用户名: 密码: 验证码:
钢—混凝土组合桁架梁抗弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-混凝土组合桁架梁是由钢桁架与混凝土板组合而成的受弯构件,这种组合梁具有优越的空间利用性能和显著的工程经济效益。钢-混凝土组合桁架梁目前在我国的研究还处于起步阶段,相关的理论和试验研究尚欠不足,尤其是缺乏适合我国工程设计需要的组合桁架结构承载性能及设计方法的研究。
     由于钢-混凝土组合桁架梁类型多样,受力性能亦较复杂,论文选取结构形式相对典型,在我国部分地区已开始初步使用的圆钢管组合桁架梁为研究对象,通过试验研究、有限元数值模拟、参数分析以及理论推导,研究钢-混凝土组合桁架梁的抗弯承载性能及其影响因素。
     论文首先采用试验方法研究了钢-混凝土组合桁架梁的抗弯承载能力。设计了4根编号为CB1、CB2a、CB2b和CB3的钢-混凝土组合桁架梁试件进行抗弯试验,详细介绍了试件单调加载静力试验的全过程情况,包括组合梁的破坏形态、变形性能、控制截面应变、滑移等。以CB2b试件为例,分析了混凝土受压翼缘板的应变及应力分布、荷载-挠度曲线以及抗弯极限承载力的变化特点。试验结果表明:钢-混凝土组合桁架梁的整个截面应变基本符合平截面假定;钢-混凝土组合梁的混凝土受压翼缘存在较明显的剪力滞后效应;钢-混凝土组合桁架梁具有较高的受弯承载能力和一定的延性性能。
     在试验研究的基础上,论文以4个试件为例分别建立了符合工程实际的钢-混凝土组合桁架梁的有限元模型。通过计算分析,了解了组合桁架梁的应力变化特点、组合梁的荷载-位移关系、荷载-滑移关系以及组合桁架梁的极限承载力,并与试验结果进行了对比。分析表明:从弹性刚度来看,4个试件有限元计算的弹性刚度均大于试验弹性刚度;从承载力来看,有限元得到的构件极限承载力与试验结果较接近,变形性能与试验结果基本吻合。
     为了便于设计应用,论文对钢-混凝土组合桁架梁受压混凝土翼板的有效宽度进行了大量的计算分析,并将分析结果与我国现行钢结构设计规范有关组合梁有效宽度的规定做了比较。论文对上述4个组合桁架梁试件混凝土翼板的应力分布情况分析表明:组合桁架梁在荷载作用下,随着作用荷载的增加,有效宽度系数变化较为复杂,但总体上呈增大的趋势。当其他条件不变时,组合梁的宽跨比(b/l)越大,有效宽度系数e越小。增大组合梁混凝土翼板宽度时,混凝土板上的应力分布不均匀程度会增大,剪力滞后效应加剧。因此,设计计算时应适当限制组合梁的宽跨比(b/l),使混凝土翼板充分发挥承载能力。设计计算时,如对梁的宽跨比不加区分,完全按照钢结构设计规范的规定取值,则有可能高估宽跨比较小的组合梁的极限承载力,导致偏于不安全的结果。在极限承载力状态下,组合桁架梁有效宽度的计算结果不低于现行钢结构规范的取值,对于不同高跨比的钢-混凝土组合桁架梁,设计计算时,可以完全按照钢结构设计规范的规定取值,计算组合梁的极限承载力。为了便于设计应用,论文最后还给出了便于工程应用的有效宽度简化计算公式。
     论文对组合梁的混凝土板厚度和宽度、腹杆截面尺寸、桁架梁上弦托板宽度以及栓钉抗剪连接程度等参数进行了分析,研究这些设计参数对组合桁架梁抗弯性能的影响特点。研究表明:当其他参数不变时,组合梁腹杆截面径厚比增加时,组合梁的初期刚度、后期刚度以及极限承载力均无明显变化。因此设计时适当考虑采用较厚且较宽阔的混凝土翼板,既可以提高组合梁承载力又能改善组合梁的变形性能。另外,上弦托板的宽度和栓钉抗剪连接程度都会在一定范围内提高组合梁的承载能力。
     为能从理论上更好地把握组合桁架梁的抗弯性能,论文推导了钢-混凝土组合桁架梁受弯承载力理论分析的基本假定和计算公式,总结组合桁架梁极限承载力的实用计算方法并与试验研究和有限元分析得到的数据结果进行了对比。研究表明:对于部分抗剪连接的桁架组合梁(CB1),有限元计算值和理论值几乎一致,而试验值比理论值偏小5%。对于完全抗剪连接的桁架组合梁(CB2a、CB2b和CB3),试验值比理论值平均偏大7%,有限元计算值比理论值偏大约19%。可见设计时采用理论推导的实用公式是偏于安全的。
     论文提出了一种新型双钉头型栓钉剪力连接件形式,并进行了推出试验有限元模拟分析,在此基础上讨论了影响新型栓钉连接件抗剪承载力的主要因素,并结合有关规范公式提出了设计建议,最后还分析了采用新型栓钉的钢-混凝土组合桁架梁的抗弯承载力。研究表明:当其他参数不变时,采用新型栓钉的组合梁极限承载力明显提高,后期刚度有所提高,变形能力显著增强。
Steel truss-concrete composite girder is a new type of composite beam structurewith superior space-using performance and significant project economic benefits.As apromising structural system of application, the research of steel truss-concretecomposite girder in China is still at the starting stage, related theoretical andexperimental research is still insufficient, especially the lack of research on bearingperformance and the design method suitable for needs.
     Because of the complex mechanical performance of steel truss-concretecomposite girder and the extensive experimental study is not realistic.A relativelysimple circular steel tube composite truss girder has been used as the research objectin this paper.The theoretical analysis, finite element numerical simulation andexperiments are adopted to study the properties and the influence factors of bendingbearing capaticy of the steel truss-concrete composite girder.
