用户名: 密码: 验证码:
帕金森病致病基因产物LRRK2蛋白之LRR主域功能的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用酵母双杂交系统和免疫荧光技术研究野生型和变异型LRR(Il122V)主域在体外与parkin分子之间是否存在相互作用,为逐个解析LRRK2蛋白其他主域的功能,全面探讨LRRK2蛋白在帕金森病发病机制中作用的后续研究奠定基础。
     方法:通过分子克隆技术构建诱饵pGBDU-LRR质粒,转染进入酵母菌成为PJ69-4α/pGBDU-LRR菌株,应用酵母双杂交系统在猎物书架(prey of bookshelf)中筛选出可能与野生型LRRK2蛋白的LRR主域存在相互作用的蛋白。随后分别转染含FLAG标记的PRK5-parkin质粒(对照组),HA标记的野生型pCMV-LRR质粒+PRK5-parkin质粒(实验组1,parkin+LRR(W)),HA标记的变异型pCMV-LRR质粒+PRK5-parkin质粒(实验组2,parkin+LRR(M)),采用Hoechst染色试剂盒检测细胞凋亡,western blot检测parkin蛋白和野生型/变异型LRR主域的表达,免疫荧光技术进一步观察野生型/变异型LRR主域在细胞内是否共定位,免疫沉淀技术证实LRR主域在体外与parkin分子之间是否存在相互作用。
     结果:我们通过酵母双杂交系统从猎物书架中筛选出parkin分子可能与野生型LRR主域之间存在相互作用,通过共同转染野生型/变异型pCMV-HA-LRR质粒和PRK5-FLAG-parkin质粒进入HEK293细胞,western blot检测到parkin蛋白和野生型/变异型LRR主域在HEK293细胞成功表达,免疫荧光技术观察到parkin在细胞胞浆中表达(绿色荧光),野生型LRR亦在细胞胞浆中表达(红色荧光),融合后,可见parkin与野生型LRR共同转染的HEK293细胞胞浆呈橙色,说明两者之间在细胞内共定位,可能存在相互作用;然而变异型LRR在HEK293细胞的胞核中形成包涵体,融合后核内的包涵体仍然为红色,说明parkin与变异型LRR在体外表达时细胞内定位不同,两者之间没有相互作用。免疫沉淀实验进一步证实parkin分子与野生型LRR主域之间存在相互作用。Hoechst染色发现细胞凋亡比率较对照组、实验组1明显升高,免疫荧光也表明实验组2的细胞核内有类似于路易体的包涵体形成,所以我们建立了帕金森病的细胞模型。
     结论:野生型LRRK2蛋白的LRR主域在体外表达时与parkin位于细胞内同一亚结构,两者之间存在相互作用。突变的LRR主域(Il122V)与parkin之间的相互作用缺失。变异型LRRK2蛋白之LRR主域与parkin在体外共同表达时可以形成类似路易体样的细胞核内包涵体。
Objectives: After screening the prey of bookshelf to get the candidates that interact with the LRR domain of LRRK2 by yeast two hybrid system, the candidate molecule was further identified by immunofluorescence staining, which may offer a way to dissect the functions of other domains of LRRK2 protein in vitro to investigate the potential role of LRRK2 in the pathogenesm of Parkinson's disease.
     Methods: The bait plasmid pGBDU-LRR was constructed by molecular cloning and transformed into yeast to acquired the strain PJ69-4a/pGBDU-LRR. Then the yeast two hybrid system was set up to investigate which prey plasmid (alpha-synuclein,parkin,UCHLl and DJ1)interacted with the bait. There were three groups of HEK293 cells transfected with different combinations of FLAG or HA tagged plasmids persectively: the control (parkin only), the experiment group 1(parkin+wild type LRR) and the experiment group 2 (parkin+mutant LRR). Hoechst staining was done to investigate the cell apoptosis. Immunofluorescent staining was done to show if there is a colocalization of LRR domain and parkin. The western blot was to test whether wild type or mutant LRR domain can coexpress with parkin in HEK293 cells. The immunoprecipitation were performed to further show whether there is an interaction between parkin and LRR(wild type or mutant).
     Results: It was indicated that protein parkin may interact with wild type LRR domain by yeast two hybrid. Western blot showed that LRR and parkin were co-expressed in HEK293 cells and immunoprecipitation proved that there was an interaction between LRR domain (wild type) and parkin. The immunofluorscence also found out that parkin (green) and wild type LRR domain (Red) were both expressed in cytoplasm and the merged image was orange. It was indicated that LRR domain (wild type) and parkin were colocalized and there was an interaction between parkin and wild type LRR in vitro. However, the mutant LRR domain was expressed in nuclei as aggregates and the merged image was not orange. So mutant LRR domain and parkin were not colocalized and there was no interaction between parkin and mutant LRR. The Hoechst staining showed that the experiment group 2 had a higher rate of cell apoptosis than that of experiment group 1 and control. Moreover, immunostaining also found that there were intranuclear aggregates in experiment group 2 that were similar to Lewy's bodies in patients of Parkinson's disease. Therefore, we had set up the cellular model of Parkinson's disease.
