用户名: 密码: 验证码:
ZnO掺杂改性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与计算机技术相结合的计算材料和材料设计是现代材料科学研究的重要方面,本论文应用基于密度泛函理论的第一性原理方法和分子动力学等计算材料科学方法对纤锌矿ZnO中的几个基本问题进行了理论研究,包括以下五个方面:ZnO及其在压力作用下的电子结构和光学性质、ZnO的n型和p型掺杂机理、M_xZn_(1-x)O(M=Cd,Ca)合金机理、非磁性金属掺杂ZnO基DMSs的磁性来源和机理、H吸附ZnO(10-10)表面的金属化转变等。
     1、研究了本征ZnO的电子结构和光学性质。(1)利用GGA近似计算了ZnO的能带,ZnO为直接禁带半导体材料,其带隙为1.02eV。(2)计算了ZnO的介电函数、吸收系数等光学常数,并结合ZnO电子结构信息和半导体带间跃迁理论对上述光谱进行了指认和判别。(3)进一步研究了压力作用下ZnO的电子结构和光学性质,分析了压力作用下蓝移现象的机理。所得理论结果和实验相符。
     2、研究了ZnO的n型、p型掺杂改性机理。计算了ZnO中单掺Ag、N等受主元素,单掺Al、Ga等施主元素以及N_o-H共掺的电子结构,并结合分子动力学方法研究了H在ZnO中的行为。结果表明:(1)Ga掺杂较Al掺杂具有更好的电导性,适合制备n型低阻ZnO。(2)单掺Ag形成深受主能级,单掺N会产生窄的深受主能级,局域化严重,导致掺入的N原子活性差,单掺Ag和单掺N都不利于制备高质量p型ZnO薄膜。(3)H是浅施主而且解溶度非常高,这是ZnO的n型导电性的起因。(4)N_o-H共掺改性计算表明,N_o-H形成能要低于N的形成能,说明适量H有利于提高了N原子的固溶度,同时发现N被H钝化,不利于p型掺杂。但是,H在ZnO中呈现热不稳定性,高温退火处理N_o-H共掺ZnO薄膜可以获得较高质量的p型ZnO薄膜。以上计算结果很好地解释了本组ZnO掺杂实验,并为获得高质量的n或p型ZnO提供了设计方案和理论基础。
     3、研究了M_xZn_(1-x)O(M=Cd,Ca)合金的电子结构,从原子层次阐述了M掺杂ZnO的能带调整机理。研究表明:(1)掺杂Cd导致ZnO禁带宽度减小,其机理是Cd_xZn_(1-x)O价带顶始终由O 2p占据,而导带底部则由O 2p、Cd 5s与Zn 4s的杂化轨道控制,随着掺杂量x的增加,导带底逐步下降,出现红移效应。(2)掺杂Ca导致ZnO禁带宽度增加,其机理是Ca_xZn_(1-x)O价带顶仍由O 2p占据,而导带底部则Zn 4s控制,随着掺杂量x的增加,导带底逐步升高,出现蓝移效应。以上计算结果为ZnO合金的设计提供了有效的理论依据。
     4、研究了非磁性金属(Cu和Ti)掺杂ZnO基DMSs的电子结构、磁性来源和磁性机理,寻找居里温度高于室温的新型ZnO基DMSs。研究表明:(1)非磁性金属(Cu和Ti)掺杂ZnO具有室温下铁磁性基态,且Cu和Ti分别作为受主和施主出现。(2)我们采用磁性离子d电子间的交换作用模型即d-d双交换模型解释了非磁性金属(Cu和Ti)掺杂ZnO基DMSs的磁性机理。(3)载流子浓度影响体系磁性,如O缺陷的生成会破坏ZnO基DMSs磁性。以上研究结果丰富了ZnO基DMSs的理论内涵,提供了制备新型ZnO基DMSs的思路,并被最近实验所证实。
     5、研究了ZnO(10-10)表面及其吸附H原子的几何、电子结构和电荷转移现象。研究表明:(1)ZnO(10-10)表面弛豫后,Zn原子向体内移动幅度明显,表面Zn-O二聚体发上扭曲。(2)ZnO(10-10)表面吸附H后空间电荷重新分布,导致ZnO(10-10)表面发生金属化转变。
     本论文得到下列课题的支持:国家863纳米专项课题(No.2003AA302160)和信息产业部电子发展基金(2004-125号)。
Computational materials and materials design combined with computer techniques are important contents in materials science.Here five main aspects of the dissertation have been achieved using first-principle theory based Density Functional Theory(DFT)and molecular dynamics methods:electronic structures,optical properties of perfect ZnO,ZnO with native defects and under strain ZnO,respectively; doping and alloy mechanisms in ZnO;the magnetism origin and mechanisms of ZnO-based DMSs doped with non magnetic metal;the metallic transition of ZnO(10-10)surface induced by hydrogen adsorption.
     1.The electronic structures of perfect ZnO and ZnO with native point defects were investigated with the methods of first principles.(1)Using GGA,the calculated results indicated that ZnO is a direct wide band gap semiconductor material with energy gap of 1.02eV.(2)The optical parameters including dielectric functions, absorption coefficient were calculated,which were furthermore identified with electronic structure information of ZnO and theory of electron inter-band transitions. (3)The electronic structure and optical properties of ZnO under strain were calculated and the bule-shift effects were also been studied in details.
     2.We studied the electronic structure of n-type,p-type and p-type codoping ZnO, such as:Ag,N,Al,Ga single doping and N-H codoping,respectively.Moreover,the action of H atom was studied using the methods of molecular dynamics.It was shown: (1)Ga was more suitable for fabricating n-type low resistance ZnO due to its better conductivity compared with Al.(2)Substitute Ag produced a deep acceptor level,and doping N also produced a deep acceptor level,which were hardly localized near the top of the valence band.Therefore,single doping of Ag and N made against to fabricate high quality p-type ZnO.