用户名: 密码: 验证码:
烟草MADS盒基因NtPR的克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物MADS盒基因蛋白是一类在生物发育过程中起着重要作用的转录因子家族,最早期的MADS盒基因是分别从酵母(MCM1)、拟南芥(AGAMOUS)、金鱼草(DEFICIENS)、和人类(SRF)中克隆得到的,这也是MADS盒基因名字的由来。植物中MADS盒基因家族的研究已较为深入,功能主要涉及到植物花发育的相关过程中。
     植物花柄是连接花器官和营养器官的重要部分,但花柄发育的分子机制并不清楚,模式植物拟南芥中AtBP、AtER突变体花柄变短,具体调控机制有待于进一步研究。
     本文以烟草为材料克隆了一个MADS盒基因,命名为NtPR,聚类分析表明该基因属于SVP亚家族,蛋白水平上与番茄JIONTLESS具有80%以上的同源性。功能分析初步发现NtPR在烟草中能够影响花柄发育,花序结构等,用RACE方法获得NtPR基因全长CDS基础上,我们对该基因进行了一系列的功能分析:
     (1)为了研究NtPR的亚细胞水平表达部位,我们以拟南芥叶片为材料,对NtPR进行了亚细胞定位研究,结果表明该基因仅在细胞核中表达,符合转录因子的特点。
     (2) MADS盒基因功能作用模式一般形成多聚体,为了研究NtPR的作用模式,我们利用酵母双杂交的方法对NtPR与部分候选基因蛋白进行了互作检测,结果表明NtPR蛋白可能在行使功能时形成同源二聚体。
     (3)为了进一步研究NtPR作为MADS盒基因在烟草中的功能,本研究中分别构建了35S启动子下的过表达载体和RNAi载体并转化烟草,都得到了相应的转基因植株,表型分析发现,在过表达植株中烟草花柄伸长受到严重抑制,花序整体结构变得紧凑、早花等,RNAi植株花序结构伸展,花的数量减少,其中NtPR作为MADS盒基因影响到花柄伸长发育,这个功能在MADS盒基因中是首次发现,拓展了MADS盒基因在植物中的功能解析。
     (4)在过表达转基因烟草中利用荧光半定量发现NtBP、NtER、NtYUC等基因在转录水平上均受到不同程度的影响,其中NtYUC基因是生长素合成过程中的关键基因,烟草的生长素Marker基因NtParC转录水平明显上调,综合表明NtPR可能与生长素代谢有一定关系。(5)在获得以上结果的基础上,本文又对NtBP、NtER做了初步研究,我们分别获得了NtBP过表达和RNAi植株,NtER的antisense植株,结果表明,在NtBP的沉默植株中,花柄伸长受到影响,花序结构变得紧凑,而在NtPR过表达植株中NtBP是下调的,综合推断在花柄发育的信号通路中NtBP可能是NtPR的下游因子,当然这个推断还有待于进一步证明。
     综上结果推断NtPR作为MADS盒基因成员影响了花柄的发育,但花柄作为一个重要器官本文作者推断应该是由多基因控制的,所以在NtPR的RNAi植株中并没有明显表型,实验表明NtPR可能与生长素代谢有一定的关系,另外NtBP作为影响花柄发育的另一转录因子可能在NtPR的下游起作用。MADS盒基因影响花柄发育的功能未见报道,本研究一方面扩展了MADS盒基因作为一类重要转录因子对植物生长发育的重要作用,另一方面为花柄发育的研究提供理论参考。农业上花柄发育特性影响到诸如穗型等重要农艺性状,所以花柄发育的研究在育种上也具有实践意义。
MADS-box genes play very important roles in plant development. The first MADS-box genes were cloned from yeast, Arabidopsis thaliana, Antirrhinum majus and human named MCM1, AGAMOUS, DEFICIENS and SRF respectively and hence MADS-box gene. MADS-box genes of plants have been extensively studied.
     In this project we cloned a MADS-box gene named NtPR, which belongs to the SVP subfamily. Blast result shows that there is over 80% homology on the protein level between NtPR and JIONTLESS of tamato which controls the development of pedicel abscission zone. Our data reveal that NtPR can affect the development of pedicel, a novel fuction for MADS-box genes. On the basis of the whole coding sequence obtained by rapid amplification of cDNA ends (RACE) assay, we further studied the function of this gene.
