用户名: 密码: 验证码:
芳纶纤维复合材料界面粘结性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善芳纶纤维复合材料的界面粘结性能,从研究树脂基体着手,根据芳纶纤维的结构特点,设计合成了一类对芳纶纤维具有良好浸润性的新型树脂(AFR)作为基体,以未经任何表面处理的芳纶纤维作增强材料,采用层压成型工艺制备了芳纶/AFR复合材料,从AFR树脂和芳纶纤维的表面能、AFR树脂溶液与芳纶纤维的接触角、单向复合材料的层间剪切强度、横向拉伸性能、破坏断面形貌等方面评价了AFR树脂与芳纶纤维之间的界面粘结性能,并测定了复合材料的力学性能、吸水性能和湿热性能,结果表明:芳纶/AFR复合材料力学性能好、吸水率较小、耐湿热性良好;AFR树脂与E-51环氧树脂(EP)的表面张力均随着温度的升高而降低,且AFR树脂的表面张力要明显低于EP树脂的表面张力;通过悬滴法测得3
     芳纶纤维的表面能为38.4 mN/m,与AFR树脂的表面张力相近;AFR树脂溶液与芳纶纤维的接触角为42.8°,明显低于EP树脂溶液与芳纶的接触角(68°),说明AFR树脂对芳纶纤维的润湿性优于EP树脂;芳纶/AFR复合材料层间剪切强度和横向拉伸强度分别为74.64MPa、25.34MPa,比芳纶/EP复合材料的相应强度分别提高了20%和32.5%,说明芳纶/AFR的界面粘结性能明显高于芳纶/EP;从芳纶/AFR复合材料破坏断面的SEM图可知,芳纶/AFR复合材料的失效形式为界面和树脂基体的组合破坏,表明芳纶与AFR树脂间的界面粘结性能较好。
In order to improve the interracial binding strength of the composites based on aramid fiber reinforced resin, the paper embarked from the research on the resin matrix and synthesized several kinds of AFR resin as the matrix, use the aramid fiber without any surface treatment as reinforcing material. The aramid fiber/AFR composite material was manufactured by hot press molding. The interfacial bond property between the AFR resin and aramid fiber was researched by the methods such as macromechanics, micromechanics, the contact angle and section morphology. The mechanical properties, water absorption and hygroscopicity were characterized. The results show that aramid fiber/AFR composite possessed better mechanical properties, low water absorption, low hygroscopicity. The contact angle between the AFR resin solution and aramid fiber tested by hanging drop way was 42.8°,and it was lower than EP resin solutions (68°), so the AFR resin solution has good wettability with the aramid fiber surface. The transverse tensile strength of unidirectional aramid fiber reinforced AFR composite was 25.34MPa and Interlaminar shear strength was 74.64MPa. It showed that the interfacial bond property of the aramid fiber/AFR composite was excellent.
引文
[1]肖艳.复合材料的发展历程及其应用[J].建筑,2009,24:59-60.
    [2]P.J. de Lange. et al Characterization and micromechanical testing of the i-nterphase of aramid-reinforced epoxy composites[J].Composites,2001,32(3-4):331-342.
    [3]王斌,崔红,周玉玺,王凤德,金志浩.新型国产芳纶Ⅲ纤维的性能实验研究[J].固体火箭技术,2006,29(5):377-379.
    [4]E. Pisanova, S. Zhandarov, E. Ma der, I. Ahmad, R.J. Young. Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer-fibre systems [J]. Composites:Part A,2001,32:435-443.
    [5]Gang Li, Chen Zhang, Yang Wang et al. Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites [J]. Composites Science and Technology,2008,68:3208-3214.
    [6]Ju Wu, Xian-Hua Cheng. Interfacial Studies on the Surface Modified Aramid Fib-er Reinforced Epoxy Composites [J]. Journal of Applied Polymer Science,2006,102: 4165—4170.
    [7]Pieter J. de Lange, Peter G. Akker, Edith Ma″der. Controlled interfacial adhesion of Twaron aramid fibres in composites by the finish formulation [J]. Composites Science and Technology,2007,67:2027-2035.
    [8]L. Liu, Y.D.Huang, Z.Q. Zhang et al. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites [J]. Applied Surface Science,2008, 254:2594-2599.
    [9]Y.H. Zhang, Y.D. Huang, L. Liu, K.L. Cai. Effects of g-ray radiation grafting on aramid fibers and its composites [J]. Applied Surface Science,2008,254:3153-3161.
    [10]J. Wu, X. Cheng. Study of interlaminar shear strength of rare earths treated aramid fiber reinforced epoxy composites [J]. Journal of Materials Science.2005,40:1043-1045.
    [11]Lin Jeng-Shyong. Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion [J]. European Polymer,2002,38(1):79-86.
    [12]Park Soo-Jin, Seo Min-Kang, Ma Tae-Jun. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites [J]. Colloid and Interface Science, 2002,252(2):249-255.
    [13]龙军,张志谦,魏月贞等.接枝偶联剂对F-12纤维环氧复合材料界面改性的研究[J].复合材料学报,2000,17(3):15-19.