(3)It was confirmed that H is the main factor to induce the native n-type coductivity in ZnO for its shallow acceptor level and large concentration in ZnO.(4)The formation energy of N-H complex was lower than that of N single doping,which indicated that some of H atoms-doped made for increasing the concentration of N.As well,it was found that N was passivated by H atom,which is obviously not benefit for p-type doping.Furthermore,using molecular dynamics simulation,we found that H was unstable thermodynamicly.It means we could obtain the high quality p-type ZnO by annealing for N-H codoped ZnO.
     3.The electronic structure of M_xZn_(1-x)O(M=Cd,Ca)were calculated to analyse the mechanism of ZnO band gap engineering.It was shown:(1)The band gap of ZnO narrows with increasing Ca-doping concentration.Our work shows that the top of valence band is determined by the O 2p electron,while the bottom of conduction band is occuupied by the hybrid of O 2p,Cd 5S and Zn 4s electrons which can lower the bottom of conduction band.(2)On the contrarly,the band gap of ZnO broadens with increasing Ca-doping concentration.Our work shows that the top of valence band is still determined by the O 2p electron,while the bottom of conduction band is only determined by the Zn 4s electron states which can shift to a higher energy due to Ca doping.
     4 We presented first-principles spin polarized calculations of the eleotronic structure and magnetic properties of Cu(Ti)doped in ZnO.We showed that:(1)It is likely for Cu(Ti)to order ferromagnetically in ZnO,forming a dilute magnetic semiconductor.The coupling between Cu(Ti)atoms is found to be ferromagnetic despite Cu(Ti)being nonmagnetic in its natural phase.Cu is acceptor and Ti is donor in ZnO,respectively.(2)The ferromagnetic ground state in Cu(Ti)doped ZnO can be explained in terms of Zener's double exchange mechanism.(3)Cartier concentration can affect the magnetism of ZnO-based DMSs,for example,oxygen vacancies tend to destroy the ferromagnetism and therefore should be avoided during sample fabrication.These results are consistent well with the recent experimental discovery of ferromagnetism in Cu-doped ZnO.
     5.The clean ZnO(10-10)surface and hydrogen adsorbed ZnO(10-10)surface are studied by first principles.It was shown:(1)Zn atom move inside obviously after relaxation,which induced surface Zn-O dimer distorting.(2)The alteration of the charge density redistribution of the ZnO(10-10)surface shows the electron transfer from surface layer to the adsorbed H atoms,which leads to a metallization of the ZnO(10-10)surface.The mechanism of alteration for charge density redistribution is discussed,which provides a theoretical background of electrical properties of ZnO(10-10)surface.
     This work was supported by the 863 project(contract No.2003AA302160)and China foundation for development of electronic information technology.
引文
[1]Robert Triboulet.The Scope of the ZnO Growth.Proc,SPIE,2001,4412:1-8
    [2]Z K Tang,G K L wang,P Yu,et al.Molecular Crystals and Liquid Crystals Science and Technology.1997,18(2-4):355-362
    [3]H E Brown,Zinc Oxide Rediscovered,The New Jersey Zinc Company.New Jersey,1957
    [4]Nicoll F H,Ultraviolet ZnO Laser Pumped by an Electron Beam.Appl.Phys.Lett..1996,9:13-15
    [5]Reynolds D C,et al.Optically pumped ultraviolet lasing from ZnO.Solid State Commun.1996,99:873-875