     Conclusions: The wild type LRR domain colocalized with parkin in the same subcellular compartment and there is an interaction between parkin and wild type LRR, but no evidence of interaction between parkin and mutant LRR domain. The mutant LRR domain can form a intranuclear aggregates that is similar to the structure of Lewy body which is the hallmark of Parkinson's disease.
引文
[1] de Rijk MC, Launer LJ, Berger K, et al. Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54: S21-23.
    [2] Klawans HL, Stein RW, Tanner CM, Goetz CG. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 1982;39:302-304.
    [3] Langston JW, Ballard PA, Jr. Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6- tetrahydropyridine. N Engl J Med 1983;309:310.
    [4] Lazzarini AM, Myers RH, Zimmerman TR Jr, et al. A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology 1994; 44(Pt 1): 499-506.
    [5] Marder K, Tang MX, Mejia H, et.al. Risk of Parkinson's disease among first-degree relatives: a community-based study. Neurology 1996;47:155-160.
    [6] Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA 1999;281:341-346.
    [7] Clayton DF, George JM. 1998. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249-254.
    [8] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392:605-608.
    [9] Lucking CB, Durr A, Bonifati V, et al. French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease: Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med 2000;342:1560-1567.
    [10] Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature 1998; 395:451-452'.
    [11] Nishikawa K, Li H, Kawamura R, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun 2003;304:176-183.
    [12] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256-259.
    [13]Clark LN,Afridi S,Mejia-Santana H,et al.Analysis of an early-onset Parkinson's disease cohort for DJ-1 mutations.Mov Disord 2004;19:796-800.
    [14]Paisan-Ruiz C,Jain S,Evans EW,et al.Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease.Neuron 2004;44:595-600.
    [15]Zimprich A,Biskup S,Leitner P,et al.Mutations in LRRK2 cause autosomaldominant parkinsonism with pleomorphic pathology.Neuron 2004;44:601-607.
    [16]Theuns J,Van Broeckhoven C.alpha-Synuclein gene duplications in sporadic Parkinson disease.Neurology,2008,70(1):7-9.
    [17]Winkler S,Hagenah J,Lincoln S,et al.alpha-Synuclein and Parkinson disease susceptibility.Neurology,2007,69(18):1745-50.
    [18]Polymeropoulos MH,Lavedan C,Leroy E,et al.Mutation in the alphasynuclein gene identified in families with Parkinson's disease.Science 1997;276:2045-2047.
    [19]Farrer M,Kachergus J,Forno L,et al.Comparison of kindreds with.parkinsonism and alpha-synuclein genomic multiplications.Ann Neurol 2004;55:174-179.
    [20]Fortin DL,Troyer MD,Nakamura K,et al.Lipid rafts mediate the synaptic localization of alpha-synuclein.J Neurosci 2004;24:6715-6723.
    [21]Abeliovich A,Schmitz Y,Farinas I,et al.Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system.Neuron 2000;25:239-252.
    [22]Outeiro TF,Lindquist S.Yeast cells provide insight into alphasynuclein biology and pathobiology.Science 2003;302:1772-1775.
    [23]Mata IF,Lockhart PJ,Farrer MJ.Parkin genetics:one model for Parkinson's disease.Hum Mol Genet 2004;13(Spec No 1):R127-R33.
    [24]Uversky VN.A protein-chameleon:conformational plasticity of alphasynuclein,a disordered protein involved in neurodegenerative disorders.J Biomol Struct Dyn 200321:211-234.
    [25]Shimura H,Hattori N,Kubo S,et al.Familial Parkinson disease gene product,parkin,is a ubiquitin-protein ligase.Nat Genet 2000;25:302-305.
    [26]Shimura H,Hattori N,Kubo S,et al.Irnmunohistochemical and subcellular localization of Parkin protein:absence of protein in autosomal recessive juvenile parkinsonism patients.Ann Neurol 1999;45:668-672.
    [27]Kubo SI,Kitami T,Noda S,et al.Parkin is associated with cellular vesicles.J Neurochem 2001;78:42-54.
    [28]Darios F,Corti O,Lucking CB,et al.Parkin prevents mitochondrial swelling and cytochrome c release in mitochondriadependent cell death.Hum Mol Genet 2003;12:517-526.
    [29]Cookson MR,Lockhart PJ,McLendon C,et al.RING finger 1 mutations in Parkin produce altered localization of the protein.Hum Mol Genet 2003;12:2957-2965.
    [30]Gu WJ,Corti O,Araujo F,et al.The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates.Neurobiol Dis 2003;14:357-364.
    [31]Wang C,Tan JM,Ho MW,et al.Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease linked point mutations.J Neurochem 2005;93:422-431.
    [32]Farrer M,Stone J,Mata IF,et al.LRRK2 mutations in Parkinson disease.Neurology 2005;65:738-740.
    [33]LaVoie MJ,Cortese GP,Ostaszewski BL,et al.The effects of oxidative stress on parkin and other E3 ligases.J Neurochem,2007,103(6):2354-68.
    [34]Andres-Mateos E,Perier C,Zhang L,et al.D J-1 gene deletion reveals that DJ-1is an atypical peroxiredoxin-like peroxidase.PNAS,2007,104(37):14807-12.
    [35]da Costa CA.DJ-1:A New Comer in Parkinson's Disease Pathology.Curr Mol Med,2007,7(7):650-7.
