Soc,1993,115(14):6382-6390
    [62]Henrik L, Hakam R, Sven S. Electron transport properties in dye-sensitized nanocrystalline TiO2 films. Phys.Chem,1996,100(81):3084-3088
    [63]Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnentron sputtering. Thin Solid Films,2001, 392(2):169-173
    [64]董昊,张永熙,杨熙良等.直流反应磁控溅射制备二氧化钛薄膜的光催化性能研究.真空科学与技术,2000,20(4):252-255
    [65]马军委,张海波,董振波等.纳米二氧化钛制备方法的研究发展.无机盐工业,2006,38(10):5-7
    [66]Maira A J, Yeung K L, Lee C Y, et al. Size effects in gasphase photo-oxidation of trichhoroethylene using nanometersized TiO2 catalysts. J Cataly,2000, 192(1):185
    [67]李浩洋,高恩君,闻兰等.纳米二氧化钛的制备及对金属离子吸附研究进展.当代化工,2006,35(2):84-86
    [68]徐兆瑜.纳米的新功能及其应用进展.化工技术与开发,2003,32(6):27-32
    [69]于向阳,程继健,杜永娟.二氧化钛光催化材料.化学世界,2000,41(11):567-570
    [70]Venkata S R K, Machiraju Subrahmanyamb, Pierre Boule. Immobilized TiO2 photocatalyst during long-term use:decrease of its activity. Applied Catalysis BrEnviromental,2004,49(1):239-249
    [71]Michael A, Gonzalez, Garry Howell. Photocatalytics elective oxidation of hydrocarbons in the aqueous phase.Joural of Catalysis,1999,83(1):159-162
    [72]陈士夫,赵梦月,陶跃武.光催化降解有机磷农药的研究.环境科学,1995, 16(5): 61-63
    [73]钟懂,刑卫红,徐南平等.废水中有机污染物高级氧化过程的降解.化工进展,1998,17(4):51-53
    [74]武正簧.TiO2薄膜在光催化下处理含铬废水.太原理工大学学报,1999,30(3):289-290
    [75]Maira A J, Yeung K L, Lee C Y,et al. Size effects in gas-phasephoto-oxidation of trichloroethylene using nanometer sized TiO2 catalysis. Journal of Catalysis, 2000,192(1):185-196
    [76]Lixin Cao, Aimin Huang, Franz-Josef Spiess, et al. Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysis. Journal of Catalysis,1999, 188(1):48-57
    [77]肖汉宁,李玉平.纳米二氧化钛的光催化特性及其应用.陶瓷学报,2001,22(3): 191-195
    [78]李建梁.纳米碳管的高频电性量测分析及电路模型建立:[国立清华大学硕士论文].台湾:国立清华大学工程与系统科学系,2005,6
    [79]Bacon R. Growth, Structure and Properties of Graphite Whiskers. J.Appl.Phys, 1960,31(2):283-290
    [80]Wiles P G, Brahamson J A. Carbon fibre layers on arc electrodes-I:Their properties and cool-down behaviour. Carbon,1978,16(5):341-349
    [81]Oberlin A, Endo M. Exposed SWNT during the growth of crossing the tubes. JCryst Growth,1976,32(1):335-349
    [82]刘华.气相生长碳纤维的结构及生长机理的研究.第一版.沈阳:中国科学院金属研究所,1985,2-18
    [83]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(1):56-58
    [84]Yumura T, Kertesz M, Iijima S. Confinement effects on site-preferences for cycloadditions into carbon nanotubes. Chemical Physics Letters,2007, 444(1):155-160
    [85]Eitan A, Jiang K Y, Dukes D, et al. Surface modification of multiwalled carbon nanotubes:Toward the tailoring of the interface in polymer composites. Chemistry of Materials,2003,15(16):3198-3201
    [86]Gong X Y, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials,2000,12(4):1049-1052
    [87]Yumura T, Kertesz M. Cooperative behaviors in carbene additions through local modifications of nanotube surfaces. Chemistry of Materials,2007, 19(5):1028-1034
    [88]Yu J G, Huang K L, Liu S Q, et al. Preparation and characterization of polycarbonate modified multiple-walled carbon nanotubes. Chinese Journal of Chemistry,2008,26(3):560-563
    [89]Kitano H, Tachimoto K, Anraku Y. Functionalization of single-walled carbon nanotube by the covalent modification with polymer chains. Journal of Colloid and InterfaceScience,2007,306(1):28-33
    [90]Gao L, Jiang L Q, Sun J. Carbon nanotube-ceramic composites. Journal of Electroceramics,2006,17(1):51-55.