    [6]Bagnall D M,Chen Y F,Zhu Z,Optically pumped lasing of ZnO at room temperature.Appl.Phys.Lett..1997,70:2230-2232
    [7]Tnag Z K,Wang G K L,Yu P,et al.Room temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films.Appl.Phys.Lett,1998,72(25):3270-3272.
    [8]Cao H,Zhao Y G,Ho S T,et al.Random Laser Action in Semiconductor Powder.Phys.Rev.Lett,1999,82:2278-2281
    [9]Sekiguchi T.,Hydrothermal ZnO Crystals and Their Optical Characterization.J.Cryst.Growth.,2000,214/215:72-78
    [10]T Makino,C H Chia,Y Segawa,et al.High-throughput optical characterization for the development of a ZnO-based ultraviolet semiconductor-laser.Applied Surface Science,2002,189:277-283
    [11]张德恒.用射频偏压溅射制备的具有快速紫光响应的ZnO薄膜.半导体学报,1995,16(10):779-782
    [12]李建光,叶志镇.第五届全国薄膜学术会议论文集.1997,256
    [13]Fu Z X,et al.Cathodoluminescence of ZnO Films.Chin.Phys.Lett.,1998,15(6):457-459.
    [14]王金忠.XRD对ZnO 薄膜生长条件和退火工艺的优化.半导体光电,2001,22(3):169-172
    [15]Zhang W L,et al.Femtosecond Time-Resolved Exciton Recombination Dynamics in ZnO Microcrystallite Thin Films at Room Temperature.Chin.Phys.Lett.,1999,16(10):728-730
    [16]季振国等.溶胶一凝胶法制备ZOn薄膜及表征.半导体学报,2004,25(1):52-55
    [17]L Wang,Y Pu,Y F Chen,C L Mo,W Q Fang,C B Xiong,J N Dai,F Y Jiang,MOCVD growth of ZnO films on Si(1 1 1)substrate using a thin AIN buffer layer.Journal of Crystal Growth.284,(3-4):459-463,2005
    [18]Jiangnan Dai,Hechu Liu,qing Fang,Li Wang,Yong Pu,Yufeng Chen,and Fengyi Jiang.Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/A1203templates.Journal of Crystal Growth,2005,283:93-99
    [19]Jiangnan Dai,Hongbo Su,Li Wang,Yong Pu,Wenqing Fang,and Fengyi Jiang.Properties of ZnO films grown on(0001)sapphire substrate using H_2O and N_2O as O precursors by atmospheric pressure MOCVD.Journal of Crystal Growth,2006,290:426-430.
    [20]Fengyi Jiang,Jiangnan Dai,Li Wang,Wenqing Fang,Yong Pu,Qiming and Zikang Tang.Photoluminescence of ZnO thin films grown on GaN templates by atmospheric pressure MOCVD.Journal of Luminescence,2007,122-123:162-164
    [21]Fan Li,Dongrnei Li,Jiangnan Dai,Hongbo Su,Li Fengyi Jiang.Effect of the initial thin Ti buffer layers on Si(lll)substrates by MOCVD.Superlattices and Microstructures,2006,40(1):56-63
    [22]Yufeng Chen,FengyiJiang,Li Wang,Changda Zheng,Jiangnan Dai,Yong Pu,and Wenqing Fang.Structural and luminescent properties of ZnO epitaxial film grown on Si(111)substrate by atmospheric-pressure MOCVD.Journal of Crystal Growth,2005,275:486-491
    [23]Sheng H,et al.Schottky diode with Ag on(1120)epitaxial ZnO film.Appl.Phys.Lett,2002,80:2132-2134
    [24]Kyoung-Kook Kim,et al.Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant.Appl.Phys.Lett.,2003,84:63-65
    [25]Bina J M,et.al.Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis.Appl.Phys.Lett.,2004,84:541-543
    [26]H.Y.Xu,Y.C.Liu,C.S.Xu et al.Room-temperature ferromagnetism in(Mn,N)-codoped ZnO thin films prepared by reactive magnetron cosputtering.Appl.Phys.Lett.,2006,88:242502(1-3)
    [27]吴兴惠,项金钟.现代材料计算与设计教程.电子工业出版社,2002
    [28]Hohenberg P,Kohn W.,Inhomogeneous Electron Gas,Phys.Rev.,1964,136:B864-B871.;Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects.Phys.Rev.,1965,140:A1133-1138
    [29]Dreizler R M.Density Functional Theory,Berlin:Springer-Vertag,1990
    [30] D M Ceperley, B L .Alder. Ground State of the Electron Gas by a Stochastic Method. Phys.Rev.Lett.1980, 45:566-569
    