    [36]Berg D,Schweitzer K,Leitner P,et al.Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson's disease.Brain 2005;128,3000-3011.
    [37]Khan NL,Jain S,Lynch JM,et al.Mutations in the gene LRRK2 encoding dardarin(PARK8)cause familial Parkinson's disease:clinical,pathological,olfactory and functional imaging and genetic data.Brain 2005;128,2786-2796.
    [38]Gilks WP,Abou-Sleiman PM,Gandhi S,et al.A common LRRK2 mutation in idiopathic Parkinson's disease Lancet 2005;365,415-416.
    [39]Deng H,Le W,Guo Y,et al.Genetic and clinical identification of Parkinson's disease patients with LRRK2 G2019S mutation.Ann.Neurol.2005;57,933-934.
    [40]Funayama M,Hasegawa K,Ohta E,et al.An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 famil.Ann.Neurol.2005;57,918-921.
    [41]Albrecht,M.LRRK2 mutations and Parkinsonism.Lancet 2005;365,1230.
    [42]Lesage S,Durr A,Tazir M et al.LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs.N.Engl.J.Med.2006;354,422-423.
    [43]Ozelius LJ,Senthil G,Saunders-Pullman R,et al.LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews.N.Engl.J.Med.2006;354,424-425.
    [44]Orr-Urtreger A,Shifrin C,Rozovski U,et al.The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease:is there a gender effect? Neurology,2007,69(16):1595-602.
    [45]Grimes DA,Racacho L,Han F,et al.LRRK2 screening in a Canadian Parkinson's disease cohort.Can J Neurol Sci,2007,34(3):336-8.
    [46]Melrose H,Lincoln S,Tyndall G et al.Anatomical localization of leucine-rich repeat kinase 2 in mouse brain.Neuroscience 2006;139(3):791-794.
    [47]Simon-Sanchez J,Herranz-Perez V,Olucha-Bordonau F,et al.LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain.Eur.J.Neurosci.2006;23:659-666.
    [48]Korr D,Toschi L,Donner P,et al.LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain.Cell.Signal.2006;18:910-920.
    [49]Bosgraaf L,Van Haastert PJ.Roc,a Ras/GTPase domain in complex proteins.Biochim.Biophys.Acta 2003;1643:5-10.
    [50]Manning G,Whyte DB,Martinez R et al.The protein kinase complement of the human genome.Science 2002;298:1912-1934.
    [51]Morris HR.Autosomal dominant Parkinson's disease and the route to new therapies.Expert Rev Neurother,2007,7(6):649-56.
    [52]Cookson MR,Dauer W,Dawson T,et al.The roles of kinases in familial Parkinson's disease.J Neurosci,2007,27(44):11865-8.
    [53]Gandhi PN,Wang X,Zhu X,et al.The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules.J Neurosci Res,2008Jan 23;[Epub ahead of print]
    [54]Greggio E,Singleton A.Kinase signaling pathways as potential targets in the treatment of Parkinson's disease.Expert Rev Proteomics,2007,4(6):783-92.
    [55] Guo L, Gandhi PN, Wang W, et al. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2),is an authentic GTPase that stimulates kinase activity.Exp Cell Res, 2007,313(16):3658-70.
    [56] Lee SB, Kim W, Lee S, et al. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem Biophys Res Commun, 2007, 358(2):534-9.
    [57] Fields S, Sternglanz R. The two-hybrid system: an assay for protein-protein interactions. Trends Genet 1994; 10(8): 286-92.
    [58] Andrade MA, Perez-Iratxeta C, Ponting CP. Protein repeats: structures, functions, and evolution. J. Struct. Biol. 2001;134: 117-131.
    [59] Hattori N, Sato S. Animal models of Parkinson's disease: similarities and differences between the disease and models. Neuropathology, 2007,27(5):479-83.
    [60] Bloem BR, Irwin I, Buruma OJ, et al. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson's disease. J Neurol Sci 1990;97:273-293.
    [61] Forno LS, Langston JW, DeLanney LE, Irwin I. An electron microscopic study of MPTP-induced inclusion bodies in an old monkey. Brain Res 1988;448:150 -157.
    [62] Beal MF. Experimental models of Parkinson's disease. Nat Rev Neurosci 2001;2:325-334.
    [63] Shuldiner AR. Transgenic animals. N Engl J Med 1996;334:653- 655.
    [64] Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 2000;20:3214-3220.
    [65] Goldberg MS, Palacino JJ, Meloni EG, Shen J. Generation and characterisation of parkin knockout mice. Program 118.1 Washington, DC: Society for Neuroscience; 2002 p 118.1.
    [66] Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 2002;99:14524-14529.
    [67]Masliah E,Rockenstein E,Veinbergs I,et al.Dopaminergic loss and inclusion body formation in alpha-synuclein mice:implications for neurodegenerative disorders.Science 2000;287:1265-1269.
    [68]van der Putten H,Wiederhold KH,Probst A,Barbieri S,et al.Neuropathology in mice expressing human alphasynuclein.J Neurosci 2000;20:6021-6029.
    [69]Giasson BI,Duda JE,Quinn SM,et al.Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein.Neuron 2002;34:521-533.
