用户名: 密码: 验证码:
太阳能用薄膜的制备与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于世界上化石能源面临枯竭的危险,迫使人们对新能源的开发与利用投入了大量的人力和物力,太阳能作为一种取之不尽、用之不竭的新能源引起了人们的兴趣。而且,太阳能是一种清洁的能源,利用太阳能不致引起环境污染。综合利用太阳能的研究是当前和长远的社会发展需要,也是科技工作者深感兴趣的重大研究课题。
     非晶硅是当前非晶半导体材料和器件的研究重点和核心。由于a-Si:H薄膜具有十分独特的物理性能和在制作工艺方面的加工优点,使它可用作大面积,高效率太阳能电池材料,大屏幕液晶显示器件等。与单晶硅等太阳电池相比,a-Si:H太阳电池在提高转换效率,降低成本和连续生产方面前景诱人。
     AlN属于III-V族化合物绝缘材料,是一种具有六方纤锌矿型晶体结构的宽能隙直接能带结构,在常温下禁带宽度Eg=6.2eV。AlN原子间以共价键结合,具有高的熔点,良好的化学稳定性和高的导热率,同时其热膨胀系数与硅相近,又具有低介电常数与介电损耗等性能,这使它在电子基板,半导体封装,电子组件散热等方面应用潜力无穷。由于氮化铝薄膜具有优异的压电特性及较高的表面声波波速,已成为发展高频声波组件的最佳材料。AlN宽禁带,同时与氮化镓晶格结构相同,有较少的晶格失配(Lattice mismatch2.4%),可作为半导体技术的绝缘层、保护层和缓冲层,可见AlN具有广泛的应用前景。
     采用热丝化学气相沉积方法,持续通入硅烷和氢气混合气体在聚亚酰胺衬底上生长了硅薄膜。用X射线衍射仪、泰勒台阶和原子力显微镜研究了不同气压、硅烷浓度和衬底温度等参数变化对薄膜生长速率、表面形貌和结构的影响规律。结果表明,生长的薄膜结构以非晶硅为主,随硅烷浓度的增大和衬底温度的升高,薄膜生长速率增加、薄膜的颗粒尺寸增大,表面更均匀。随着硅烷浓度的降低或衬底温度的升高,薄膜晶化程度增加。而工作气压对生长速率、薄膜形貌和微观结构的影响不明显。
     采用磁控溅射方法,在高纯氩气和氮气混合气氛下成功制备出Al(W)-AlN系太阳能选择性吸收薄膜。借助吸收光谱分析,比较了Al、W两种反射层材料上制备单层AlN和多层AlN薄膜的光谱吸收特性。结果表明:多层AlN薄膜比单层膜的吸收性能好;W比Al更适合做反射面材料,W-渐变型多层AlN膜系对太阳能的吸收率可达到80%以上。
The crisis of exhaustion of fossil energy has motivated various seeking for alternative energy sources, which has cost tremendous labor and economic efforts. The study of utilization of solar energy, one of non-exhaustible and non-polluting energy sources, has great significance in the sustainable development of human society and drawn increasing interests from scientific researchers.
     The study of amorphous silicon is one of the core issues among the researches on amorphous semiconductor materials and devices. The a-Si:H film is one of typical killer-applications of amorphous silicon devices. Its unique physical characteristic and brilliant processability enables its usage as highly efficient photoelectric conversion material in broad solar cells and LCD monitor panels. Compared with its monocrystalline silicon counterpart, a-Si:H-based solar cell has a promising potential in terms of better conversion rate, lower manufacture cost and mass production.