     Firstly, this thesis uses the experimental method to study the steel truss-concretecomposite beam flexural capacity.The CB1, CB2a, CB2b and CB3specimen aretaken for example.The test results show that: the whole section strain of the steel-trussconcrete composite girder of obeys the plain section assumption.Therefore, thetheoretical calculation with the plane section assumption is reasonable. It is alsofound that the concrete composite beams shear compression flange exist obvioushysteresis effect, therefore, the shear lag effect should be considered during thedesigns.The results show that: the bearing capacity and deformation performance ofcomposite truss beam is good.
     On the basis of experimental researches, the elastic and plastic stress analysis ofthe solid-web steel-concrete composite beams is put out, the circular steel tube trusstype steel concrete composite beams are analyzed and the stress and the effectivesection width is discussed, the formulas of the ultimate bending bearing capacity ofthe composite beams are derived. Theoretical analysis shows that: the compressiveconcrete flange effective width is an important factor which affects the bending bearing capacity.The accurate effective width should be calculated in design.For thesteel truss-concrete composite girder, there are only two basic failure modes offlexural failure, namely the lower chord tension yield failure or upper concrete plateis pressed.Designers should choose the failure mode and calculate the bearingcapacity of the corresponding limit. Analysis shows that:the4specimens of finiteelement calculation of elastic stiffness are larger than the test of elastic stiffness; frombearing capacity, bearing capacity and the test results are close to the ultimate finiteelement, the deformation performance is consistent with the test results. This providesa basis for the further study of parameter analysis.
     In order to facilitate the design application,a simplified calculation formula forthe effective width of steel-truss concrete composite girder is put out,which isconvenient for engineering application. In order to understand furtherly of the factorswhich have influence on the bearing capacity of the steel-truss concrete compositegirder, this paper also analyses the ventral rod thickness, width of concrete slab,girder truss chord plate width and spacing of studs and other parameters.On this basis,this paper presents a method to design a steel-truss concrete composite girderpreliminarily.