    [70]Lee MK,Stirling W,Xu Y,et al.Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 3 Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice.Proc Natl Acad Sci U S A 2002;99:8968-8973.
    [71]Kirik D,Rosenblad C,Burger C et al.Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system.J Neurosci 2002;22:2780-2791.
    [72]Hsu LJ,Sagara Y,Arroyo A,et al.Alpha-synuclein promotes mitochondrial deficit and oxidative stress.Am J Pathol 2000;157:401-410.
    [73]Kanda S,Bishop JF,Eglitis MA,Yang Y,Mouradian MM.Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation.Neuroscience,2000;97:279-284.
    [74]Ko L,Mehta ND,Farrer M,et al.Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein.J Neurochem 2000;75:2546-2554.
    [75]Tanaka Y,Engelender S,Igarashi S,et al.Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis.Hum Mol Genet 2001;10:919-926.
    [76]Engelender S,Kaminsky Z,Guo X,et al.Synphilin-1 associates with alphasynuclein and promotes the formation of cytosolic inclusions.Nat Genet 1999;22:110-114.
    [77]Chung KK,Zhang Y,Lim KL,et al.Parkin ubiquitinates the alpha-synucleininteracting protein,synphilin-1:implications for Lewy-body formation in Parkinson disease.Nat Med 2001;7:1144-1150.
    [78]Hyun DH,Lee M,Hattori N,et al.Effect of wild-type or mutant Parkin on oxidative damage,nitric oxide,antioxidant defenses,and the proteasome.J Biol Chem 2002;277:28572-28577.
    [79] Ross OA, Farrer M J. Pathophysiology, pleotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochem. Soc. Trans. 2005;33: 586-590.
    [80] Kalia SK, Lee S, Smith PD, et al. BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration. Neuron 2004;44: 931-945.
    [81] Moussa CE, Mahmoodian F, Tomita Y, et al. Dopamine differentially induces aggregation of A53T mutant and wild type alpha-synuclein: insights into the protein chemistry of Parkinson's disease. Biochem Biophys Res Commun, 2008,365(4):833-9.
    [82] Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the Authentic Parkin Substrate Aminoacyl-tRNA Synthetase Cofactor, p38/JTV-1, Leads to Catecholaminergic Cell Death. J Neurosci.; 25: 7968-7978.
    [83] Schlossmacher MG, Frosch MP, Gai WP, et al. Parkin Localizes to the Lewy Bodies of Parkinson Disease and Dementia with Lewy Bodies Am. J. Pathol. 2002;160: 1655-1667.
    [84] Ardley HC, Robinson PA. E3 ubiquitin ligases. Essays Biochem. 2005;41: 15-30.
    [85] Tanaka K, Suzuki T, Hattori N, Mizuno Y. Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta 2004; 1695: 235-247.
    [86] Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004;131:2183-2194.
    [87] Lim KL.Ubiquitin-proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Rev Proteomics,2007,4(6):769-81.
    [88] Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev. 2007;59(1):14-39.
    [89] Joch M, Ase AR, Chen CX, Macdonald PA. Parkin-mediated Monoubiquitination of the PDZ Protein PICK1 Regulates the Activity of Acid- sensing Ion Channels. Mol Biol Cell. 2007;18(8):3105-3118.
    [90] Uehara T. Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal. 2007;9(5):597-601.
    [91] Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315(5809):201-205.
    [92]Smith WW,Pei Z,Jiang H,et al.Leucine-rich repeat kinase 2(LRRK2)interacts with parkin,and mutant LRRK2 induces neuronal degeneration.Proc.Natl.Acad.Sci.U.S.A.2005;102:18676-18681.
    [93]Stenmark H,Olkkonen VM.The Rab GTPase family.Genome Biol.2001;2:3007.1-3007.7.
    [94]Shields JM,Pruitt K,McFall A,et al.Understanding Ras:'it ain't over 'til it's over'.Trends Cell Biol.2000;10:147-154.
    [95]Jaffe AB,Hall A.Rho GTPases:biochemistry and biology.Annu.Rev.Cell Dev.Biol.2005;21:247-269.
    [96]Schwartz M.Rho signalling at a glance.J.Cell Sci.2004;117:5457-5458.
    [97]Tan EK,Shen H,Tan LC,et al.The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson's disease patients.Neurosci Lett,2005,384:327-329.
    [98]Tan EK,Zhao Y,Skipper L,et al.The LRRK2 Gly2385R variant is associated with risk of Parkinson's disease:clinical and genetic evidence.Hum Genet,2007,120:857-863.
    [99]邹海强,陈彪,冯秀丽,等.中国人LRRK2基因G2385R多态性与PD的相关性研究.第九次全国神经病学学术大会论文汇编,2006,40.
    [100]An XK,Peng R,Li T,et al.LRRK2 Gly2385Arg variant is a risk factor of Parkinson's disease among Han-Chinese from mainland China.Eur J Neurol,2008 Jan 14;[Epub ahead of print]
    [101]Li C,Ting Z,Qin X,et al.The prevalence of LRRK2 Gly2385Arg variant in Chinese Han population with Parkinson's disease.Mov Disord,2007,22(16):2439-43.