    [31] Yanfa Yan, S .B Zhang. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO. Phys.Rev.Lett., 2001, 86:5723-5726
    
    [32] Jian Sun and Hui-Tian Wang et al. Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys.Rev. B 2005, 71:125132-125137
    
    [33] Sato K, Katayama-Yoshida H. Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO. Jpn . J. Appl. Phys., 2001,40: L334-L336
    
    [34] Tao Zhang, Li-Xin Song, Zhi-Zhan hen, Er-Wei Shi et al. Origin of ferromagnetism of (Co, Al)-codoped ZnO from first-principles calculations. Appl. Phys. Lett., 2006, 89: 172502(1-3)
    
    [35] R M Dreizler, E. K. U. Gross.Density Functional Theory. Berlin: Springer-Vertag, (1990).
    
    [36] R G Parr, W. Yang. Density Functional Theory of Atoms and Molecules. New York: Oxford, 1989
    
    [37] M. Bom, K. Huang, Dynamical Theory of Crystal Lattices. Oxford: Oxford Universities Press, 1954
    
    [38] D R Hartree. The wave mechanics of an atom with a non-Coulomb central field. Proc. Cam. Phil. Soc., 1928,24:89-132
    
    [39] V Fock. Noherungsmethode zur Losung des quantenmechanischen mehrkorper- problems. Z. Phys., 1930, 61: 126-148
    
    [40] H. Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 1927, 23:542-548
    
    [41] P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys. Rev. B, 1964, 136:864-871
    
    [42] W Kohn, L J Sham. Self-consistent equation including exchange and correlation effects. Phys. Rev., 1965, 140: A1133-A1138
    
    [43] J C Slater. A Simplification of the Hartree-Fock Method. Phys. Rev., 1951, 81:385-390
    
    [44] J C Slater. The self-consistent field for molecules and solids. Mcgraw-Hill, New York, 1974
    
    [45] D M Ceperley, B L Alder. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 1980,45:566-569
    
    [46] T P Perdew, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems.Phys. Rev. B, 1981, 23:5048-5079
    
