用户名: 密码: 验证码:
核—壳型磁性复合纳米材料的制备及其抑菌与催化性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产技术水平的提高,带来生活水平的提高,随之也为人类带来更多的负面效应。人类对环境的污染越来越严重,最终使得细菌的种类增加,生长繁殖速度加快,细菌对抗生素的抵抗能力提高。这就使抗菌能力较强的新型抗菌剂的出现变得非常必要。纳米抗菌剂效率最高,但其回收与管理不便。因此本文以磁性颗粒作为载体,对其进行修饰,在磁性核表面负载上抗菌剂,制备出磁性复合抗菌剂。这样不但保证了抗菌剂是做纳米级的抗菌效率高,同时回收和管理也变得非常容易。并通过X-射线衍射仪(XRD), X-射线光电子能谱仪(XPS),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里转换红外光谱仪(FTIR),X-射线能量散射仪(EDX)和超导量子干涉磁测量系统(SQUID)等手段对所得样品的结构,形貌,磁性进行表征。最后研究复合抗菌剂在不同条件下的抗菌作用。本论文的主要工作从以下三个方面展开
     1.结合溶剂热法,水热法和化学还原法制备了Fe3O4@C@Ag(?)Fe3O4@Ag磁性复合纳米颗粒。Fe3O4@C@Ag复合颗粒的平均尺寸在250nm左右,具有较强的磁性,且其表面沉积了一层致密的纳米银颗粒,平均尺寸约为15nm。相反,Fe304@Ag复合颗粒,表面沉积的纳米银颗粒疏松且尺寸分部较大。抑菌试验结论为:在体系纳米银浓度相同的条件下,Fe3O4@C@Ag复合颗粒的抑菌性比Fe304@Ag强。复合颗粒的抗菌性与纳米银的浓度及尺寸有关,当纳米银浓度为5μg/mL时,Fe3O4@C@Ag抑菌性最强。这种载银磁性复合颗粒可回收残余的纳米银,还可使纳米银的局部浓度增大提高其抗菌效率。同时因纳米银具有光学性和催化性,所以Fe3O4@C@Ag复合颗粒将会在许多领域有广泛应用。
     2.通过溶剂热法合成磁性γ-Fe2O3载体。研究发现反应温度和碱源的浓度对产物相组成有影响,160℃可以得到纯γ-Fe2O3。通过调节前躯体FeCl3的浓度依次为20,40和60 mmol/mL时,可控制产物的颗粒尺寸依次为205,280和403nm。磁性测试结果表明得到的γ-Fe203为铁磁性,其饱和磁化强度为77.3 emu/g。从而使得以γ-Fe203为载体制备的复合颗粒可操作性更强。
     3.通过结合溶剂热法,Stober法和溶胶-凝胶水热法制备磁性复合纳米颗粒γ-Fe2O3@SiO2@TiO2-Ag光降解实验结论为:亚甲基橙浓度为30μg/mL时,加入TiO2-Ag浓度为1 mg/mL的复合催化剂,在250W紫外灯下光降解1 h,亚甲基橙可被完全降解。因磁性核的存在使得此复合催化剂可高效回收重复使用,经18次循环使用,其催化活性几乎还保持稳定。由于银的存在,γ-Fe2O3@SiO2@TiO2-Ag不但在黑暗条件下有较强的抗菌性,在紫外光照射条件下几乎可以抑制所有细菌的生长。既具有光催化降解有机污染物的能力又具有抑制细菌生长的能力使得γ-Fe2O3@SiO2@TiO2-Ag复合颗粒将会在水处理方面有广阔的应用前景。
The level of production technology improving, along with the improvement of living standards, accompanied with more negative effects appear. Human pollution to the environment more and more serious, ultimately making the type of bacteria increase, accelerates the growth and reproduction of bacteria, resistance to antibiotics increase. This makes the emergence of new antimicrobial with strong antibacterial ability has become very necessary. The efficiency of nano-antibacterial agent is higher, but its recovery and management is inconvenience. In this paper, with magnetic particles as a carrier, modified its surface and loaded antibacterial agents on its surface. Lastly, magnetic composite antibacterial agent was prepared. This will not only ensure the high efficient and also the convenience of recovery and management the antibacterial agent. The structure, morphology and magnetic properties of the samples were characterized by means of X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM). transmission electron microscopy (TEM). fourier transform infrared spectroscopy (FTIR),X-ray energy dispersive analyzer (EDX),magnetic measurement system (SQUID). We research the antibacterial property of the compound antibacterial agent under different conditions.The main work of this paper was developed from the following three aspects.