     In order to further understand the influence factors of the bending bearingcapacity of composite beams, the ventral bar section, concrete slab thickness andwidth, upper plate truss beam width and stud shear connection degree and otherparameters are analyzed.The characteristics of these design parameters haveimportmant influences on the flexural performance of composite truss girder.Research results show that: when the other parameters are fixed, composite beam webrod diameter thickness ratio increases, the initial stiffness of the composite beam, postyield stiffness and ultimate bearing capacity had no obvious change. So the designappropriate to consider the use of concrete wing plate is thick and broad, not only canimprove the bearing capacity of composite beams and can improve the deformationproperties of composite beams. In addition, the degree of shear connection upperplate width and studs are combined to improve the bearing capacity of beam in acertain range.
     The theoretical analysis is put out in order to understand better of the theory of flexural performance of composite truss girder. Comparison of solid web steel-concrete composite beam from the two levels of elasticity and plasticity, and the fullshear connection composite beams with partial shear connection composite beamplastic analysis results were put out. Research shows that: for non full shear trusscomposite beam (CB1), finite element calculation and theoretical values are almostthe same, while the test is smaller than the theoretical value of5%. For the completeshear truss composite beams (CB2a, CB2b and CB3), average7%greater than thetheoretical value of the test value, finite element calculation value is about19%higher than theoretical value.Therefore, the theoretical calculation formulas of theultimate bending bearing capacity of the composite beams are suitable for use,and itcan ensure enough strength and ductility reserve.
     At present, the traditional stud connectors are widely used in most steel-concretecomposite structures in China, the connection pieces root is relatively weak, the shearability is poor, the connection is easily failure.These disadvantages cause great wastein steel-concrete composite structures in China.Aiming at this problem, this paperproposes a novel double screw form head stud shear connection, and put out thepush-out test and finite element simulation analysis. On this basis, the main factorsinfluencing the new stud shear connectors carrying capacity are discussed and somedesign suggestions are put forward. Finally, the bending bearing capacity of asteel-truss concrete composite girder with the new style double-nut stud shearconnectors is discussed. The results show that: when the other parameters areconstant, the higher bearing capacity and better deformation ability should beobtained in the composite beams with new style double-nut stud shearconnectors.And the new stud shear connector has a good application prospects in thesteel-concrete composite structures.
引文
[1]刘维亚.钢与混凝土组合结构理论与实践[M].北京:中国建筑工业出版社,2008
    [2]钢结构设计规范(GB50017-2003)[S]
    [3]谈遂.钢桁架-混凝土组合梁空间有限元分析[D].长沙:中南大学,2007年
    [4]铁道部大桥局设计院技术室.桥梁情报资料—西欧结合梁桥的现有发展水平,1992
    [5]周胜利,林亚超.高速铁路钢桁梁桥桥面结构设计及减小噪音的结构措施[J].国外桥梁,1996,(3):22-32
    [6]周胜利,林亚超.日本北陆新干线犀川桥[J].国外桥梁,1996,(3):l-11
    [7] David Samuelson. Composite Steel Joists. ENGINEERING JOURNAL [J].2002(3):111-120
    [8] Corrin,M.(1993),“312Elm Street—Innovation Pays Off”,The Military Engineer, No.554,January-February.