     AlN is a insulation material of III-V compound, which is a hexagonal wurtzite crystal structure and has wide bandgap energy band. Its energygap is 6.2eV at nomal temperature. AlN atoms combine with covalent bonding. It has high melting point, good chemical stability and high thermal conductivity, while its thermal expansion coefficient is similar to silicon, and also has a low dielectric constant, dielectric loss and other properties. These characteristics made it have infinite potential in the fields of electronic substrates, semiconductor encapsulation, heat dissipation of electronic components and so on. As it have excellent piezoelectric characteristic and high velocity of surface acoustic wave(SAW), AlN has become the best materials that develop the subassembly high-frequency acoustic wave. Because of a wide band gap, the same lattice structure with GaN and less lattice mismatch, AlN can be used as the insulating layer, protective layer or buffer layer of semiconductor technology. All things show AlN has a extensive prospect of application
     Amorphous silicon films have been successfully synthesized on flexible substrate by HWCVD.The growth rate, surface morphology, and the microstructures of the films were studied using Taylor step tester, AFM, and XRD respectively. The results showed that increase of the silane concentration and the substrate temperature resulted in increases of the growth rate and the particle size of the films, and that also made the film surface more uniform. The crystallinity of the deposited films was enhanced by decreases of silane concentration or increases of the substrate temperature. The growth rate, film morphology, and microstructure are not sensitive to the deposition pressure.
     Al (W)-AlN selective absorption thin films have been successfully synthesized using magnetron sputtering technique under a mixed gas of high-purity nitrogen and argon. The optical absorption characteristics of single-layer or the multi-layer AlN thin films on the W and Al reflecting layer were compared through the analysis of the absorption spectra. The results indicated that the absorbency of the multi-layer AlN thin films is better than that of the single-layer, and W layer was more suitable to be used as reflecting material than Al layer. The absorptivity of the gradual change multi-layer AlN thin film on the W reflecting layer at full-wave band of solar spectra can be over 80%.
引文
[1]王丽春.过渡层对热丝法低温制备多晶硅薄膜的影响:(硕士学位论文).大连:大连理工大学,2008.
    [2]马文强.太阳能:地球能源之源.特别视点.2-4.
    [3]孙晓光,王新北,左艳飞.太阳能在建筑领域推广与应用.中国建筑工业出版社.2-3.
    [4]靳瑞敏.中温制备多晶硅薄膜及相关理论问题的探讨:(博士学位论文).郑州:郑州大学,2006.
    [5]励旭东.低成本衬底上晶体硅薄膜太阳电池的研究:(博士学位论文).北京:北京师范大学低能核物理研究所,2003.
    [6]徐慢.玻璃基太阳能电池薄膜材料的制备及其结构和性能研究:(博士学位论文).武汉:武汉理工大学,2006.
    [7]Jianhua Zhao, Aihua Wang, and Martin A. Green.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters,1998,73(14): 1991-1993.
    [8]Yibin Bai, David H. Ford, James A. Rand et al.16.6% efficient silicon-film polycrystalline silicon solar cells.26th IEEE photovoltaic specialists conference. Anaheim, CA,USA,1997,P35-38.
    [9]周怀恩,陈光华,朱秀红,等.热丝辅助MW ECRCVD技术高速沉积高质量氢化非晶硅薄膜[J].人工晶体学报,2005,34(3):471-474.
    [10]薛俊明,麦耀华,赵颖,等.薄膜非晶硅/微晶硅叠层太阳电池的研究[J].太阳能学报,2005,26(4):166-169.
    [11]Matsumura H., Iiduka R., Heya.A. Study on cat-CVD poly-Si films for solar cell application [J]. Solar Energy Materials and Solar Cells,1997,48(1-4):279-285.
    [12]刘玉萍,陈枫,郭爱波,等.薄膜太阳能电池的发展动态[J].节能环保,2006,11:21-23.
    [13]陈光华,邓金祥.新型电子薄膜材料.化学工业出版社.2002,92-101435.
    [14]李瀛.热丝辅助MWECR CVD制备氢化非晶硅薄膜的微结构研究:(硕士学位论文).北京:北京工业大学,2005.
    [15]FRITYV, SHELLE. The PV market [J]. Sun World.:1998,22(3):22-28.
    [16]FUJIKAKE S K. Film Substrate a-Si solar cells and their novel process technologies [A].25th Photovoltaic Specialists Conference. Washington,1996,1045.
    [17]吕宝堂,胡宏勋.聚合物衬底非晶硅太阳电池的研制[J].太阳能学报,1996,17,252-255.
    [18]胡宏勋.效率高于10%的非晶硅太阳电池的研制[J].太阳能学报,1990,1l,230-237.
    [19]宁豪.柔性非晶硅基薄膜太阳能电池的研究:(硕士学位论文).天津:河北工业大学,2005.