     1.Synthesis of Fe3O4@C@Ag and Fe3O4@Ag composites by solvothermal method, hydrothermal and chemical reduction. The size of the obtained Fe3O4@C@Ag composites is 250 nm, with strong ferromagnetic and a layer of compacted Ag nanoparticles deposited on its surface, the mean size of the Ag nanoparticle is 15 nm. Contrarily,the Ag nanoparticles on the surface of Fe3O4@Ag are loose and the size distribution is large. The antibacterial testing shows that:The antibacterial property of the compsosites is related to the concentration and size of Ag nanoparticles. When the concentration of Ag nanoparticle is 5μg/mL. the antibacterial properties of Fe3O4@C@Ag composites is the strongest. The magnetic composites can recycle the residual Ag nanoparticles and make the concentration of Ag nanoparticles is higher in special locality. The Fe3O4@C@Ag nanocomposites will have more potential uses in many fields for the catalytic and optical properties of the Ag nanopaerticles.
     2. The magnetic particlesγ-Fe2O3 was synthesized by solvothermal method. We found that the reaction temperature and concentration of alkali resource have effect to the phase structure of the production. At 160℃. we obtained the pureγ-Fe2O3,By adjusting the concentration of the FeCl2 at 20,40 and 60 mmol/L. the particles size of theγ-Fe2O3 is 205, 280 and 403 nm respectively. The result of magnetism testing shown that the saturation magnetization of theγ-Fe2O3 was 77.3 emu/g,The strong magnetic makes the composites withγ-Fe2O3 as a carrier with stronger operability.
     3. Theγ-Fe2O3@SiO2@TiO2-Ag magnetic nanocomposites were synthesized by combining solvothermal,Stober method and sol-gel hydrothermal method. When the concentration of the methyl orange is 30μg/mL. the concentration of composites catalysts contained TiO2-Ag is 1 mg/mL,under the UV light (250 W) irradiation, after 1 h. almost all the methyl orange was decomposed. For the presence of the magnetic core, the composites catalyst can be efficient recovery and reused, after 18 cycles, the catalysis ability keep stable. For the presence of Ag nanoparticles. the composites has antibacterial ability under dark condition, also it can restrain the growth of all the bacteria under UV irradiation. Both the ability of photocatalytic degradation of organic pollutants and inhibit the growth bacterial, make the composites has broad application in the water treatment area.
引文
[1]Wang Shuhua, Hou Wensheng,Wei Liqiao, et al. Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface[J]. Surface & Coatings Technology.2007,202.460-465
    [2]Aaron M. Socha. Nicholas Y. Tan, Kerry L. LaPlante. et al. Diversity-oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent[J]. Bioorganic & Medicinal Chemistry,2010,18,7193-7202
    [3]Andreas Kandelbauer,Petri Widsten, Antibacterial melamine resin surfaces for wood-based furniture and flooring[J]. Progress in Organic Coatings.2009.65,305-313
    [4]Top A. Ulku S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity[J]. Applied Clay Science.2004.27.9-13
    [5]Amyn S. Teja,Pci-Yoong Koh. Synthesis, properties, and applications of magnetic iron oxide nanoparticles[J]. Progress in Crystal Growth and Characterization of Materials.2009,55.22-45
    [6]Bo Hou,Youshi Wu. Lili Wu, et al. Hydrothermal synthesis of cubic ferric oxide particles[J]. Materials Letters,2006,60(25-26):3188-3191
    [7]Kitamoto Yoshitaka, He Jingsha, Chemical synthesis of FePt nanoparticles with high alternate current magnetic susceptibility for biomedical application[J]. Electrochimica Acta,2009,54(25):5969-5972.