    [14]Ramazan B, Tesoro C G. Effect of surface-limited reaction on the properties of Kevlar fibers [J]. Textile Research Journal,1990,60(6):334-344.
    [15]Lin T K,Wu S J,Lai J G,et al. The effect of chemical treatment on reinforceme nt/matrix interaction in Kevlar fiber/bismaleimide composites [J]. Composites Scie nce and Technology,2000,60(9):1873-1878.
    [16]Yue C Y, Padmanabhan K. Interfacial studies on surface modified Kevlar fibre/epoxy matrix composites [J].Composites Part B,1999,30(2):205-217.
    [17]T.K. Lin, S.J. Wu.ect. The Effect of chemical treatment on reinforcement/matrix i nteraction in Kevlar-fiber/bismaleimide composites[J]. composites science and tech-nology,2000,60:1873-1878.
    [18]B. J. Briscoe and D. R. Williams.Chemically Grafted Kevlar Fibers and Their Su rface Characterization[J]. Controlled Interphases in Composite Materials,1990:67.
    [19]Breznick M, Banbaji J, Baklagina Y G, et. al. Surface treatment technique for aramid fibres[J]. Polymer Communications,1987,28(1):55-60.
    [20]王杨,李鹏,于运花等.芳纶纤维的磷酸表面处理及其树脂基体复合材料界面性能[J].复合材料学报,2007,3(24):33-37.
    [21]Jeng-Shyong Lin. Effect of surface modification by bromination and metalation on Kevlar fiber-epoxy adhesion[J]. European Polymer Journal,2002,38:79-86.
    [22]N. Menon, F. D. Blum, and L. R. Dharani, Use of titanate coupling agents In K evierphenolic composite.J. Appl.Polym. Sci.,1994,54:113.
    [23]Yu Ren, Chunxia Wang, Yiping Qiu. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy[J]. Applied Surface Science,2007,253:9283-9289.
    [24]Ping Chen, Jing Wang, Baichen Wang, Wei Li, et al. Improvement of interfacial adhesion for plasma-treated aramid fiber-reinforced poly(phthalazinone ether sulfon-e ketone) composite and fiber surface aging effects [J]. Surface and Interface Ana lysis,2009,41:38-43.
    [25]S.R WU, C S SHEU, S S SHYU. Kevlar Fiber-Epoxy Adhesion and Its Effect on Composite Mechanical and Fracture Properties by Plasma and Chemical Treatment[J]. Journal of Applied Polymer Science,1996,62:1347-1360.
    [26]Hao Cen, Yilan Kang, Zhenkun Lei, Qinghua Qin, Wei Qiu. Micromechanics analysis of Kevlar-29 aramid fiber and epoxy resin microdroplet composite by Micro-Raman spectroscopy[J], Composite Structures,2006, 1-4(75):532-538.
    [27]Gang Li, Chen Zhang, Yang Wang, Peng Li. Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for fil ament winding composites[J].Composites Science and Technolo-gy,2008,15-16(6 8):3208-3214.
    [28]L. Liu, Y.D. Huang, Z.Q. Zhang, Z.X. Jiang, L.N. Wu. Ultrasonic treatment of a ramid fiber surface and its effect on the interface of aramid/epoxy composites[J]. Applied Surface Science,2008,9(254):2594-2599.
    [29]P.C.Varelidis, D.G.Papakostopoulos ect. Polyamide coated Kevlare fabric in epoxy resin:mechanical properties and moisture absorption studies[J].Composites,2000,3 1(66):549-558.
    [30]周杨春,赖娘珍,王耀先,程树军.芳纶纤维复合材料界面粘结性能研究[J].化工新型材料,2009,37(8):57-58,62.
    [31]Qingming Jia, et.al. Tribological performance and thermal behavior of epoxy resi-n nanocomposites containing polyurethane and organoclay[J]. Polymers for advan ced techn-ologies,2008,19:859-864.
    [32]王杨,李鹏等.磷酸处理芳纶纤维的缠绕环氧树脂基体[J]..复合材料学报,2007,5(24):33-37.
    [33]Seong Jin Kim, Ho Jang. Friction and wear of friction materials containi-ng two different phenolic resins reinforced with aramid pulp[J]. Tribology International,20 00,33:477-484.
    [34]T.K. Lin, S.J. Wu,et.al. The E(?) ect of chemical treatment on reinforcement/matri-x interaction in Kevlar-fiber/bismaleimide composites[J]. CompositesScience and Te chnology,2000,60:1873-1878.
    [35]Lili L. Johnson, et.al. Investigation of oxidation profile in PMR-15 polyi-mide us-ing atomic force microscope (AFM)[J].Polymer,2003,44:187-197.
    [36]Qihua Wang,et.al. Study on the synergistic effect of carbon fiber and gra-phite a-nd nanoparticle on the friction and wear behavior of polyimide composites[J]. M-aterials and Design,2010,31:3761-3768.
    [37]Nagai M.Bending strength of acrylic resin base reinforced with glass fiber [J]. Ko ku-byo Gakkai Zasshi.1969;36(4):361.