    [102]Tan EK,Zhao Y,Tan L,et al.Analysis of LRRK2 Gly2385Arg genetic variant in non-Chinese Asians.Mov Disord,2007,22(12):1816-8.
    [1] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the a-synuclein gene identified in families with Parkinson's disease. Science, 1997; 276: 2045-2047.
    [2] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004;44: 601-607.
    [3] Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 2004; 44: 595-600.
    [4] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998;392: 605-608.
    [5] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004;304: 1158-1160.
    [6] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003;299:256-259.
    [7] Cookson MR. The biochemistry of Parkinson's disease. AnnU Rev Biochem, 2005;74:29-52.
    [8] Li W, West N, Colla E, et al. Aggregation promoting C-terminal truncation of a-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A, 2005;102:2162-2167.
    [9] DeStefano AL, Lew MF, Golbe LI, et al. PARK3 influences age at onset in Parkinson disease: A genome scan in the GenePD study. Am J Hum Genet, 2002;70:1089-1095.
    [10] Pankratz N, Nichols WC, Uniacke SK, et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet, 2002;71:124-135.
    [11] Martinez M, Brice A, Vaughan JR, et al. Genome-wide scan linkage analysis for Parkinson's disease: The European genetic study of Parkinson's disease. J Med Genet, 2004;41:900-907.
    [12] Pankratz N, Nichols WC, Uniacke SK, et al. Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 2003; 12: 2599-2608.
    [13] Scott WK, Nance MA, Watts RL, et al. Complete genomic screen in Parkinson disease: Evidence for multiple genes. JAMA, 2001;286: 2239-2244.
    [14] DeStefano AL, Golbe LI, Mark MH, et al. Genome-wide scan for Parkinson's disease: The GenePD Study. Neurology, 2001;57:1124-1126.
    [15] Hicks AA, Petursson H, Jonsson T, et al. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol, 2002;52: 549-555.
    [16] Maraganore DM, de Andrade M, Lesnick TG, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet, 2005; 77:685-693.
    [17] Elbaz A, Nelson LM, Payami H, et al. Lack of replication of thirteen single- nucleotide polymorphisms implicated in Parkinson's disease: A large-scale international study. Lancet Neurol, 2006;5:917-923.
    [18] Fung HC, Scholz S, Matarin M, et al. Genome-wide genotyping in Parkinson's disease and neurologically normal controls: First stage analysis and public release of data. Lancet Neurol, 2006;5:911-916.
    [19] Maraganore DM, de Andrade M, Elbaz A, et al. Collaborative analysis of a- synuclein gene promoter variability and Parkinson disease. JAMA, 2006; 296:661-670.
    [20] Mueller JC, Fuchs J, Hofer A, et al. Multiple regions of a-synuclein are associated with Parkinson's disease. Ann Neurol, 2005;57:535-541.
    [21] Baker M, Litvan I, Houlden H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet, 1999;8:711-715.
    [22] Singleton AB, Farrer M, Johnson J, et al. a-Synuclein locus triplication causes Parkinson's disease. Science, 2003;302:841.
    [23] Hardy J. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: 'Permissive templating' as a general mechanism underlying neurodegeneration. Biochem Soc Trans, 2005;33:578-581.
    [24] Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem, 2000;275:31505-513.
    [25]Cuervo AM,Stefanis L,Fredenburg R,et al.Impaired degradation of mutant αsynuclein by chaperone-mediated autophagy.Science,2004;305:1292-1295.
    [26]Clayton DF,George JM.The synucleins:a family of proteins involved in synaptic function,plasticity,neurodegeneration and disease.Trends Neurosci,1998,21:249-254.
    [27]Kruger R,Kuhn W,Muller T,et al.Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease.Nat Genet,1998,18:106-108.
    [28]Zarranz JJ,Alegre J,Gomez-Esteban JC,et al.The new mutation,E46K,of alpha-synuclein causes Parkinson and Lewy body dementia.Ann Neurol,2004,55:164-173.
    [29]Berg D,Niwar M,Maass S,et al.Alpha-synuclein and Parkinson's disease:implications from the screening of more than 1,900 patients.Mov Disord,2005,20:1191-1194.
    [30]Nishioka K,Hayashi S,Farrer MJ,et al.Clinical heterogeneity of alphasynuclein gene duplication in Parkinson's disease.Ann Neurol,2006,59:298-309.
    [31]Farrer M,Kachergus J,Forno L,et al.Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications.Ann Neurol,2004,55:174-179.
    [32]Johnson J,Hague SM,Hanson M,et al.SNCA multiplication is not a common cause of Parkinson disease or dementia with Lewy bodies.Neurology,2004,63:554-556.
    [33]Gispert S,Trenkwalder C,Mota-Vieira L,et al.Failure to find alpha-synuclein gene dosage changes in 190 patients with familial Parkinson disease.Arch Neurol,2005,62:96-98.
    [34]Chartier-Harlin MC,Kachergus J,Roumier C,et al.Alpha-synuclein locus duplication as a cause of familial Parkinson's disease.Lancet,2004,364:1167-1169.
    [35]Pals P,Lincoln S,Manning J,et al.Alphasynuclein promoter confers susceptibility to Parkinson's disease.Ann Neurol,2006,56:591-595.