    [8]Bo Yune Song,Yujin Eom,Tai Gyu Lee, Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites[J]. Applied Surface Science.2011.257.4754-4759
    [9]Lin Mengshan. Hoang Jyhleu, A Fe3O4-Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide Electroanalysis[J].2005.17(22):2068-2073
    [10]Wang Chengxiang. Yin Longwei, Zhang Luyuan, et al. Magnetic (γ-Fe2O3@SiO2)n@TiO2 Functional Hybrid Nanoparticles with Actived Photocatalytic Ability[J]. J. Phys. Chem. C,2009.113,4008-4011
    [11]Beata Chertok, AllanE.David, VictorC.Yang, Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotidad ministration[J]. Biomaterials,2010.31.6317-6324
    [12]Wang M.,Thanou M.,Targeting nanoparticles to cancer[J]. Pharmacological Research.2010.62(2):90-99.
    [13]焦华,纳米结构Fe3O4制备与应用的研究进展[J].粉末冶金材料科学与工程2010,15(3):191-198
    [14]刘威,钟伟,都有为.核壳结构复合纳米材料研究进展[J].材料导报.2007,21(3):59-62
    [15]Li lin,Shaily Mahendra, Delina Y. Lyon,et al. Antimicrobial nanomaterials for water disinfection andmicrobial control:Potential applications and implications [J]. Water Research,2008.42.4591-4602
    [16]刘守新,刘鸿.光催化及广电催化基础与应用,化学工业出版社,2006,(51-53)
    [17]马万顺,崔燕,赵玉云.等,纳米颗粒抗菌机理的研究进展[J].生物物理学报,2010,26(8):638-648
    [18]Ye Weijun,Xin John H., Li Pei, et al. Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles[J]. Journal of Applied Polymer Science,2006,102 (2):1787-1793
    [19]Qi, Lifeng,Xu,Zirong, Xia Jiang, et al. Preparation and antibacterial activity of chitosan nanoparticles[J]. Carbohydrate Research,2004,339(16):2693-2700
    [20]Rabea, E.I.,Badawy,M.E.,Stevens,C.V.,Smagghe. G.,Steurbaut. W. Chitosan as antimicrobial agent:applications and mode of action [J]. Biomacromolecules 2003. 4(6):1457-1465.
    [21]Corral-Flores V.,Bueno-Baques D.,Paraguay-Delgado F.,et al. Magnetic properties of nickel-zinc ferrite nanoparticles synthesized by coprecipitation[J]. physical status solid A,2007,204(6):1742-1745
    [22]Kim Yeongll, Kim Don,Lee ChoongSub,Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method [J]. Physica B,2003,337(1-4):42-51
    [23]Xu Chunhua, Ouyang Chunfa, Jia Runping,et al. Magnetic and Optical Properties of Poly(vinylidene difluoride)/Fe3O4 Nanocomposite Prepared by Coprecipitation Approach[J]. Journal of Applied Polymer Science,2009, 111(4):1763-1768
    [24]Li Wang,Zhou Qingguo, Li Fashen, Ionic disorder and Yaffet-Kittel angle in nanoparticles of ZnFe2O4 prepared by sol-gel method [J].physical status solidi b.2004, 241 (2):377-382
    [25]Gu Kunming,Tang Jiaoning,Li Junqin, Yang Qinpeng Gu Kunming,Tang Jiaoning. Li Junqin. Yang Qinpeng. ZnO-Fe3O4 composite prepared by sol-gel method with H2 deoxidation [J]. Solid State Communications 2006.139(6):259-262
    [26]Guan Yu. Jiang Cheng. Hu Chaofan,Li Jia,Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol-gel technology and its application in extraction of estrogens [J]. Talanta,2010,83(2):337-343.
    [27]Yan Hao. Zhang Jiancheng, You Chenxia,et al. Influences of different synthesis conditions on properties of FesO4 nanoparticles[J]. Materials Chemistry and Physics 2009,113(1):46-52.