     (1) Taking the Arabidopsis thaliana leaves as materials, we carried out the sublocalization assay. Our data show that NtPR only express in the nuclei.
     (2) Many papers reveals that MADS-box gene usually form polymers, so we study the functional model of NtPR. Our data shows that this gene may form homo-dimers.
     (3) In our study, we obtained the NtPR over-expression and RNAi plants, both of which were driven by 35S promoter. Phenotypic analysis showed that over-expression plants developed shortened pedicels and the overall inflorescence structure becomes compact with early flowering. In contrast, inflorescence structures of RNAi plants become extended and the number of flowers reduced.
     (4) In over-expression transgenic plants, we found that NtBP, NtER, NtYUC were changed at the transcriptional level using real-time PCR. NtYUC gene is known as a key factor to auxin synthesis process. We then tested the expression of the auxin marker gene NtParC. The expression of NtParC was significantly increased. So we suggest that NtPR may be involed in auxin metabolism or signaling. (5) On the basis of results obtained above, we developed NtBP overexpression, NtBP RNAi and NtER antisense plants. The results show that pedicel elongation was affected in NtBP RNAi plants and the inflorescence becomes compact, while in NtPR over-expression plants the NtBP expression is down regulated. So we predict that NtBP is a downstream factor of NtPR in pedicel development signal pathway, although this hypothesis needs to be further investigated.
     NtPR impacts the development of pedicel as a member of MADS-box gene family. The pedicel may be controled by several other genes which play parallel roles as NtPR, explaining why in our RNAi lines we could not observe obvious phenotype. Our data also show that the NtPR may be involed in the auxin biosynthesis pathway. In addition, NtBP may play as a downstream member of NtPR regulating in pedicel development.
引文
崔荣峰,孟征.(2007)."花同源异型MADS-box基因在被子植物中的功能保守性和多样性".植物学通报24 (1): 31-41.
    张则婷,李学宝.(2007)." MADS-box基因在植物发育中的功能".植物生理学通讯43 (2):218-222
    吕山花,孟征(2007). "MADS-box基因家族基因重复及其功能的多样性".植物学通报24(1): 60-70.
    曾英;胡金勇;李志坚.(2001)."植物MADS盒基因与花器官的进化发育".植物生理通讯04
    宋达峰,韩凝,边红武,朱睦元,2005,用改良TAIL—PCR技术分析转基因烟草cbfl基因插入区的侧翼序列,作物学报,3l(1O):1377-1379
    陈军营,孙佩,王德勤,陈新建,2007,一种改良的克隆小麦GLP3基因启动子的TAIL.PCR技术,植物生理学通讯,43(4):754—758
    Angenent, G., J. Franken, et al. (1995). "A novel class of MADS box genes is involved in ovule development in petunia." The Plant Cell Online 7(10): 1569-1582
    Angenent, G., J. Franken, et al. (2003). "Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem." The Plant Journal 5(1): 33-44.
    Aoki, S., K. Uehara, et al. (2004). "Phylogeny and divergence of basal angiosperms inferred from APETALA3 and PISTILLATA-like MADS-box genes." Journal of Plant Research 117(3): 229-244.
    Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR.1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743.
    Calonje, M., P. Cubas, et al. (2004). "Floral meristem identity genes are expressed during tendril development in grapevine." Plant physiology 135(3): 1491-1501.
    Davies, B., P. Motte, et al. (1999). "PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development." The EMBO Journal 18(14): 4023-4034.
    Dievart, A., M. Dalal, et al. (2003). "CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development." The Plant Cell Online 15(5): 1198-1211.
    Ditta, G., A. Pinyopich, et al. (2004). "The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity." Current Biology 14(21): 1935-1940.
    Else, M., A. Stankiewicz-Davies, et al. (2004). "The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention." Journal of experimental botany 55(405): 2099-2109.
    Favaro, R., R. Immink, et al. (2002). "Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants." Molecular Genetics and Genomics 268(2): 152-159.
    Favaro, R., A. Pinyopich, et al. (2003). "MADS-box protein complexes control carpel and ovule development in Arabidopsis." The Plant Cell Online 15(11): 2603-2611.
    Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF. 2000. Redundant regulation of meristem identity and plantarchitecture by FRUITFULL, APETALA1, and CAULIFLOWER. Development 127, 725–734.