    [36]Tan EK,Chai A,Teo YY,et al.Alphasynuclein haplotypes implicated in risk of Parkinson's disease.Neurology,2004,62:128-131.
    [37] Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 2000, 25:239-252.
    [38] Uversky VN. A protein-chameleon: conformational plasticity of alphasynuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn, 2003 21:211-234.
    [39] Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature, 1997, 388:839-840.
    [40] Miller DW, Hague SM, Clarimon J, et al. Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology, 2004, 62:1835-1838.
    [41] Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science, 2006, 313: 324-328.
    [42] Pandey N, Schmidt RE, Galvin JE. The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Exp Neurol, 2006, 197:515-520.
    [43] Lashuel HA, Petre BM, Wall J, et al. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol, 2002,-322: 1089-1102.
    [44] Greenbaum EA, Graves CL, Mishizen-Eberz AJ, et al. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem, 2005, 280: 7800-7807.
    [45] Fortin DL, Troyer MD, Nakamura K, et al. Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci, 2004, 24:6715-6723.
    [46] Hasegawa T, Matsuzaki-Kobayashi M, Takeda A, et al. Alpha-synuclein facilitates the toxicity of oxidized catechol metabolites: implications for selective neurodegeneration in Parkinson's disease. FEBS Lett, 2006, 580: 2147-2152.
    [47] Cabin DE, Shimazu K, Murphy D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci, 2002, 22:8797-8807.
    [48] Fleming SM, Salcedo J, Fernagut PO, et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci, 2004, 24:9434-9940.
    [49] Rockenstein E, Mallory M, Hashimoto M, et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res, 2002, 68:568-578.
    
    [50] Melrose HL, Lincoln SJ, Tyndall GM, et al. Parkinson's disease: a rethink of rodent models. Exp Brain Res, 2006,173:196-204
    
    [51] Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci, 2005, 8:657-663.
    
    [52] Wilkinson KD, Lee KM, Deshpande S, et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxylterminal hydrolase. Science, 1989, 246:670-673.
    
    [53] Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet, 2003, 12:1945-1958.
    
    [54] Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature, 1998, 395:451-452.
    
    [55] Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease. Ann Neurol, 2006, 59:298-309.
    
    [56] Saigoh K, Wang YL, Suh JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet, 1999, 23:47-51.
    
    [57] Healy DG, Abou-Sleiman PM, Casas JP, et al. UCHL-1 is not a Parkinson's disease susceptibility gene. Ann Neurol, 2006, 59:627-633.
    
    [58] Tan EK, Puong KY, Fook-Chong S, et al. Case-control study of UCHL1 S18Y variant in Parkinson's disease. Mov Disord, 2006, 21:1765-1768.
    
    [59] Liu Y, Fallon L, Lashuel HA, et al. The UCHL1 gene encodes two opposing enzymatic activities that affect alphasynuclein degradation and Parkinson's disease susceptibility. Cell, 2002, 111:209-218.
    
    [60] Di Fonzo A, Rohe CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet, 2005, 365:412-415.
    
    [61] Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, et al. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, 2005, 365:415-416.
    [62] Tan EK, Shen H, Tan LC, et al. The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson's disease patients. Neurosci Lett, 2005, 384:327-329.
    [63] Zabetian CP, Samii A, Mosley AD, et al. A clinic-based study of the LRRK2 gene in Parkinson disease yields new mutations. Neurology, 2005, 65:741-744.
    [64] Lu CS, Simons EJ, Wu-Chou YH, et al. The LRRK2 I2012T, G2019S, and I2020T mutations are rare in Taiwanese patients with sporadic Parkinson's disease. Parkinsonism Relat Disord, 2005, 11:521-522.
    [65] Fung HC, Chen CM, Hardy J, et al. Lack of G2019S LRRK2 mutation in a cohort of Taiwanese with sporadic Parkinson's disease. Mov Disord, 2006, 21:880-881.
    [66] Lesage S, Durr A, Tazir M, et al. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med, 2006, 354:422-423.
    [67] Zabetian CP, Hutter CM, Yearout D, et al. LRRK2 G2019S in families with Parkinson disease who originated from Europe and the Middle East: evidence of wo distinct founding events beginning two millennia ago. Am J Hum Genet, 2006, 79:752-758.
    [68] Zabetian CP, Morino H, Ujike H, et al. Identification and haplotype analysis of LRRK2 G2019S in Japanese patients with Parkinson disease. Neurology, 2006, 67:697-699.
    [69] Mata IF, Taylor JP, Kachergus J, et al. LRRK2 R1441G in Spanish patients with Parkinson's disease. Neurosci Lett, 2005, 382:309-311.
    [70] Kay DM, Kramer P, Higgins D, et al. Escaping Parkinson's disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord, 2005, 20:1077-1078.
    [71] Hernandez DG, Paisan-Ruiz C, McInerney-Leo A, et al. Clinical and positron emission tomography of Parkinson's disease caused by LRRK2. Ann Neurol, 2005, 57:453-456.
    [72] Haugarvoll K, Wszolek ZK. PARKS LRRK2 parkinsonism. Curr Neurol Neurosci Rep, 2006, 6:287-294.
    [73] Taylor JP, Mata IF, Farrer MJ. LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med, 2006, 12:76-82.