    [91]Dang Z M, Wang L, Zhang L P. Surface functionalization of multiwalled carbon nanotube with trifluoropheny. Journal of Nanomaterials,2006, 2006(1):1-5
    [92]Zhang D S, Shi L Y, Fang J H, et al. Preparation and modification of carbon nanotubes. Materials Letters,2005,59(29):4044-4047
    [93]Lcfrant S, Buisson J P, Schreiber J, et al. Raman studies of carbon nanotubes and polymer nanotube composites. Molecular Crystals and Liquid Crystals, 2004,415(1):125-132
    [94]Ramon Colorado. J, Barron. A. R. Synthesis of silica-ammonium chloride macrofibers generated by anionic surfactant templated nanotubes. Chem. Mater,2004,18(1):2691
    [95]Banerjee S, Wong S S. Synthesis and Characterrization of Carbon Nanotuble Nanocrystal Heterostructures. Nano. Lett,2002,2(3):195-200
    [96]Jiang L Q, Gao L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with anhanced photocatalytic activity. Mater. Chem. Phys, 2005,91(2):313-316
    [97]Hasobe T, Fukuzumi S, Kamat P V. Stacked-Cup Carbon Nanotubes for Photoslectrochemical Solar Cells. Angew. Chem.Int. Ed,2006,45(1):755-759
    [98]Andrei J, Thomas C, Berger M H, et al. New carbon multiwall nanotubes-TiO2 nanocomposites obtained by sol-gel method. Journal of Non-Crystalline Solids. 2004,345(1):596-600
    [99]徐志兵,周建军,魏先文.负载TiO2的碳纳米管光催化降解废水的研究.安徽师范大学学报,2005,28(1):61-64
    [100]Carcia J, Gomes H T, Serp Ph, et al. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon,2006,44(12):2384-2391
    [101]Chen C S, Bin Y, Fu-jin L, et al. Modified multi-walled carbon nanotubes with nano-europium oxide. Trans.Nonferrous Met.Soc.China,2007,17(1):704-707
    [102]朱路平,黄文娅,马丽丽等.多壁碳纳米管负载ZnO纳米复合材料的制备及其光催化性能研究.上海第二工业大学学报,2009,26(2):87-92
    [103]吴玉程,刘晓璐,叶敏等.碳纳米管负载TiO2纳米复合材料的制备及其性能。物理化学学报,2008,24(1):97-102
    [104]冬连红,丁克强,曹萌.二氧化钛/碳纳米管复合材料的制备和表征.河北师范大学学报,2008,28(3):367-369
    [105]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem.Rev,1995,95(1):69-96
    [106]Park H, Choi W. Photocatalysis reactivities of Nafion-Coated TiO2 for the degradation of charged organic compounds under UV or visible light. J.Phys.Chem.B,2005,109(23):11667-11674
    [107]Burda C, Lou Y, Chen X, etal. Enhanced nitrogen doping in TiO2 nanopartieles, Nano Letters,2003,3(8):1049-1051
    [108]刘冬妮,陈健波,郑铭等.半导体光催化氧化技术的研究进展.江苏大学学报(自然科学版),2003,24(3):40-44
    [109]陈建军,陈晓春等.Sol-Gel法制备纳米二氧化钛凝胶的工艺优化.中国有色金属学报,2000,10(1):84-87
    [110]Andrei Jitianu, Thomas Cacciaguerra. New carbon multiwall nanotubes-TiO2 nanocomposites obtained by the sol-gel method. Journal of Non-Crystalline Solids,2004,345(1):596-600
    [111]Albericir M, Jarclim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide.Appl Catal B:Environ,1997(1),14:55-68
    [112]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第一版.北京:化学工业出版社,2002,15-58
    [113]Albericir M, Jarclim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide.Appl Catal B:Environ,1997,14(1):55-68
    [114]Vulliet E, Chovelon J M, Guillard C, etal. Factors influencing the photocatalytic degradation of sulfonylurea herbicides by TiO2 aqueous suspension. Journal of Photochemistry and Photobiology A Chemistry,2003,159(1):71-79
    [115]孙奉玉,吴鸣,李文钊等.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19(3):229
    [116]于向阳,梁文.提高二氧化钛光催化性能的途径,硅酸盐通报,2000,1(1):53
    [117]Hoffman A J, Mills G, Hoffmann M R. Acrylate photopolymerization on heterostructured TiO2 photocatalysts. J.Phys.Chem,1992,74(2):5540
    [118]樊红霞.碳纳米管负载二氧化钛的制备表征及光催化活性研究:[北京科技大学硕士学位论文].北京:北京科技大学应用化学系,2007,44
    [119]Ivanov V, Nagy J B, Lam bin P, et al. The study of carbonnanotubules produced by catalytic method. ChemPhys Lett,1994,223(4):329-335