    Ferrario, S., R. Immink, et al. (2003). "The MADS box gene FBP2 is required for SEPALLATA function in petunia." The Plant Cell Online 15(4): 914-925.
    Fornara, F., L. Parenicova, et al. (2004). "Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes." Plant physiology 135(4): 2207-2219.
    Fujiwara, S., A. Oda, et al. (2008). "Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis." The Plant Cell Online 20(11): 2960-2971.
    Greco, R., L. Stagi, et al. (1997). "MADS box genes expressed in developing inflorescences of rice and sorghum." Molecular and General Genetics MGG 253(5): 615-623.
    Hansen, G., J. Estruch, et al. (1993). "NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern." Molecular and General Genetics MGG 239(1): 310-312.
    Honma, T. and K. Goto (2001). "Complexes of MADS-box proteins are sufficient to convert leaves into floral organs." Nature 409(6819): 525-529.
    Immink, R., S. Ferrario, et al. (2003). "Analysis of the petunia MADS-box transcription factor family." Molecular Genetics and Genomics 268(5): 598-606.
    Jack, T. (2004). "Molecular and genetic mechanisms of floral control." The Plant Cell Online 16(suppl_1): S1.
    Jang, S., K. An, et al. (2002). "Characterization of tobacco MADS-box genes involved in floral initiation." Plant and cell physiology 43(2): 230-238.
    Jeon, J., S. Lee, et al. (2000). "Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes." Molecular Breeding 6(6): 581-592.
    Kane, N., J. Danyluk, et al. (2005). "TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat." Plant physiology 138(4): 2354-2363.
    Kang, H. and G. An (1997). "Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family." Molecules and cells 7(1): 45-51.
    Kang, H., J. Jeon, et al. (1998). "Identification of class B and class C floral organ identity genes from rice plants." Plant Molecular Biology 38(6): 1021-1029.
    Kang, H., Y. Noh, et al. (1995). "Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco." Plant Molecular Biology 29(1): 1-10.
    Kempin, S., B. Savidge, et al. (1995). "Molecular basis of the cauliflower phenotype in Arabidopsis." Science 267(5197): 522-525.
    Krizek, B. and E. Meyerowitz (1996). "Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins." Proceedings of the National Academy of Sciences 93(9): 4063-4070.
    Kyozuka, J., T. Kobayashi, et al. (2000). "Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes." Plant and cell physiology 41(6): 710-718.
    Lee, J., S. Yoo, et al. (2007). "Role of SVP in the control of flowering time by ambient temperature in Arabidopsis." Genes & development 21(4): 397-402.
    Lee, S., S. Choi, et al. (2008). "Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses." Plant journal 54(1): 93.
    Lee, S., J. Jeon, et al. (2003). "Alteration of floral organ identity in rice through ectopic expression of OsMADS16." Planta 217(6): 904-911.
    Lee, S., J. Kim, et al. (2003). "Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case." Plant and cell physiology 44(12): 1403-1411.
    Lim, J., Y. Moon, et al. (2000). "Two rice MADS domain proteins interact with OsMADS1." Plant Molecular Biology 44(4): 513-527.
    Litt A, Irish VF. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165,821–833.
    Liu, C., H. Chen, et al. (2008). "Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis." Development 135(8): 1481-1491.
    Liu Y.G.,an d Huang N.,1 998,Eficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR,Plant Molecular Biology Reporter,l6(2):175—181
    Liu Y.G.,and Whier R.F.,1995,Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome walking,Genomics,25(3):674—681
    Lopez-Dee, Z., P. Wittich, et al. (1999). "OsMADS13, a novel rice MADS-box gene expressed during ovule development." Developmental genetics 25(3): 237-244.
    Mandel, M. and M. Yanofsky (1998). "The Arabidopsis AGL 9 MADS box gene is expressed in young flower primordia." Sexual Plant Reproduction 11(1): 22-28.
    Mao, L., D. Begum, et al. (2000). "JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development." Nature 406(6798): 910-913.
    Mena, M., B. Ambrose, et al. (1996). "Diversification of C-function activity in maize flower development." Science 274(5292): 1537-1540.
    Moon, Y., J. Jung, et al. (1999). "Identification of a rice APETALA3 homologue by yeast two-hybrid screening." Plant Molecular Biology 40(1): 167-177.