    [9] http://www.cnbridge.cn/2010/0730/6282.html
    [10] Mackay HM,G illespie P&Leluau C. Report on the strength of steel I-beams haunched withconcrete. Engineering Journal, Canada,1923,6(8):365-369
    [11] Batho C,Lash SD&K irkham RHH. The properties of composite beams,consisting of steeljoints encased in concrete, under direct and sustained loading. Journal of the Institution ofCivil Engineers,1939,11(4):61-114
    [12] Viest IM. Investigation of stud shear connectors for composite concrete and steel T-beams.Journal of the American Concrete Institute,1956,27(8):875-891
    [13] D.Lam. Composite steel beams with precast hollow core slabs: behavior and design.Composite structure,2002,11(4):179-185
    [14] Viest IM. Investigations of stud shear connectors for composite concrete and steel T2beams.Journal of the American C oncrete Institute,1956,27(8):875289
    [15] Chapman JC. Composite construction in steel and concrete:The behaviour of compositebeams. The Structural Engineer,1964,42(4):115-125
    [16] Chapman JC,Balakrishnan S. Experiments on composite beams. The Structural Engineer1964,42(11):369-383
    [17] Slutter RG, Driscoll GC. Flexural strength of steel2concrete compostite beams. Journal of theStructural Division (ASCE),1965,91(ST2):71-99
    [18] Ollgaard JG, Slutter RG&Fisher JW. Shear strength of stud connectors in lightweight andnormal weight concrete. Engineering Journal (AISC),1971,8(2):55-64
    [19] R. P. Johns on and I.M.May. Partial-interaction design of composite beams[C],StructuralAug,1975
    [20] Williams, James B., and Galambos, Theodore V., Economic Study of a Braced Multi-StorySteel Frames, Engineering Journal, American Institute of Steel Construction, Vol.5, No.1,1968,2~11.
    [21] J. Hartley Daniels, Geoffrey D. Kroll, and John W. Fisher, Behavior of Composite-Beam toColumn Joints, Journal of the Structural Division, Proceedings of the American Society ofCivil Engineers, Vol.96, No. ST3, March,671~685,1970.
    [22] Peter Ansourian, Jack Willian Roderick, Composite Connections to External Columns,Journal of the Structural Division, Proceedings of the American Society of Civil Engineers,ASCE, Vol.102, No. ST8, August,1609~1625,1976.
    [23] Peter Ansourian, Plastic Rotation of Composite Beams, Journal of the Structural Division,Proceedings of the American Society of Civil Engineers, ASCE, Vol.108, No. ST3, March,643-659,1982.
    [24] Peter Ansourian, On the Design of Continuous Composite Beams, Composite and MixedConstruction. ASCE, New York, N.Y.,1-12,1985
    [25]聂建国,樊健生.国内钢-混凝土组合梁的研究及应用综述[R].第十届全国结构工程学术会议特邀报告,2001,182~190
    [26]朱聘儒,朱起.钢-混凝土组合梁协同工作的分析及试验[J].建筑结构学报,1987,8(5).
    [27]李天.简支钢-混凝土组合梁在短期静载作用下的试验研究和性能分析[D].郑州:郑州工学院,1984.
    [28]朱聘儒,朱起.钢-混凝土组合梁协同工作的分析及试验[J].建筑结构学报,1987,8(5).
    [29]黄道元.简支压型钢板组合梁在短期静荷载下受弯性能的试验研究[D].郑州:郑州工学院,1988.
    [30]陆小华.钢-混凝土组合梁在短期荷载下考虑混凝土非线性因素的刚度修正[J].武汉工业大学学报,1989(4):463~472.
    [31]朱聘儒,高向东.钢-混凝土连续组合梁塑性铰特性及内力重分布研究[J].建筑结构学报,1990,11(6):17~22.
    [32]聂建国,崔玉萍.钢-混凝土组合梁在单调荷载下的变形和延性[J].建筑结构学报,1998,19(2):30~36.
    [33]聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报,1997,18(2):13~19.
    [34]聂建国,袁彦声.钢-砼组合梁的截面性能分析[J].郑州工学院学报,1993,14(1):12~17.
    [35]聂建国,孙国良.钢—混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985,6(2):10~17.
    [36]朱聘儒,朱起.组合梁的连接件与设计承载力[J].工业建筑,1985(10):2~6.