    [38]高虹.纤维增强义齿基托的研究进展[J].北京口腔医学,2003,4(11):239-241.
    [39]T.M.Wright, P.S. Trent. Mechanical properties o f aramid fibrereinforced acrylic bone cement[J]. Journal of materials science,1979,14:503-505.
    [40]张宗强,王玉林,万怡灶等.三维混杂碳纤维/芳纶纤维增强尼龙复合材料力学性能研究[J].宇航材料工艺,2004,1:38-41.
    [41]D.H. Gordona,S.N. Kukureka. The wear and friction of polyamide 46 and polyamide 46/aramid-fibre composites in sliding-rolling contact[J]. Wear,2009,267:669-678.
    [42]阮崇智.大型纤维缠绕复合材料壳体结构-工艺设计问题[J].固体火箭技术,1995,(2):2-4.
    [43]Ha, sim Pihtili, Nihat Tosun. Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites[J].Wear,2002,252:979-984.
    [44]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报,2008,25(1):1-10.
    [45]陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,(3):606-610.
    [46]Dora J, Hinrichsen J. Material and technology developments for the A380 [J]. Proceedings of the 22"international SAMPE europe conference,2001:123-134.
    [47]虢忠仁,杜文泽等.芳纶纤维抗弹复合材料研究进展[J].工程塑料应用,2009,37(1):75-78.
    [48]邵磊,余新泉等.防弹纤维复合材料在装甲防护上的应用[J].高科技纤维与应用,2007,32(2):31-34.
    [49]孙幸福.防弹头盔研制技术及发展前景[J].中国个体防护装备,2009,1:14-15.
    [50]陈平,蔡金刚.芳纶纤维及其织物复合材料在电子电气领域中的应用[J].纤维复合材料,1994,11(4):48-53.
    [51]高艳茹.高性能PBW用芳酰胺纤维层压板[J].印制电路信息,2000,(3):21-24.
    [52]宋志祥,彭长征等.芳纶纤维及其在电子行业中的应用[J].合成技术及应用,2009,24(4):35-38.
    [53]杜希岩,李炜.纤维增强复合材料在体育器材上的应用[J].纤维复合材料,2007,14(1): 14-17.
    [54]Hpmer E.Kissinger. Reaction Kinetics in Differential Thermal Analysis[J].anaytical chemistry,1957,11 (29):1702-1706.
    [55]Takeo Ozawa.A New Method of Analyzing Thermogravimetric Data[J]. Bulletin o f the Chemical Society of Japan,1965,11(38):1881-1886.
    [56]R.Sarathi et.al. Understanding the thermal mechanical and electrical properties of epoxy nanocomposites[J]. Materials Science and Engineering A,2007:567-578.
    [57]王斌,金志浩等.树脂含量对芳纶纤维/环氧复合材料性能的影响[J].固体火箭技术,200l,1(25):61-64.
    [58]王春香,付云忠等.纤维缠绕过程中的张力分析[J].复合材料学报,2002,3(19):120-123.
    [59]赖娘珍,王耀先.芳纶纤维增强复合材料研究进展[J].玻璃钢/复合材料,2010,增刊(第十八届玻璃钢/复合材料学术年会论文集):164-168.
    [60]董超亮,王耀先.芳纶纤维增强复合材料用树脂基体的研究进展[J].玻璃钢/复合材料,2010,增刊(第十八届玻璃钢/复合材料学术年会论文集):169-172.
    [6l]王世孟,王甲春等.液体表面张力与比表面自由能的热力学分析[J].沈阳建筑工程学院学报,2002,4(18):282-284.
    [62]朱定一,戴品强.润湿性表征体系及液固界面张力计算的新方法(Ⅰ)[J].科学技术与工程,2007,13(7):3063-3069.
    [63]P.K. Sharma, K. Hanumantha Rao. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science,2002,9(8):341-463.
    [64]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [65]Ping Chen, Chun Lu, et al. Influence of Fiber Wettability on the Interfacial Adhe sion of Continuous Fiber-Reinforced PPESK Composite [J]. Journal of Applied P-olymer Science,2006,102(3):2544-2551.
    [66]刘耀鹏.粘接最佳条件的分析讨论[J].粘接,2007,28(2):29-30.
    [67]周玉玺,曾金芳等.杂环芳纶纤维及其表面改性[J].纤维复合材料,2006,2:51-54.
    [68]A. Avena, A.R. Bunsell. Effect of hydrostatic pressure on the water absorption of glass fibre-reinforced epoxy resin[J]. Composites,1988 19(5):355-357.
    [69]洪旭辉,华幼卿.固化工艺对3221环氧树脂体系/玻璃纤维复合材料性能的影响[J].高分子材料科学与工程,2007,23(2):45-49.
    [70]J.J. IMAZ, J.L. RODRIGUEZ. Hydrothemal environment influence on water diff-usion and Mechanical behaviour of carbon fibre/epoxy laminates[J]. Jouenal of ma te-rials science letters,1991,10:662-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700