用户名: 密码: 验证码:
基于Mach-Zehnder干涉结构的振动加速度检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为一种重要的战略资源,是国民经济和社会发展甚至国家安全的前提和保障,为了使石油供应能够满足经济建设的需要,寻找高储量、高质量的新油田成为了当今石油勘探行业的重要任务。地震勘探法是查明地下地质构造,寻求油田的一种物探方法。地震检波器作为地震勘探的第一道工序,它的性能对油田勘探有着直接的影响。
     本论文针对上述背景,利用集成光波导器件高精度、高灵敏度、抗电磁干扰、和集成度高的优点,设计了一种基于Mach-Zehnder(M-Z)干涉结构的集成光波导地震波加速度传感器。首先利用光波导模式理论完成铌酸锂脊形光波导的单模结构设计,结合有限差分光束传播法(FD-BPM)完成双M-Z干涉仪的结构设计,并对光场传输和模场分布进行了仿真;其次利用铌酸锂晶体的光弹效应,理论分析了加速度作用下铌酸锂脊形波导受到应力作用后折射率及模场分布的变化,并对加速度作用下光波导基模的模场分布变化进行仿真;结合材料力学及机械振动原理对集成光波导传感器的传感单元进行受力特性分析,理论计算得到系统的灵敏度为0.0896rad/(m?s-2),工作频率范围是0~1.389×104Hz;通过微细加工技术探索了在X切Y传的铌酸锂基片上制作质子交换脊形波导的工艺,并分析了X切质子交换铌酸锂晶体的腐蚀机理;根据光纤光学及材料力学原理设计了双传感臂的光纤M-Z干涉光路结构及传感探头结构,理论计算得到传感探头中质量块为445g,弹性柱体直径27mm,高度30mm,系统灵敏度为366.9rad/g,工作频率范围是0~340.7Hz;按照理论设计的结构采用硫化硅橡胶及金属铁块制作了传感探头,并完成全光纤双传感臂M-Z干涉仪的制作,经过测量臂长差约为6.87mm,干涉可见度约为95.8%;最后搭建实验系统对不同频率及不同振幅的加速度振动信号进行检测,实验结果显示在50~400Hz的频率范围内,输出结果与理论分析相符;在800~6000Hz的频率范围内,输出信号幅度发生了失真,表明传感器不能工作在此频率范围内。文章最后对所做的工作进行总结,并对将来的研究工作进行了展望。
Petroleum, an important strategic resource, is the basis and safeguards of national economy, social progress, even the country itself. In order to make the petroleum supplies meet the requirements of economic construction, it is important to hunt for high reserves and high-quality new oilfields in the petroleum exploration industry. Seismic prospect method is to survey the geological structures underground or explore the oil fields. Seismic geophone, as the first process in the seismic prospect, decides the quality of the oil fields exploration.
     Taking the advantages of integrated optical waveguide device into account, such as high sensitivity, high accuracy, high integration and anti-electro magnetic interference, an integrated optical waveguide acceleration seismic geophone is designed based on Mach-Zehnder (M-Z) interference structure. Firstly, it is utilized the optical waveguide mode theory to design the single-mode structure of lithium niobate ridge waveguide, which accomplishes the structure design of double M-Z interferometer and simulation of the optical field transmission and mode field distribution by FD-BPM; Then, based on the photoelastic effect of lithium niobate crystals, theoretical analysis of the changes of the optical waveguide refractive index and the mode field distribution under stress by acceleration effected, and simulation of the optical waveguide fundamental mode field distribution by different acceleration effected are well established; In addition to mechanics of materials and mechanical vibration principle, the stress on the integrated optical waveguide sensor unit is analyzed, the phase detection sensitivity is calculated as 0.0896rad/(m?s-2), and the working frequency range is 0~1.389×104Hz; Also, it uses the Micro-fabrication technology to fabricate the ridge waveguide in X cut Y propagation lithium niobate substrate by proton exchange technology, and analyzed the etch mechanism in X cut lithium niobate substrate; A dual sensing arm optical fiber M-Z interference structure and sensing probe structure based upon optical fiber of the light and mechanics of materials is designed, and also it calculated the mass of sensing probe is 445g, the elastic cylinder diameter is 27mm, the height is 30mm, the system sensitivity is 366.9rad/g, and the working frequency range is 0~340.7Hz; According to the theoretical design structure, it uses the sensing probe made by the silicone rubber and iron block to complete the all-fiber optical dual sensing arm M-Z interferometer, and measured the arm length difference is about 6.87mm, and the interfere visibility is about 95.8%; It is to build the experimental system and detect different frequencies and different amplitudes of the acceleration vibration signal, these illustrates that there is an output consistent with the theoretical analysis when the vibration frequency between 50~400Hz, whereas there is a significant distortion output beyond 400~6000Hz, so the sensor can not work in this frequency range. At last, it concludes all the research and looks forward the future work.