    [37]张少云.钢-混凝土组合梁栓钉剪力连接件抗剪强度及性能研究[D].郑州:郑州工学院,1987.
    [38]聂建国,沈聚敏,袁彦声等.钢-混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1995,17(2):21~29.
    [39]王挺,聂建国,李炳益等.钢-压型钢板混凝土组合梁极限抗弯承载力的研究[J].建筑结构学报,2001,22(2):61~65.
    [40] Davies C. Steel concrete composite beams with flexible connectors: a survey of researc.Concrete,1967(12):425~430.
    [41]蔡国宏,国外桥梁建设与发展的新动态[J].国外公路,1998,18(2):9~15.
    [42]胡夏闽,高华杰.组合结构在欧洲的新进展[J].工业建筑,2002,32(5):75~80.
    [43]杨义东,李涛.钢-混凝土组合结构桥在日本的发展趋势[J].国外桥梁,1998(4):39~42.
    [44] Ivan M.Viest. Composite construction design for buildings[J],New York. ASCE.1997.
    [45] P.C.Wang and D.J.Kaley,Composite action of concrete slab and open web joist(without theuse of shear or ineetors), AISC Engineering Journal, January,1967.D.J.L.Kennedy.FlexuraltestsoftwoFull—scaleeomPositetrUsses[J].Canadian Journal ofCivil Engineering,Vol.19. No.2.1992.
    [46] Andrews E.S. Elementary principles of reinforced concrete construction. Scott, Greenwoodand Sons,1912.
    [47]王连广,刘之洋.钢与轻骨料混凝土组合梁[M].成都:西南交通大学出版社.
    [48] Viest I.M,Investigation of stud shear connector for composite concrete and steel T-beams,Journal of ACI,1956,27(8):875~891.
    [49] Chapman J.C. Experiments on composite beams. The Structural Division,1960,86(6):1~21.
    [50] Barnard P.R., Johnson R.P., Ultimate strength of composite beams. Proc. Instn. Civ. Engrs.,Part2,1965,32(10),161~179.
    [51] L.C.P. Yam, J.C. Chapman, The Inelastic Behaviour of Continuous Composite Beams ofSteel and Concrete, Proceedings, the Institution of Civil Engineers, June1972, Volume53,487-501.
    [52] Johnson R.P., Willmington R.T. Vertical shear strength of commpact composite beams. Proc.Instn. Civ. Eng. Suppl.,1972(1):1~6.
    [53] Johnson, R. P., and May, I. M., Partial interaction design of composite beams, The StructralEngineer.,1975,53(8).
    [54] Moffatt K.R., Lim P.T>K. Finite element analysis of reinforced concrete beams. J. ACI,1967,64:152~163.
    [55]朱聘儒,朱起.钢-混凝土组合梁协同工作的分析及试验[J].建筑结构学报,1987,8(5).
    [56]国明超,李伟,朱聘儒.钢-混凝土组合梁板托抗力作用探讨[J].哈尔滨建筑工程学院学报,1991,24(4):52~56.
    [57]聂建国,沈聚敏.滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J].土木工程学报,1997,30(1):31~36.
    [58]钟新谷,舒小娟,沈明燕.钢箱-混凝土组合梁弯曲性能试验研究[J].建筑结构学报2006,27(1):71~76.
    [59] Newmark N. M., Siess, C. P., Viest, I.M,Test and analysis of composite beams withincomplete interaction. Experimental Stress Analysis,1951,9(6):896-901.
    [60] Oehlers D.J. Splitting induced by shear connectors in composite beams. J. StructureEngineering.1989,115(2):341~362.
    [61] Wright H.D. The deformation of composite beams with discrete flexible connection. J.Construction Steel Research.1990,15:49~64.
    [62] Crisinel M., Partial-interaction analysis of composite beams with profiled sheeting andnon-welded shear connectors, Journal of construction steel research,1990,15:65~98.