    Nagasawa, N., M. Miyoshi, et al. (2003). "SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice." Development 130(4): 705-718.
    Pelaz, S., G. Ditta, et al. (2000). "B and C floral organ identity functions require SEPALLATA MADS-box genes." Nature 405(6783): 200-203.
    Pelaz S, Tapia-Lo′pez R, Alvarez-Buylla ER, Yanofsky MF.2001. Conversion of leaves into petals in Arabidopsis. CurrentBiology 11, 182–184.
    Pelucchi, N., F. Fornara, et al. (2002). "Comparative analysis of rice MADS-box genes expressed duringflower development." Sexual Plant Reproduction 15(3): 113-122.
    Pnueli, L., D. Hareven, et al. (1994). "The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers." The Plant Cell Online 6(2): 175-186.
    Prasad, K., S. Parameswaran, et al. (2005). "OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs." The Plant Journal 43(6): 915-928.
    Prasad, K. and U. Vijayraghavan (2003). "Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning." Genetics 165(4): 2301-2305.
    Riechmann, J., J. Heard, et al. (2000). "Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes." Science 290(5499): 2105-2110.
    Riechmann, J., B. Krizek, et al. (1996). "Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS." Proceedings of the National Academy of Sciences of the United States of America 93(10): 4793-4798.
    Schwarz-Sommer, Z., I. Hue, et al. (1992). "Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development." The EMBO Journal 11(1): 251-263.
    Schmittgen TD, Livak KJ. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101-1108.
    Shchennikova, A., O. Shulga, et al. (2004). "Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies." Plant physiology 134(4): 1632-1641.
    Smykal, P., J. Gennen, et al. (2007). "Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches." Plant Molecular Biology 65(3): 233-242.
    Szymkowiak, E. and E. Irish (2006). "JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato." Planta 223(4): 646-658.
    Thei en, G. (2001). "Development of floral organ identity: stories from the MADS house." Current Opinion in Plant Biology 4(1): 75-85.
    Theissen, G., A. Becker, et al. (2000). "A short history of MADS-box genes in plants." Plant Molecular Biology 42(1): 115-149.
    Torii, K., N. Mitsukawa, et al. (1996). "The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats." The Plant Cell Online 8(4): 735-764.
    Uimari, A., M. Kotilainen, et al. (2004). "Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene." Proceedings of the National Academy of Sciences 101(44): 15817-15822.
    Vandenbussche, M., G. Theissen, et al. (2003). "Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations." Nucleic acids research 31(15): 4401-4409.
    Vandenbussche, M., J. Zethof, et al. (2004). "The duplicated B-class heterodimer model: whorl-specificeffects and complex genetic interactions in Petunia hybrida flower development." The Plant Cell Online 16(3): 741-754.
    Vrebalov, J., D. Ruezinsky, et al. (2002). "A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus." Science 296(5566): 343-346.
    Weigel, D. and O. Nilsson (1995). "A developmental switch sufficient for flower initiation in diverse plants." Nature 377(6549): 495-500.
    Winter, K., C. Weiser, et al. (2002). "Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization." Molecular biology and evolution 19(5): 587-596.
    Woodward, C., S. Bemis, et al. (2005). "Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases." Plant physiology 139(1): 192-203.
    Yamaguchi, N., M. Suzuki, et al. (2007). "CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development." Plant and cell physiology 48(9): 12751290.
    Yamaguchi, T., D. Lee, et al. (2006). "Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa." The Plant Cell Online 18(1): 15-18.
    Yamaguchi, T., N. Nagasawa, et al. (2004). "The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa." The Plant Cell Online 16(2): 500-509.
    Yanofsky, M., H. Ma, et al. (1990). "The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors." Nature 346(6279): 35-39.
    Yong-Yoon, C., K. Seong-Ryong, et al. (1995). "Characterization of two rice MADS box genes homologous to GLOBOSA." Plant Science 109(1): 45-56.
    Yohsuke Takahashi ,Toshiyuki Nagata.(1992)" Differential Expression of an Auxin-Regulated Gene, parC, and a Novel Related Gene, C-7, from Tobacco Mesophyll Protoplasts in Response to External Stimuli and in Plant Tissues"Plant Cell Physiol .33(6): 779-787
    Zhang, H. and B. Forde (1998). "An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture." Science 279(5349): 407-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700