引文
[1]靳伟,廖延彪等.导波光学传感器:原理与技术.北京:科学出版社,1998
    [2] Brian Culshaw,John Dakin.光纤传感器,李少慧等译.武汉:华中理工大学出版社,1997
    [3]李方泽,刘馥清,王正.工程振动测试与分析.北京:高等教育出版社,1992
    [4]王惠文,娄英明,江先进.光纤加速度传感器研究进展.光学技术1997,4:15-20
    [5] Kevin E.Burcham, Gregory N.De Brabander and Joseph T.Boyd. Micromachined silicon cantilever beam incorporating an integrated optical waveguide. Proc. SPIE, 1992, 1793: 12
    [6] Eric Ollier, Paul Philippe, Claude Chabrol, et al. Micro-Opto-Mechanical Vibration Sensor Integrated on Silicon. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17(1): 26-29
    [7] A. Llobera, J. A. Plaza, I. Salinas, et al. Characterization and Passivation Effects of an Optical Accelerometer Based on Antiresonant Waveguides. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16(1): 233-235
    [8] Jose A. Plaza, Andreu Llobera, Carlos Dominguez, et al. BESOI-Based Integrated Optical Silicon Accelerometer. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13(2): 355-364
    [9] M. A. Duguay, Y. Kokubun and T. L. Koch. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett, 1986, 49(1): 13-15
    [10] A. Llobera, V. Seidemann, J. A. Plaza, et al. Integrated Polymer Optical Accelerometer. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17(6): 1262-1264
    [11] A. Llobera, G. Villanueva, V. J. Cadarso, et al Polymermicrooptoelectro- mechanical System: Variable Optical Attenuator and Accelerometer. Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 2007, 1079-1082
    [12] A. Llobera, V. Seidemann, J.A. Plaza, et al. Surface Quad Beam Polymer Optical Accelerometer. Sensors, 2004. Proceedings of IEEE, 2004, 3: 1546-1549
    [13] Andreu Llobera, Volker Seidemann, JoséA. Plaza, et al. Characterization of Optical Accelerometers Based on UV-Sensitive Polymers. IEEE SENSORS JOURNAL, 2006, 6(2): 412-419
    [14] Abdelrafik Malki, Pierre Lecoy, Jeanine Marty, et al. Optical fiber accelerometer based on asilicon micromachined cantilever. APPLIED OPTICS, 1995, 34(34): 8014-8018
    [15] E. B. Cooper, E. R. Post, S. Griffith, et al. High-resolution micromachined interferometric accelerometer. APPLIED PHYSICS LETTERS, 2000, 76(22): 3316-3318
    [16] Y. H. Chen, Y. Wang and N. C. Tien. A thick polysilicon surface micromachined optically sensed accelerometer. Proc. SPIE, 1999, 3630: 190-197
    [17]吴波,陈才和,张晓玲等.M-Z干涉型集成光学微加速度传感器结构设计.光电子·激光,2004,15(11) :1263-1266
    [18] Zhang Yanjun, Wei Jianxia, Chen Caihe, et al. Research of Mach-Zehnder Interferometer in Electro-optic Integrated Accelerometer. Proc.of SPIE, 2007, 6781: 67812F
    [19] Tong Zhengrong, Wang Zhiyong, En De, et al. Research and fabrication of harmonic oscillator with high quality in Si-based MOEMS acceleration seismic geophone. Proc.of SPIE, 2007, 6836: 68360M
    [20] Zhang Yanjun, Wei Jianxia, Chen Caihe, et al. Design and Fabrication of Acousto-optic Waveguide Phase Modulator in Electro-optic Integrated Accelerometer. Proc. of SPIE, 2007, 6781: 678136