    [120]Ebbesen T W, Ajayan P M, Hiura H, et al. Purification of nanotubules. Nature, 1994,367(1):519-525
    [121]Hou P X, Bai S,Yang Q H, et al. Multi-step purification of carbon nanotubes. Carbon,2002,40(1):81-84
    [122]Hiura H, Ebbesen T W,Tanigaki K. Opening and purification of Carbon Nanotubules in High Yields. Advanced. Materials,1995,7(3):275-276
    [123]Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubules. Synthetic Metals,1999,103(1):2484-2485
    [124]Li F,Cheng H M,Xing Y T,et al. Purification of single-walled carbon nano tubes synthesized by the catalytic decomposition of hydrocarbons.Carbon, 2000,38(14):2041-2045
    [125]余荣清,程大典,詹梦熊.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究.化学通报,1996,1(4):203-209
    [126]张登松,代凯,方建慧等.碳纳米管改性处理的研究.化工矿物与加工2004,33(3):14-17
    [127]郭飞燕,孙振范,李建伟.有限长开口单壁碳纳米管结构与非线性光学性质.纳米科技,2008,4(2):7-12
    [128]吴林,赵波.非线性光学和非线性光学材料.大学化学,2002,17(6):21-24
    [129]Smith Jr, Hedges S W, Robert L C, et al. Selective oxidation of single-walled carbon nanotubles using carbon dioxide. Carbon,2003,41 (6):1221-1230
    [130]Young S P, Young C C, Keun S K, et al. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 2001,39(5):655-661
    [131]朱宏伟,吴德海,徐才‘厚.碳纳米管.第一版.北京:机械工业出版社,2003,2-162
    [132]Martinez M T, Callejas M A, Benito A M, et al. Sensitivity of single wall carbon nanotubles to oxidative processing:structural nodification, intercalation and functionalisation. Carbon,2003,41(12):2247-2256
    [133]刘博,刘云芳,迟伟东等.不同碱和酸处理对碳纳米管结构和形貌的影响.炭素技术,2008,4(27):1-6
    [134]losif Daniel Rosca, Fumio Watari, Motohiro Uo, et al. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon,2005,43(15):3124-3131
    [135]Chiang IW, Brimson BE, Smalley RE, et al. Purification and characterization of SWCNTs. Phys Chem B,2001,105(35):1157-1161
    [136]Barros E B, Souza Filho A G, Lemos V, et al. Charge transfer effects in acid treated single-wall carbon nanotubes. Carbon,2005,43(12):2495-2500
    [137]郭振,方炎.单壁碳纳米管的快速、高校提纯方法研究.光散射学报,2009,21(1): 59-63
    [138]王振华,主沉浮,蔡元兴等.掺杂改性纳米光催化剂的作用机理及改性途径.材料导报,2006,20(11):4
    [139]石建稳,郑经堂,胡燕等.La掺杂纳米光催化剂的制备及光催化性能研究.工业催化,2007,15(1):50-54
    [140]冯良荣,吕绍洁,邱发礼.稀土元素对纳米光催化性能的影响.复旦学报(自然科学版),2003,42(3):413-417
    [141]李明利,徐明霞,庞学满等.可见光活性负载型Fe2O3/TiO2光催化剂的制备.硅酸盐学报,2006,34(9):1147-1150
    [142]Zhou M H, Yu J G, Cheng B, et al. Preparation and Photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater ChemPhys,2005,93(1):159-163
    [143]Kobayakawa K, Murakami Y, Sato Y, et al. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea.Journal of photochemistry and photobiology A. Chenmistry,2005,170(2):177-179
    [144]Xu Ke jing, Yang Xin chun, Li Zheng min. Influence of different ion dopants on photocatalysis on nano-TiO2 coating film. The Chinese Journal of Nonferrous Metals,2006,16(5):847-852
    [145]傅宏刚,于海东,张新等.Ca改性钛酸铅纳米晶的制备及结构研究.高等化学学报,1999,20(8):1271-1275
    [146]井立强,孙晓唐,信伯福.掺杂镧和铈的纳米TiO2粒子的结构相变.材料科学与工艺,2004,12(2):148
    [147]陈俊涛,李新军,杨莹等.稀土元素掺杂对TiO2薄膜光催化性能的影响.中国稀土学报,2003,1(21):67-71
    [148]Asahi T, Morikawa T, Ohwaki K, et al. Visible-light photocatalysis in nitrogen-droped titanium oxides. Science,2001,293(1):269-271
    [149]冯娟娟,陈建华,张辉鹏等.第一系列过渡金属元素离子掺杂半导体对染料光催化降解的影响.第四届全国工业催化技术及应用年会论文集.广州:工 业催化杂志社,2007,462-465
    [150]张庆祝,罗远建,李越湘等.Zr和S共掺杂T光催化剂的制备及性能.石油化工,2009,38(1):15-19
    [151]天津大学无机化学教研室.无机化学(上册).第二版,北京:高等教育出版社,2000,23-167
    [152]张丽珊,于殿臣.慢速渗漏土地系统对沈阳西部城市污水中有机污染物的净化效果.应用生态学报,1992,3(4):355-363
    [153]蔡全英,莫测辉,吴启堂.城市污泥中氯苯类化合物(CBs)的堆肥处理研究.农业工程学报,2004,1(3):229-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700