    [20]丁大伟,蔡伟民.高温太阳能光谱选择性吸收涂层计算机模拟[J].太阳能学报.2008,11(29)1353-1357.
    [21]J. C. Kuang, C.R. Zhang, X. G. Zhou and S. Q. Wang. Synthesis of High Thermal-Conductivity Nano-Scale Aluminum Nitride by a New Carbothermal Reduction Method from Combustio[J]. JOURNAL OF CRYSTAL GROWTH:2003,256(3-4):288-291.
    [22]R. R. Tummala, J. Am. Ceram. Soc.1991:74 (5):895.
    [23]Hikmet Altun and Sadri Sen. The effect of DC magnetron sputtering AlN coatings on the corrosion behavior of magnesium alloys. Surface and Coatings Technology:2005,197:93-200.
    [24]K. Tonisch, V Cimalla, Ch. Foerster, et al. Piezoelectric properties of polycrystalline AlN thin films for MEMS application Sensors and Actuators A:Physical 2006 (18).
    [25]F. Vacandio, Y. Massiani, M. Eyraud, S. Rossi and L. Fedrizzi, Surf. Coat. Technol.:2001,137:284
    [26]A. V. Dobrynin, J. Appl. Phys:19998,5:p.1876.
    [27]S. Tanaka, R. S. Kern, J. Bently and R. F. Davis, Jpn. J. Appl. Phys.1996,35:1641.
    [28]Edgar JH, Carosella CA, Eddy Jr, CR, Smith DT. J Mater Sci Mater Electron 1996,7:247.
    [29]M. A. Mastro, C. R. Eddy. MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates[J]. Crys. Grow:2006,287:610-614.
    [30]C. Ristoscu, C. Ducu, G. Socol, et al. Structural and optical characterization of AlN films grown by pulsed laser deposition[J]. Applied Surface Science:2005,248:411-415.
    [31]Ju-Won Soh, S. S Jang, I. S. Jeong, and W. J. Lee. C-axis orientation of AlN films prepared by ECR PECVD[J]. Thin Solid Films:1996,17 (279).
    [32]I. C. Oliveira, K. G. Grigorov, H. S. Maciel. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness. Vacuum,75, (2004) 331-338.
    [33]Morito Akiyama, Chao-Nan Xu, Kazuhiro Nonaka. Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films. Thin solid films,315 (1998) 62-65.
    [34]宋秀峰,韩艳春,何洪等.磁控溅射法制备AlN薄膜的研究进展[J].山东陶瓷,2006,6(29)20-23.
    [35]M.Daouahi, K.Zellama, H.Bouchriha, et al. Effect of the hydrogen dilution on the local microstructure in hydrogenated amorphous silicon films deposited by radiofrequency magnetron sputtering. Eur. Phys. J-Appl. Phys.2000,10 (3):185-191
    [36]陈国,朱美芳,孙景兰,等.用热丝法制备优质稳定非晶硅薄膜的研究[J].太阳能学报,1997,18(3):269~272.
    [37]吴芳,王海燕,卢景霄,等.透明导电薄膜与p-Si:H膜接触特性的研究[J].人工晶体学报,2007,36(1):42-46.
    [38]Qi Wanga, Guozhen Yue, Jing Li, Daxing Han. A combinatorial study of materials in transition from amorphous to microcrystalline silicon. Solid State Communications.2000,113:175~178.
    [39]S.Okamoto, Y.Hishikawa, S.Tsuda. New interpretation of the effect of hydrogen dilution of silane on glow-discharged hydrogenated amorphous silicon for stable solar cells. Jpn.J.Appl. Phys,1996,35 (1A):26~33.
    [40]A.Wrobel, S.Wickramanayaka, K.Kitamura, et al. Structure-property relationships of amorphous hydrogenated silicon-carbon films produced by atomic hydrogen-induced CVD from a single-source precursor. Chem. Vapor. Depos.2000,6 (6):315~322.
    [41]Shinya Tsuda, Souichi Sakai, Shoichi Nakano.Recent Progree in a-Si Solar Cells. Applied Surface Science.1997,113/114:734~740.