    [28]Wang Weiwei. Yao Jialiang, Hydrothermal Synthesis of SnO2/Fe3O4 Nanocomposites and Their Magnetic Property [J]. J. Phys. Chem. C 2009,113(8): 3070-3075
    [29]Sun Xiaohong. Zheng Chunming. Zhang Fuxiang, et al. Size-Controlled Synthesis of Magnetite (FesO4) Nanoparticles Coated with Glucose and Gluconic Acid from a Single Fe(Ⅲ) Precursor by a Sucrose Bifunctional Hydrothermal Method[J]. J. Phys. Chem,C 2009.113(36):16002-16008
    [30]Liu Wei,Zhong Wei,Wu Xiaoling. et al. Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures[J]. Journal of Crystal Growth 2005,284(3-4):446-452
    [31]Maria Stjerndahl. Martin Andersson. Holly E. Hall, et al. Superparamagnetic Fe3O4/SiO2 Nanocomposites:Enabling the Tuning of Both the Iron Oxide Load and the Size of the Nanoparticles[J]. Langmuir 2008.24(7):3532-3536
    [32]Zhang DongEn, Tong ZhiWei, Li ShanZhong. et al. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion [J]. Materials Letters,2008,62(24):4053-4055
    [33]Peng Sheng, Wang Chao. Xie Jin,et al. Synthesis and Stabilization of Monodisperse Fe Nanoparticles[J]. Journal of American Chemical Society,2006, 128(33):10676-10677
    [34]Sun Shouheng,Zeng Hao,size controlled synthesis of magnetite nanoparticles[J]. Journal of the American Chemical Society,2004,124(28):8204-8205
    [35]Woo Kyoungja, Hong Jangwon,Choi Sungmoon,et al. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles[J]. Chemistry of Materials,2004, 16(14):2814-2818
    [36]Hee Kim Eun. Lee Hyo Sook. Kwak Byung Kook. et al. synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent[J]. Journal of magnetism and magnetic materials.2005.289.328-330
    [37]Furlan Marco. Kluge Johannes. Mazzotti Marco, et al. Preparation of biocompatible magnetite-PLGA composite nanoparticles using upercritical fluid extraction of emulsions[J]. Journal of Supercritical Fluids,2010,54(3):348-356
    [38]Hu Xianluo. Yu Jimmy C. Microwave-Assisted Synthesis of a Superparamagnetic Surface-Functionalized Porous Fe3O4/C Nanocomposite [J]. chemistry-an asian journal.2006,1(4):605-610
    [39]HamLey IW. Nanotechnology with soft materials. Angewandte Chemie International Edition,2003,42.1692-712
    [40]Mahmoudi Morteza, Simchi Abdolreza. Imani Mohammad, et al. Optimal Design and Characterization of Superparamagnetic Iron Oxide Nanoparticles Coated with Polyvinyl Alcohol for Targeted Delivery and Imaging[J]. Journal of Physical Chemistry B.2008,112(46):14470-14481
    [41]Meerod Siraprapa. Tumcharern Gamolwan,Wichai Uthai,Rutnakornpituk Metha, Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether-poly(3-caprolactone) copolymers[J]. Polymer 2008.49(18): 3950-3956
    [42]Arias J.L.,Gallardo V.. Go'mez-Lopera S.A.. et al. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core[J]. Journal of Controlled Release.2001.77(3):309-321.
    [43]Hong R.Y.,Feng B., Chen L.L.,et al. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles [J]. Biochemical Engineering Journal,2008,42(3):290-300
    [44]Sun Conroy, Lee Jerry S.H., Zhang Miqin. Magnetic nanoparticles in MR imaging and drug delivery [J]. Advanced Drug Delivery Reviews 2008,60(11): 1252-1265
    [45]Guptaa Ajay Kumar, Gupta Mona. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].Biomaterials,2005.26(18): 3995-4021
    [46]Harris, J. M.,Martin. N. E.,Modi,M. Pegylation:a Novel Process for Modifying. Clin. Pharmacokinet.2001.40.539-551.
    [47]Torchilin Vladimir P. Recent advances with liposomes as pharmaceutical carriers[J]. Nature Reviews. Drug Discovery 2005.4.145-160.