    [74] Gloeckner CJ, Kinkl N, Schumacher A, et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet, 2006, 15:223-232.
    [75] Korr D, Toschi L, Donner P, et al. LRRKl protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal, 2006, 18:910-920.
    [76] Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol 2:REVIEWS, 2001, 3007.
    [77] Tan EK, Zhao Y, Skipper L, et al. The LRRK2 Gly2385R variant is associated with risk of Parkinson's disease: clinical and genetic evidence. Hum Genet, 2007, 120:857-863.
    [78] Smith WW, Pei Z, Jiang H, et al. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA, 2005, 102:18676-18681.
    [79] Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 2000, 25:302-305.
    [80] Periquet M, Latouche M, Lohmann E, et al. Parkin mutations are frequent in patients with isolated early-onset Parkinsonism. Brain, 2003, 126(Pt 6): 1271-1278.
    [81] Mata IF, Lockhart PJ, Farrer MJ. Parkin genetics: one model for Parkinson's disease. Hum Mol Genet, 2004, 13(Spec No 1):R127-R33.
    [82] Foroud T, Uniacke SK, Liu L, et al. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology, 2003, 60:796-801.
    [83] Kann M, Jacobs H, Mohrmann K, et al. Role of parkin mutations in 111 communitybased patients with early-onset parkinsonism. Ann Neurol, 2002, 51: 621-625.
    [84] Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. N Engl J Med, 2000, 342:1560-1567.
    [85] Khan NL, Brooks DJ, Pavese N, et al. Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study. Brain, 2002,125(Pt 10):2248-2256.
    [86] Clark LN, Afridi S, Karlins E, et al. Case-control study of the parkin gene in earlyonset Parkinson disease. Arch Neurol, 2006, 63:548-552.
    [87] Sun M, Latourelle JC, Wooten GF, et al. Influence of heterozygosity for parkin mutation on onset age in familial Parkinson disease: the GenePD study. Arch Neurol, 2006, 63:826-832.
    [88] Tan EK, Tan C, Fook-Chong SM, et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson's disease: a study in ethnic Chinese. J Neurol Sci, 2003, 216: 163-167.
    [89] Munhoz RP, Sa DS, Rogaeva E, et al. Clinical findings in a large family with a parkin ex3delta40 mutation. Arch Neurol, 2004,461:701-704.
    [90] Lohmann E, Periquet M, Bonifati V, et al. How much phenotypic variation can be attributed to parkin genotype? Ann Neurol, 2003, 54:176-185.
    [91] Tan EK, Jankovic J. Genetic testing in Parkinson disease: promises and pitfalls. Arch Neurol, 2006, 63:1232-1237.
    [92] Mouatt-Prigent A, Muriel MP, Gu WJ, et al. Ultrastmctural localization of parkin in the rat brainstem, thalamus and basal ganglia. J Neural Transm, 2004, 111:1209-1218.
    [93] Darios F, Corti O, Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondriadependent cell death. Hum Mol Genet, 2003, 12:517-526.
    [94] Wang C, Tan JM, Ho MW, et al. Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's diseaselinked point mutations. J Neurochem, 2005, 93:422-431.
    [95] von Coelln R, Dawson VL, Dawson TM. Parkin-associated Parkinson's disease. Cell Tissue Res, 2004, 318:175-184.
    [96] Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science, 2001, 293:263-269.
    [97] Ren Y, Zhao J, Feng J. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 2003, 23: 3316-3324.
    [98] Yang F, Jiang Q, Zhao J, et al. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 2005, 280:17154-17162.
    [99] Matsuda N, Kitami T, Suzuki T, et al. Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem, 2006, 281:3204-3209.
    [100] Itier JM, Ibanez P, Mena MA, et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet, 2006, 12:2277-2291.
    [101] Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci, 2005, 25:7968-7978.
    [102] Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development, 2004, 131:2183-2194.
    [103] Pramstaller PP, Schlossmacher MG, Jacques TS, et al. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol, 2005, 58:411-422.
    [104] Bonifati V. Genetics of Parkinson's disease. Minerva Med, 2005, 96:175-186. Lockhart PJ, Lincoln S, Hulihan M, et al. DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function. J Med Genet, 2004,41:e22.
    [105] Hering R, Strauss KM, Tao X, et al. Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat, 2004, 24:321-329.
    [106] Tan EK, Tan C, Zhao Y, et al. Genetic analysis of DJ-1 in a cohort Parkinson's disease patients of different ethnicity. Neurosci Lett, 2004, 367: 109-112.
    [107] Bandopadhyay R, Kingsbury AE, Cookson MR, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127(Pt 2):420-430.
    [108] Moore DJ, Zhang L, Dawson TM, et al. A missense mutation (L166P) in DJ-1, linked to familial Parkinson's disease, confers reduced protein stability and impairs homo-oligomerization. J Neurochem, 2003, 87: 1558-1567.
    [109] Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet, 2005, 14:2063-2073.
    [110] Canet-Aviles RM, Wilson MA, Miller D, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA, 2004, 101:9103-9108.
    [111] Zhou W, Zhu M, Wilson MA, et al. The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol, 2006, 356:1036-1048.
    [112] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO, 2004, Rep 5:213-218.