    [21] Gerold Schr?pfer, Wilhelm Elflein, Michelde Labachelerie, et al. Lateral optical accelerometer micro- machined in (100) silicon with remote readout based on coherence modulation. Sensors and Actuators A, 1998, 68: 344-349
    [22] Caihe Chen, Bo Wu, Guilan Ding, et al. Research and Fabrication on Integrated Optical Chip of Hybrid-integrated Optical Acceleration Seismic Geophone. Proceedings of SPIE, 2002, 4919: 1-7
    [23]吴波,陈才和,丁桂兰,等.迈克尔逊干涉型加速度地震检波器集成芯片.光电子·激光,2003,14(8) :791-794
    [24]恩德,陈才和,崔宇明,等.集成光学迈克尔逊干涉型加速度地震检波器.中国激光,2005,32(3):399-403
    [25] De En, Caihe Chen, Yuming Cui et al. Hybrid-integrated Optical Accelerations Seismometer and its Digital Processing System. Proc. of SPIE, 2005, 5634: 424-433
    [26] T.Storgaard-Larsen, S.Bouwstra and O.Leistiko. Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planarwaveguide. Sensor and Actuators A, 1996, 52: 25-32
    [27] Shuichi Tai, Kazuo Kyuma and Masahiro Nunoshita. Fiber-optic acceleration sensor based on the photoelastic effect. Applied Optics, 1983, 22(11): 1771-1774
    [28] Wei Su, John A. Gilbert, Mark D. Morrissey, et al. General-purpose photoelastic fiber optic accelerometer. Optical Engineering, 1997, 36(1): 22-28
    [29]戴基智,孙守瑶.LiNbO3质子交换光波导退火特性的研究.电子学报,1995,23(5):109-111
    [30]西原浩,春名正光,栖原敏名.集成光路,梁瑞林译.北京:科学出版社,2004
    [31]李家泽,朱宝亮,魏光辉.晶体光学..北京:北京理工大学出版社,1989,260-268
    [32]金国良,候林,周毅等.波导调制器的光束传播法设计.光学学报,1997,17(10):1374-1379
    [33]马春生,刘式庸.光波导模式理论.长春:吉林大学出版社,2006,47-53
    [34] Hamid H H, Park L C, Max J L. A new low-loss wide-angle y-branch configuration for optical dielectric slab waveguide. IEEE J. Photon Technol Lett, 1994, 6(4): 528-530
    [35] Hsu J M, Lee C T. Systematic design of novel wide-angle low-loss symmetric y-junction waveguides. IEEE J. Quantum Electron, 1998, 34(4): 673-679
    [36]郑宏林,陈福深.两种不同Y分支光波导的弯曲损耗研究.半导体光电,2005,26(1):30-33
    [37]王伟,潘炜,罗斌,等.余弦型Y分支结构参数的性能分析.激光与红外,2007,37(1):69-75
    [38] G.A. Bogert, low-loss Y-branch power dividers, Electronics lett, 1989, 25(25): 1712-1714
    [39] Kenji Kawano, Tsutomu Kitoh. Introduction to optical waveguide analysis: solving Maxwell equations and the Schrodinger equation. John Wiley&Sons, Inc, 2001, 180-204
    [40] Chou H F, Lin C F, Wang G C. An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguide. Journal of Lightwave Technology, 1998, 16: 1686-1693
    [41]严朝军,许政权,陈益新.三维有限差分波束传播法:用于Ti:LiNbO3方耦合器的模拟.光学学报,1997,17(6):778-781
    [42]蔡伯荣.集成光学.成都:电子科技大学出版社,1990:119
    [43] Shih-Jung Chang, Ching-Long Tsai, Yih-Bin Lin, etal. Improved electrooptic modulator with ridge structure in X-Cut LiNbO3. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17(5): 843-847
    [44] Masashi O, Kazuhiko H, Seishi S, et al. Relationship between sensitivity and waveguide position on the diaphragm in integrated optic pressure sensors based on the elasto-optic effect. Applied Optics, 2002, 41(24): 5016-5021
    [45]肖素艳,王东红,刘晓为,等.M-Z型硅基ARROW压力传感器设计.微纳电子技术,2003, 07/08:429-431