    [48]Wang Hanjie. Zhang Shuangnan. Liao Zhenyu,et al. PEGlated magnetic polymeric liposome anchored with TAT for delivery of drugs across the blood-spinal cord barrier[J]. Biomaterials,2010.31(25):6589-6596
    [49]Chen Hemei. Deng Chunhui. Zhang Xiangmin. Synthesis of Fe3O4@SiO2@PMMA Core-Shell-Shell Magnetic Microspheres for Highly Efficient Enrichment of Peptides and Proteins for MALDI-ToF MS Analysis[J]. Angewandte Chemie International Edition.2010.49(3):607-611
    [50]Michal Bystrzejewski. Stanislaw Cudzilo. Andrzej Huczko. et al. Carbon encapsulated magnetic nanoparticles for biomedical applications:Thermal stability studies[J]. Biomolecular Engineering,2007.24.555-558
    [51]董凯许.程伟明.程晓敏.等.I,10有序FePt磁记录薄膜研究进展[J].信息记录材料,2007.8(3):52-56
    [52]Sellmyer D.J.,Xu Yingfan. Yan Minglang,et al. Assembly of high-anisotropy L10 FePt nanocomposite films[J]. Journal of Magnetism and Magnetic Materials, 2006.303(2):302-308
    [53]Qiu L.J.,Shi J.Z.. Piramanayagam S.N.,et al. Nanocomposite magnetic films for high-density perpendicular magnetic recording media[J]. Thin Solid Films,2008, 516(16):5381-5385
    [54]Naoki Honda. Kazuhiro Ouchi. Low noise design of perpendicular magnetic recording media[J].Journal of Magnetism and Magnetic Materials,2001,235,289-296
    [55]Li Lin. He Xiwen,Chen Langxing, et al. Preparation of Core-shell Magnetic Molecularly Imprinted Polymer Nanoparticles for Recognition of Bovine Hemoglobin [J].Chemistry An Asian Journal,2009,4(2):286-293
    [56]Liu Xiaowang, Hu Qiyan. Fang Zhen. et al. Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal[J]. Langmuir,2009.25(1): 3-8
    [57]Kong Lirong,Lu Xiaofeng. Jin E.. et al. Constructing magnetic polyaniline/metal hybrid nanostructures using polyaniline/Fe3O4 composite hollow spheres as supports[J]. Journal of Solid State Chemistry,2009,182(8):2081-2087
    [58]Li Ling,Choo Eugene S.G.,Tang Xiaosheng,et al. Ag/Au-decorated Fe3O4/SiO2 composite nanospheres for catalytic applications [J]. Acta Materialia,2010.58(11): 3825-3831
    [59]Subramanian Tamil Selvan,Timothy Thatt Yang Tan,Dong Kee Yi,et al. Functional and Multifunctional Nanoparticles for Bioimaging and Biosensing[J]. Langmuir 2010,26(14):11631-11641
    [60]I.Coroiu,Relaxivities of dilerent superparamagnetic particles for application in NMR tomography[J]. Journal of Magnetism and Magnetic Materials,1999,201(1-3): 449-452
    [61]Beata Chertok,AllanE.David, VictorC.Yang, Polyethyleneimine-modified ironoxide nanoparticles for brain tumor drug delivery using magnetic targeting and ntra-carotid administration[J]. Biomaterials,2010,31,6317-6324
    [62]Sun Jianbo,Duan Jinhong,Dai Shunling,et al. Preparation and Anti-Tumor Efficiency Evaluation of Doxorubicin-Loaded Bacterial Magnetosomes:Magnetic Nanoparticles as Drug Carriers Isolated From Magnetospirillum gryphiswaldense[J]. Biotechnology and Bioengineering,2008,101(6):1313-1320
    [63]Samantha A. Meenach, J. Zach Hilt, Kimberly W. Anderson,Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy [J]. Acta Biomaterialia,2010,6,1039-1046
    [64]Melnikov O. V.,Gorbenko O. Yu.,arkelova M,N. M,et al. Ag-doped manganite nanoparticles:New materials for temperature-controlled medical hyperthermia[J]. Journal of Biomedical Materials Research Part A,2009,19(4):1048-1055
    [65]Li Q.X., Tang H.A.,Li Y.Z.,M., et al. Synthesis, characterization, and antibacterial activity of novel Mn(Ⅱ), Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),and Zn(Ⅱ) complexes with vitamin K3-thiosemicarbazone[J]. J. Inorg. Biochem.2000,78(2):167-174