    [63]付果,赵鸿铁,等.钢-混凝土组合梁截面组合抗剪性能的试验研究[J].建筑结构,2007,37(10):66~68.
    [64] Ansourian P., Analysis of composite beams. J. Structural Division,1978,104(10):1631~1645.
    [65]朱聘儒,傅功义.考虑钢与混凝土之间相对滑移的组合梁弹性分析与受剪试验[J].钢结构,1988,1:10~16.
    [66] Bradford M. A., Gilbert R.I. Composite beams with partial interaction under sustained loads.[J]. Structure Engineering.1992,118(7).
    [67]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11~17.
    [68]聂建国,李勇,余志武.钢-混凝土组合梁刚度的研究[J].清华大学学报,1998,38(10):38~41.
    [69]余志武,蒋丽忠,李佳.集中荷载作用下钢混凝土简支梁界面滑移理论和变形计算[J].土木工程学报,2003,36(8):1~6.
    [70]蒋丽忠,余志武,李佳.均布荷载作用下钢混凝土简支梁界面滑移理论和变形计算[J].工程力学,2003,20(2):133~137.
    [71] Clawson C., Darwin D., Tests of composite beams with openings.[J]. Structural Division,1982,108(1)145~162.
    [72]朱聘儒,高向东.钢-砼连续组合梁塑性铰特性及内力重分布研究[J].建筑结构学报1990,11(6):26~36.
    [73] Fahmy E.H. Analysis of composite beams with rectangular web openings.[J]. ConstructionSteel Research.1996,37(1):47~62.
    [74] Amadio C., Fragiacomo M. Simplified approach to evaluate creep and shrinkage effects insteel-concrete composite beams.[J]. Structure Engineering.1997,123(9):1152~1162.
    [75] Richard Yen J.Y. Composite beams subjected to static and fatigue loads. Journal of structureengineering1997,123(6):795~771.
    [76]余志武,周凌宇,罗小勇.钢-部分预应力混凝土连续组合梁内力重分布研究[J].建筑结构学报,2002,23(6):64~69.
    [77]付果,赵鸿铁,薛建阳.钢-混凝土组合梁掀起力的理论计算[J].西安建筑科技大学学报,2008,40(3):335~340.
    [78] Brian Uy. Application behavior and design of composite steel-concrete beams subjected tocombined actions [P]. Proceedings of the9th international conference on steel concretecomposite and Hybrid structures(ASCCS2009), Leeds, UK, July2009.
    [79] Lembeck, Jr., H. G.(1965), Composite Design of Open Web Steel Joists, M.Sc. Thesis,Washington University, St.Louis, MO.
    [80] P.C.Wang and D.J.Kaley. Composite action of concrete slab and open web joist(without theuse of shear connectors), AISC Engineering Journal, January,1967.
    [81] Galambos, T. V. and Tide, R. H. R.(1970),“CompositeOpen-Web Steel Joists”, AISCEngineering Journal, January.
    [82] Cran, J. A.(1972),“Design and Testing Composite Open Web Steel Joists”, TechnicalBulletin11, Stelco, January.
    [83] Azmi, M. H.(1972), Composite Open-Web Trusses with Metal Cellular Floor, A Master ofEngineering Thesis,McMaster University, Hamilton, Ontario, April.
    [84] Iyengar, SH and Zils, JJ,“Composite floor system for Sears Tower”. Engineering Journal,10(3),74-81,1973.
    [85] Robinson, H. and Fahmy, E. H.(1978),“The Design of Partially Connected CompositeOpen-Web Joists”, Canadian Journal of Civil Engineering, Volume5, pp.611-614.
    [86] Bjorhovde, R." Full Scale Test of a Composite Truss", Structural Engineering Report No.97,Dept. of Civil Engineering, University of Alberta, Canada,1981.