    [46] Hiroyuki N, Yu W, Masashi O, et al. Sensitivity dependences on side length and aspect ratio ofa diaphragm in a glass-based guidedwave optical pressure sensor. Optics Express, 2008, 16(19): 15024-15032
    [47] Hiroyuki N, Yu W, Masashi O, et al. Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect. Optical Engineering, 2008, 47(4): 044402
    [48] Chen F, Salcic Z, Wang J H. Modelling and Performance Evaluation of a Novel Optical Accelerometer. Proc. SPIE, 2006, 6352: 63522O
    [49] Chen F, Salcic Z. Analysis of photo-elastic modulation in acceleration sensing. Sensors, 2007 IEEE, 2007: 667-670
    [50]陈纲,廖理几,郝伟.晶体物理学基础(第二版).北京:科学出版社,2007,153-157
    [51]徐泰然. MEMS和微系统—设计与制造.王晓浩等译.北京:机械工业出版社,2004
    [52]刘迎春,叶湘滨.传感器原理设计与应用(第三版).长沙:国防科技大学出版社,1997,19-33
    [53] CHEN Caihe, DING Guilan, ZHANG Delong, et al. Michelson fiberoptic accelerometer. Review of Scientific Instruments, 1998, 69(9): 3123-23126
    [54]顾海明,周勇军.机械振动理论与应用.南京:东南大学出版社,2007,5-22
    [55] Y.Ohmachi and J.Noda. Electro-optic light modulator with branched ridge waveguide. Appl. Phys. Lett, 1975, 27: 544-546
    [56] C.L.Lee, and C.L.Lu. CF4 plasma etching on LiNbO3. Appl. Phys. Lett, 1979, 35: 756-758
    [57] J.L.Jackel, R.E.Howard, et al. Reactive ion etching of LiNbO3. Appl. Phys. Lett., 1981, 38: 907-909
    [58] F.Laurell, J.Webjorn, et al. Wet etching of proton-exchanged lithium niobate a novel processing technique. J.Lightwave Technol, 1992, 10: 1606-1609
    [59] Wen-Ching Chang, Chao-Yung Sue, Hung-Ching Hou, etal. A novel self-aligned fabrication process for Nickel-Indiffused lithium niobate ridge optical waveguides. J.Lightwave Technol, 1999, 17(4): 613-620
    [60] Rei-Shin Cheng, Tzyy-Jiann Wang, and Way-Seen Wang. Wet-Etched ridge waveguides in Y-Cut lithium niobate. J.Lightwave Technol, 1997, 15(10): 1880-1887
    [61] Jackel J.L. Proton exchange: past, present and future. Proc.Of SPIE, 1991, 583: 54-63
    [62]张德龙,丁桂兰,崔宇明,陈才和.质子交换LiNbO3光波导.物理学进展,2001,21(1):45-65
    [63]孔勇发,许京军等.多功能光电材料—铌酸锂晶体.北京:科学出版社,2006
    [64]张谦述,刘永智,杨亚培等.质子交换LiNbO3波导表面裂纹的研究.激光技术,2006,30(4):385-389
    [65]蔡伯荣.集成光学.成都:电子科技大学出版社,1990,252-257
    [66] K. T. V. Grattna and B. T. Meggltt, Optical Fiber Sensor Technology. London: Chapmna&Hall, 1995
    [67]刘士奎,张金涛,刘盛春.基于全光纤马赫-曾德尔干涉仪的微位移传感研究.光学与光电技术,2004,2(5):40-42
    [68]刘鸿文.简明材料力学.北京:高等教育出版社,1997,13-27
    [69]丁桂兰,刘振富,陈才和等.三分量全光纤加速度地震检波器的设计.光电子·激光, 2002,13(1):50-52
    [70]丁桂兰,刘振富,崔宇明等.顺变柱体型全光纤加速度检波器.光学学报,2002,22(3):340-343
    [71]曾楠.光纤加速度传感器若干关键技术研究[博士学位论文].北京:清华大学,2005
    [72] Miao L J. Data analysis and modeling of fiber-optic gyroscope drift. Journal of Beijing Institute of Technology, 2002, 11(1): 50-55
    [73]余有龙,刘盛春,刘士奎等.非平衡全光纤干涉仪臂长差测量方法的研究.黑龙江大学自然科学学报,2005(2):216-218
    [74]聂小燕.一种全光纤速度传感器的研究[硕士学位论文].成都:电子科技大学,2006
    [75]胡险峰.激光二极管自混合干涉和微振动的实验观测.大学物理,2006,25 (11):44-48
    [76]张义平,吴桂义.爆破地震波特性研究.矿业研究与开发,2007,27(6):68-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700