    [113] Choi J, Sullards MC, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem, 2006, 281: 10816-10824.
    [114] Waragai M, Wei J, Fujita M, et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease. Biochem Biophys Res Commun, 2006, 345:967-972.
    [115] Olzmann JA, Brown K, Wilkinson KD, et al. Familial Parkinson's disease-associated L166P mutation disrupts DJ-1 protein folding and function. J Biol Chem, 2004, 279: 8506-8515.
    [116] Xu J, Zhong N, Wang H, et al. The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hu-m Mol Genet, 2005, 14:1231-1241.
    [117] Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficientmice to -lmethyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA, 2005, 102:5215-5220.
    [118] Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 - mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol, 2005, 15:1572-1577.
    [119] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PENK1 mutants associated to recessive parkinsonism. Hum Mol Genet, 2005, 14: 3477-3492.
    [120] Ibanez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early onset parkinsonism in Europe and North Africa. Brain, 2006, 129(Pt 3): 686-694.
    [121] Tan EK, Yew K, Chua E, et al. PINK1 mutations in sporadic early-onset Parkinson's disease. Mov Disord, 2006, 21:789-793.
    [122] Healy DG, Abou-Sleiman PM, Gibson JM, et al. PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology, 2004, 26;63:1486-1488.
    [123] Rohe CF, Montagna P, Breedveld G, et al. Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann Neurol, 2004, 56:427-431.
    [124] Li Y, Tomiyama H, Sato K, et al. Clinicogenetic study of PINK1 mutations in autosomal recessive earlyonset parkinsonism. Neurology 64:1955-1957.
    [125] Tan EK, Yew K, Chua E, et al. Analysis of PINK1 in Asian patients with familial parkinsonism. Clin Genet, 2005, 68: 468-470.
    [126] Khan NL, Valente EM, Bentivoglio AR, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol, 2002, 52:849-853.
    [127] Hiller A, Hagenah JM, Djarmati A, et al. Phenotypic spectrum of PINK1- associated parkinsonism in 15 mutation carriers from 1 family. Mov Disord, 2007,22:145-147.
    [128] Abou-Sleiman PM, Muqit MM, McDonald NQ, et al. Heterozygous effect for PDMK1 mutations in Parkinson's disease? Ann Neurol, 2006, 60:414-419.
    [129] Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet, 2006, 15:1816-1825.
    [130] Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S,Wang L, et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem, 2005, 280:34025-34032.
    [131] Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 2004, 6: 336-341.
    [132] Clark IE, Dodson MW, Jiang C, et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441:1162-1166.
    [133] Gandhi S, Muqit MM, Stanyer L, et al. PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006, 129:1720-1731.
    [134] YinW, KrenBT, Steer CJ. Site-specific base changes in the coding or promoter region of the human beta- and gamma-globin genes by single-stranded oligonucleotides. Biochem J, 2005. 390: 253-261.
    [135] Miller VM, Xia H, Marrs GL. et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA, 2003, 100: 7195-7200.
    [136] Calloni G, Zoffoli S. Stefani M, et al. Investigating the effects of mutations on protein aggregation in the cell. J Biol Chem. 2005. 280: 10607-10613.
    [137] MorishimaN. Control of cell fate by Hsp70: more than an evanescent meeting. J Biochem, 2005. 137: 449-453.
    [138] Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther, 2005, 12: 394-401.
    [139] Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300: 486-489.
    [140] Tanaka M, MachidaY, NukinaN. Anovel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med, 2005, 83: 343-352.
    [141] Gestwicki JE, Crabtree GR, Graef IA. Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science, 2004, 306: 865-869.
    [142] Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem, 2005, 280: 23869-23875.
    [143] Rattan SI. Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro. Rejuvenation Res, 2004, 7: 40-48.
    [144] Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem, 2005, 280: 33097-33100.
    [145] Ulloa-Aguirre A, Janovick JA, Brothers SP, et al. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic, 2004, 5: 821-837.
    [146] Burrows J A, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA, 2000, 97: 1796-1801.
    [147] Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol, 2000, 278: C259-C267.
    [148] Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1- antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr, 2004, 39: 34-37.
    [149] Latchman, D.S., Coffin, R.S., et al. Viral vectors for gene therapy in Parkinson's disease. Rev. Neurosci., 2001, 12 (1), 69-78.
    [150] Sonntag, K.C., Simantov, R., Isacson, O., et al. Stem cells may reshape the prospect of Parkinson's disease therapy. Brain Res. Mol. Brain Res., 2005, 134 (1), 34-51.
    [151] Lu, K.W., Chen, Z.Y., Jin, D.D., et al. Cationic liposome-mediated GDNF gene transfer after spinal cord injury. J. Neurotrauma, 2002, 19 (9), 1081-1090.
    [152] Sajadi, A., Bensadoun, J.C, Schneider, B.L., et al. Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiol. Dis., 2005, 22 (1), 119-129.
    [153] Lang, A.E., Gill, S., Patel, N.K., et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol, 2006, 59 (3), 459-466.
    [154] Kang, U.J., Lee, W.Y., et al. Gene therapy for Parkinson's disease:determining the genes necessary for optimal dopamine replacement in rat models. Hum. Cell, 2001, 14(1), 39-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700