    [42]G.Ganguly,. A.Mastuda. Defect formation during growth of a-Si:H. Physical Review B.1993,47(7): 3661~3665.
    [43]Ju Hyeon Lee, Cheon Man Shim, Sang Kook Park, et al. A possible method for large area deposition of a-Si:H thin films using electron cyclotron resonance plasma-enhanced chemical vapor deposition, 1997,295:67~72.
    [44]柴展.热丝法低温制备多晶硅薄膜及其特性分析:(硕士学位论文).大连:大连理工大学,2007.
    [45]唐伟忠.薄膜材料制备原理、技术及应用(第2版)[M].冶金工业出版社,2003:47-80.
    [46]侯鹤岚,张世伟,李云奇,等.溅射靶的开发与应用[J].真空,2000,1:37-39.
    [47]胡利民.AlN薄膜的制备与介电性能研究:(硕士学位论文).长沙:中南大学,2007.
    [48]王丽阁.磁控溅射非晶W03薄膜及其电致变色性能研究:(硕士学位论文).大连:大连理工大学,2006.
    [49]Pascal Pernet, Ramon Felder, Miehael Goetz. Optimization of amorphous silicon solar cells on Polymer film substrat. In:14th European PVSEC. Bareelon. Spain. June-4 July 1997,2339-2342.
    [50]C.Koeh, M.Ito, M.Chubert. Low-temperature deposition of amorphous silicon solar cells. Solar energy materials&Solar Cells,2001,68:227-236.
    [51]T.yoshida, S.Fujikake, S.Kabuchi. Development of process technologies for plastic-film substrate solar cells. Technical digest of the international PVSEC-9,1996,291-294.
    [52]M.Collaud Coen, G.Dietler, S.Kasa, et al. AFM measurements of topography and the roughness of ECR plasma treated polypropylene. Applied Surface Science,1997,103:27-34.
    [53]P.Pernet, M.Goetz, H.KePPner, et al. Growth of thin

μc-Si:H for solar cells application. Mat. Res. Soc. SymP. Proc,1997,452:889-894.
    [54]李洪波.塑料衬底上太阳电池的研究:(硕士学位论文).天津:南开大学,1999.
    [55]张延生.柔性衬底上非晶硅薄膜太阳能电池的材料研究:(硕士学位论文).天津:河北工业大学,2002.
    [56]周顺,秦文.非晶硅薄膜的沉积速率研究[M].西安电子科技大学微电子学院,2008.5.
    [57]龙罗明.非晶硅薄膜太阳能电池结构中本征膜的初步研究[J].湘潭大学自然科学学报.1987,2:39-43.
    [58]黄创君,林璇英,林揆训等.低温制备高质量多晶硅薄膜技术及其应用[J].功能材料,2001,32(6):561-563.
    [59]奚中,杨大同.非晶硅薄膜的应用前景[M].北京大学无线电电子学系,1984.5.
    [60]王鹏.玻璃基ZnO:Al薄膜的射频磁控溅射法制备及其结构和性能表征: (硕士学位论文)[D].武汉:武汉理工大学,2007.
    [61]Wu Guifang, Zhao Qingsheng. Choices On Experimented Conditions Of DC Magnetron Sputtering Films [J]. Physical Experiment of College,2004,2 (17):25-27.
    [62]朱昌,朱春燕.磁控反应溅射沉积A1N薄膜的制备工艺[J].西安工业大学学报,2008,1(28):15-17.
    [63]赵彦立,钟国柱,范希武,李长华.射频磁控反应溅射生长A1N薄膜[J].发光学报,1999,2(20):165-169.
    [64]Xu Xiaohong, Wu Haishun, Zhang Congjie, et al. Morphological Properties of AlN Piezoelectric Thin Films Deposited by DC Reactive Magnetron Sputtering[J]. Thin Solid Films,2001,388(1-2):62-67.
    [65]杨保和,徐娜,陈希明,等.射频磁控溅射生长C轴择优取向AlN压电薄膜[J].光电子·激光,2007,12(18):1430-1434
    [66]付光宗.超薄Al膜和AlN薄膜的光学性质及相关问题的研究:(硕士学位论文).重庆:重庆大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700