    [87] Leon, R. T. and Curry, J.(1987),“Behavior of Long Span Composite Joists”, ASCEStructures Congress Proceedings, Florida, August, pp.390-403.
    [88] Curry, J. H.(1988), Full Scale Tests on Two Long-Span Composite Open-Web Steel Joists,Masters Thesis, Department of Civil and Mineral Engineering Institute of Technology,University of Minnesota, MN.
    [89] Alsamsam, I.(1988), An Experimental Investigation Intothe Behavior of Composite OpenWeb Steel Joists, Masters Thesis, Department of Civil and Mineral Engineering Institute ofTechnology, University of Minnesota, MN.
    [90] Patras, W.(and Azizinimini, A.), Open Web Composite Joist Systems Utilizing Ultra-HighStrength Concrete, Masters Thesis, College of Engineering and Technology, University ofNebraska–Lincoln, NE,1991.
    [91] SJI, Composite Steel Joist Catalog, First Edition, Steel Joist Institute, Myrtle Beach, SC,2007.
    [92]周惟德,王晓毅. T型连接件的格构式推出试验研究——关于钢-砼组合桁架系列研究之一[J].合肥工业大学学报(自然科学版),1993,(03).
    [93]周惟德,王晓毅.拴钉连接件的格构式推出试验研究——关于钢-砼组合桁架系列研究之二[J].合肥工业大学学报(自然科学版),1993,(04).
    [94]周惟德,白凤,郑德尧等.反放弯筋连接件的格构式推出试验研究-关于钢-砼组合桁架系列研究之三[J].合肥工业大学学报(自然科学版),1994,(01).
    [95]周惟德,白家楠,雷源铁等.角钢连接件的格构式推出试验研究——关于钢-砼组合桁架系列研究之四[J].合肥工业大学学报(自然科学版),1994,(02).
    [96]周惟德,贾冬云. T型连接件在整体测试中的性能研究——关于钢-砼组合桁架系列研究之五[J].合肥工业大学学报(自然科学版),1994,(03).
    [97]周惟德,郑德尧,贾冬云.弯筋连接件在整体测试中的性能研究——关于钢-砼组合桁架系列研究之六[J].合肥工业大学学报(自然科学版),1994,(04).
    [98]周惟德,金建新.组合桁架中同时考虑滑移和掀起影响的理论分析——关于钢-砼组合桁架系列研究之七[J].合肥工业大学学报(自然科学版),1995,(04).
    [99]贾冬云.钢-混凝土组合桁架整体测试研究[D].合肥:合肥工业大学.1994.
    [100]金建新.钢-预应力砼叠合板组合桁架整体测试研究[D].上海:同济大学博士论文.2000.
    [101]陈辉求.钢-预应力砼叠合板组合桁架整体测试的有限元研究[D].合肥:合肥工业大学.1995.
    [102]刘东营.基于有限元分析的组合桁架计算理论研究[D].合肥:合肥工业大学.2005.
    [103]肖亚明、刘东营,简支组合桁架的翼缘有效宽度研究[J],工程建设与档案,2005年第19卷第4期,305—308.
    [104]金建新,王肇民.组合桁架中节点板上升式连接件有限元分析模型[J],建筑科学,1998年第14卷第5期.
    [105]金建新,王肇民,周惟德.节点板上升式连接件组合桁架受压杆件计算长度系数研究,工业建筑,1998(28)9-12.
    [106]郭仁杰.钢-混凝土组合桁架的试验研究[D].杭州:浙江大学,2007.
    [107]谈遂.钢桁架-混凝土组合梁空间有限元分析[D].长沙:中南大学,2007.
    [108]范国玺.钢桁架-混凝土组合梁有效宽度的研究[D].郑州:郑州大学,2010.
    [109] Dennis Lam, ASCE M, El-Lobody. Behavior of headed stud shear connectors in compositebeam [J].Journal of Structure Engineering,2005,131(1):96-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700