    [66]Le A.T.. Tam L.T.,Tam P.D.,et al. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity [J].Materials Science and Engineering C,2010,30(6):910-916
    [67]Wang Rongmin,Wang Boyun, He Yufeng,et al. Preparation of composited Nano-TiO2 and its application on antimicrobial and self-cleaning coatings Polymers for Advance. Technologies,2010.21.331-336
    [68]Jalal R.,Goharshadi E.K.,Abareshi M.,et al. ZnO nanofluids:Green synthesis, characterization, and antibacterial activity [J]. Materials Chemistry and Physics,2010, 121(1-2):198-201
    [69]Huang N.M.,Lim H.N.,Radiman S.,et al. Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties Colloids Surf.,A,2010, 353,69-76
    [70]Kim Y.H.,Lee D.K.,Cha H.G.,et al. Synthesis and Characterization of Antibacterial Ag-SiO2 Nanocomposite[J]. Journal of Physical. Chemistry C. 2007,111(9):3629-3635
    [71]P.Jain, T. Pradeep. Potential of Silver Nanoparticle-Coated Polyurethane Foam As an Antibacterial Water Filter Biotechnol. Bioeng.2005.90.59-63.
    [72]Corchero J.L.,Villaverde A.,Biomedical applications of distally controlled magnetic nanoparticles[J]. Trends Biotechnol.2009.27,468-476
    [73]Tomitaka A.,Hirukawa A.,Yamada T.. et al. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells[J]. Journal of Magnetism Magnetic. Materials,2009.321.1482-1484
    [74]Serp P.,Comas M.,Kalck P.,Carbon nanotubes and nanofibers in catalysis[J]. Appl. Catal. A:Gen.2003.253(2):337-358
    [75]Li Y.H.,Wang S.G., Zhang X.F.,et al. Adsorption of fluoride from water by aligned carbon nanotubes Mater. Res. Bull.2003,38(3):469-476.
    [76]Yan W.J., Wang R.,Zhang Z.Q.,et al. A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in hree-component coupling of aldehyde, alkyne, and amine[J].J. Mol. Catal. A:Chem.2006.255.81-85.
    [77]Wani I.A.. Khatoon S.,Ganguly A., et al. Silver nanoparticles:Large scale solvothermal synthesis and optical properties[J]. Mater. Res. Bull.2010.45(8): 1033-1038.
    [78]Deng H.,Li X.L.,Peng Q., et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angewandte Chemie Internatioal Edition,2005,44,2782-2785.
    [79]Li Y.,Xu X.Q., Qi D.W.,et al. Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis[J]. Journal of Proteome Research,2008.7.2526-2538
    [80]Lee W.F., Huang Y.C.,Swelling and antibacterial properties for the superabsorbent hydrogels aontaing silver nanoparticles[J]. Journal of Applied Polymer Science 2007,106(3):1992-1999
    [81]Funda Sayilkan. Meltem Asiltiirk. Nadir Kiraz,et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate,Journal of Hazardous Materials.2000,162.1309-1316
    [82]Liu Jia. Sun Zhenkun. Deng Yonghui et al.Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups,Angew. Chem. Int. Ed.2009.48.5875-5879
    [83]Qi Da.Wei. Lu Jin. Deng Chunhui. et al. Magnetically Responsive Fe3O4@C@SnO2 Core-Shell Microspheres:Synthesis. Characterization and Application in Phosphoproteomics[J]. Journal of Physical Chemistry C. 2009,113,15854-15861
    [84]Bruce I.J.,Taylor J.,Todd M.,et al. Synthesis, characterisation and application of silica-magnetite nanocomposites[J]. Journal of Magnetism Magnetic Materials. 2004,284,145-160
    [85]Sun X.M.,Li Y.D.,Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Angew. Chem. Int. Ed,2004.116.607-611
    [86]Yu X.G.. Wan J.Q.. Shan Y.. et al. A Facile Approach to Fabrication of Bifunctional Magnetic-Optical Fe3O4@ZnS Microspheres [J]. Chemistry of Materials, 2009.21.4892-4898
    [87]Hong R.Y.. Zhang S.Z.. Di G.Q.,et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles[J]. Materials Research Bulletin,2008.43.2457-2468
    [88]Percival S.L.,Bowler P.G.,Russell D.,Bacterial resistance to silver in wound care [J]. Journal of Hospital Infectiona,2005,60,1-7
    [89]Feng Q.L.,Wu J.,Chen G.Q.,et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. Journal of Biomedical Materials Research,2000.52.662-668
    [90]Yuranova T.,Rincon A.G.,Bozzi A., et al. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver[J]. Journal of Photochemistry and Photobiology A,2003,161,27-34
    [91]Bryaskova R.,Pencheva D.,Kyulavska M.,et al. Antibacterial activity of poly (vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles[J]. Journal of Colloid and Interface Science.2010.344(2):424-428
    [92]Steven D. Granz,Mark H. Kryder,Granular L10 FePt (001) thin films for Heat Assisted Magnetic Recording.journal of magnetism and magnetic materials[J].2011, (In press)
    [93]Gong Xiuqing,Peng Suili,Wen Weijia,et al. Design and Fabrication of Magneticlly Functionalized Core Shell Microspheres for Smart Drug Delivery[J]. Advance Functional Materials.2009.19(2):292-297
    [94]Chengxiang Wang,Longwei Yin. Luyuan Zhang, et al. Magnetic (γ-Fe2O3@SiO2)n@TiO2 Functional Hybrid Nan particles with Actived Photocatalytic Ability[J]. J Phys Chem C,2009,113(10):4008-4011
    [95]Guo Limin. Cui Xiangzhi,Li Yongsheng. et al. Howllow Mesoporous carbon spheres with magnetic core and their performance as separable bilirubin adsorbents[J]. Chemistry-An Asian Journal,2009,4(9):1480-1485
    [96]Maria Stjerndahl, Martin Andersson. Holly E. Hall, et al. Superparamagnetic Fe3O4/SiO2 Nanocomposites:Enabling the Tuning of Both the Iron Oxide Load and the Size of the Nanoparticles[J]. Langmuir,2008.24(2):3532-3536
    [97]11 Tae Kim,Grady A. Nunnery,Karl Jacob, et al. Tannenbaum. Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles[J]. Journal of Physical Chemistry C,2010,114(15): 6944-6951
    [98]R.D. McMichael, R. D. Shull. L. J. Swartzendruber, et al. Magnetocaloric effect in superparamagnets[J]. Journal of magnetism and magnetic materials,1992.111(1-2): 29-33
    [99]Conroy Sun,Jerry S.H. Lee, Miqin Zhang. Magnetic nanoparticles in MR imaging and drug delivery [J]. Advanced Drug Delivery Reviews,2008.60.1252-1265
    [100]Lu Jian,Jiao Xiuling. Chen Dairong, et al. Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates[J]. Journal of Physical Chemistry C,2009,113(10):4012-4017
    [101]牛新书, 徐荭, 徐甲强纳米γ-Fe2o3的合成及气敏性能[J].村料研究学报,2001.15(5):593-598
    [102]姜国华,姜继森,纳米粒子的(湿)固相研磨法制备研究[J].高等化学学报,2004.25,405-408
    [103]Yu Dabin,Sun Xiaoquan, Zou Jiwei, et al. Oriented Assembly of Fe3O4 Nanoparticles into Monodispersc Hollow Single-Crystal Microspheres. Journal of Physical Chemistry B,2006,110(43):21667-21671
    [104]Deng Hong. Li Xiaolin, Peng Qing,et al, Monodisperse Magnetic Single- Crystal Ferrite Microspheres[J].Angewandte Chemim International Edition,2005, 44(18):2782-2785
    [105]G. Viau. R. Brayner. L. Poul. et al. Ruthenium Nanoparticles:Size. Shape, and Self-Assemblies[J]. Chemistry of Materials,2003,15(2):486-494
    [106]Jongnam Park. Jin Joo. Soon Gu Kwon. et al. Synthesis of Monodisperse Spherical Nanocrystals[J]. Angewandte Chemie. International Edition.2007. 46(25).4630-4660
    [107]Hao Zeng,Philip M. Rice,Shan X.Wang, et al.Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles[J]. Journal of American Chemical Socciety,2004,126(37):11458-11459
    [82]Teng Xiaowei. Black Donald, Watkins Neil J.,et al. Platinum-Maghemite Core-Shell Nanoparticles Using a Sequential Synthesis[J]. nano letters,2003.3(2): 261-264
    [109]Chin Sungmin. Park Eunseuk. Kim Minsu, et al., Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process [J]. Powder Technology,2010.201 (2):171-176
    [110]Kim J.Y, Kim J. S. Lee M. Y., Laser-induced enhancement of the surface hardness of nanoparticulate TiO2 self-cleaning layer[J]. Surface & Coatings Technology,2010.205(2):372-376
    [111]Liu Y., Wang X. L., Yang F., et al., Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films[J]. Microporous and Mesoporous Materials.2008.114(1-3):431-439
    [112]Xu R., Li J., Wang J., Wang X. F. et al., Photocatalytic degradation of organic dyes under solar light irradiation combined withEr3+:YAlO3/Fe- andCo-dopedTiO2 coated composites Solar Energy Materials & Solar Cells.2010.94(6):1157-1165
    [113]Li X., Xiong R. C. Wei G. Preparation and photocatalytic activity of nanoglued Sn-doped TiO2[J]. Journal of Hazardous Materials.2009.164(2-3):587-591
    [114]Wang H. F.,Wang Z. Q., Hong H. X.. et al., Preparation of cerium-doped TiO2 film on 304 stainless steel and its bactericidal ffect in the presence of sulfate-reducing bacteria (SRB)[J]. Materials Chemistry and Physics,2010.124(1):791-794
    [115]Sobana N.,Muruganadham M.,Swaminathan M., Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes[J]. Journal of Molecular Catalysis A:Chemical,2006.258(1-2):124-132
    [116]Lukman A. I.,Gong B.. Marjo C. E., et al.. Facile synthesis, stabilization, and anti-bacterial performance of discrete g nanoparticles using Medicago sativa seed exudates[J]. Journal of Colloid and Interface Science,2011,353(2):433-444
    [117]Zielin' ska A., Kowalska E., Sobczak J. W.,et al., Silver-doped TiO2 prepared by microemulsion method:Surface properties, bio- and photoactivity[J].Separation and Purification Technology,2010.72(3):309-318
    [118]Beydoun D.. Amal R.. Titania-Coated Magnetite. Activity and Photodissolution[J]. Journal of Physical Chemistry B,2000,104(18):4387-4396
    [119]Belessi V., Lambropoulou D., Konstantinou I., et al., Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor[J]. Applied Catalysis B:Environmental, 2009.87(3-4):181-189
    [120]Wang H., Wu Y.,Xu B. Q., Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis[J]. Applied Catalysis B:Environmental.2005, 59(3-4):139-146
    [121]Sun X. H.,Zheng C. M., Zhang F. X.,et al., Size-Controlled Synthesis of Magnetite (Fe3O4) Nanoparticles Coated with Glucose and Gluconic Acid from a Single Fe(Ⅲ) Precursor by a Sucrose Bifunctional Hydrothermal Method[J]. J. Phys. Chem. C 2009,113(36):16002-16008
    [122]Aizawa M., FT-IR liquid attenuated total reflection study of TiO2-SiO2 sol-gel reaction[J]. journal of non-crystalline solids.1991.128(1):77-85
    [123]Jung K. Y.,Park S. B.,Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene[J].Applied Catalysis B:Environmental,2000.25(4):249-256
    [124]Chen H. M.,Deng C. H., Zhang X. M.,Synthesis of Fe3O4@SiO2@PMMA Core-Shell-Shell Magnetic Microspheres for Highly Efficient Enrichment of Peptides and Proteins for MALDI-ToF MS Analysis[J]. Angewandte Chemie International Edition,2010,49(48):607-611
    [125]Dowlinga D.P.. Bettsa A.J., Pope C., et al. Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum [J]. Surface and coatings technology,2003,163-164 (30):637-640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700