    [47] R O Jones, O. Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 1989, 61:689
    [48]A D Becke.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A,1988,38:3098-3100
    [49]J P Perdew.In Electronic structure of solids.Eds.P.Ziesche and H.Eschrig,Akademic Verlag,Berlin,1991
    [50]C Langreth,J P Perdew.Theory of nonuniform electronic systems.I.Analysis of the gradient approximation and a generalization that works.Phys.Rev.B,1980,21:5469-5493
    [51]J P Perdew,Y Wang.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.Rev.B,1992,45:13244-13249
    [52]J P Perdew,J A Chevary,S H Vosko et al.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B,1992,46:671-6687
    [53]J P Perdew,K Burke,M Emzerhof.Generalized Gradient Approximation Made Simple.Phys.Rev.Lett.,1996,77:3865-3868
    [54]C Lee,W Yang,R C Parr.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B,1988,37:785-789
    [55]Y Andersson,D C Langreth,B.I.Lundqvist.van der Waals Interactions in Density-Functional Theory.Phys.Rev.Lett.,1996,76:102-105
    [56]W Kohn,Y Meir,D E Makarov.van der Waals Interactions in Density-Functional Theory.Phys.,Rev.Lett.,1998,80:4153-4156
    [57]D R Hamann,M.Schluter,C.Chiang.Norm-Conserving Pseudopotentials.Phys.Rev.Lea.,1979,43:1494-1497
    [58]谢希德,陆栋.固体能带理论.复旦大学出版社,1998
    [59]G B Bachelet,D R Hamann,M.Schluter.Pseudopotentials that work:From H to Pu.Phys.Rev.B,1982,26:4199-4228
    [60]D Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B,1990,41:7892-7895
    [61]施思齐.锂离子电池正极材料的第一性原理研究[博士论文].北京:中国科学院物理研究所,2004
    [62]W H Press,B P Flannery,S A Teukolsky,W T Vetterting.Em Numerical Recipes,Cambridge University Press,New York,1986
    [63]P Pulay.Convergence acceleration of iterative sequences,the case of scf iteration.Chem. Phys. Lett., 1980,73:393-398
    
    [64] W. Kohn. Electronic structure of matter. Rev. Mod. Phys., 1999, 71: 1253-1266
    [65] Alder, B. J. and Wainwright, T E. Phase Transition for a Hard Sphere System. J. Chem. Phys., 1957, 27:1208; Alder, B J and Wainwright, T E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys., 1959,31: 459
    
    [66] Rahman. A. Correlations in the motion of atoms in liquids argon. Phys. Rev. A, 1964, 136, 405-411
    
    [67] P Hohenberg, W Kohn. Inhomogeneous electron gas. Phys. Rev. B, 1964,136, 864-871
    [68] W. Kohn, L. J. Sham. Theory of the Inhomogeneous Electron Gas. Phys. Rev. A, 1965, 140: 1133
    
    [69] R.Car, M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 1985, 55: 2471-2474
    
    [70] K. Laasonen, R. Car, D. Vanderbilt.Implementation of ultrasoft pseudopotentials in ab initio molecular dynamicsm. Phys. Rev. B, 1991, 43: 6796-6799
    
    [71] O Madelung, M Schulz, and H Weiss. Numerical Data and Functional Relationships in Science and Technology. Springer-Verlag, Berlin, 1982
    
    [72] G Kresse, J Hafher. Ab initio molecular dynamics for liquid metals. Phy. Rev. B,1993, 47: 558-561
    
    [73] G Kresse, J Hafher. Ab initio molecular-dynamics simulation of the liquid- metal-amorphous-semiconductor transition in germanium. Phy. Rev. B.1994, 49: 14251-14269
    [74] G Kresse, J Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.,1996, 6: 15-50
    [75] G Kresse, J Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169-11186
    
    [76] S Desgreniers. High-density phases of ZnO: Structural and compressive parameters. Phys. Rev. B, 1998,58,14102-14105
    
    [77] H Karzel, W Potzel, M K(o|¨)fferlein et al. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53, 1996, 11425 - 11438
    
    [78] Chien C H , Chiou S H , Guo G Y, Yao Y D. Electronic structure and magnetic moments of 3d transition metal-doped ZnO. J . Magn. Magn. Mater., 2004, 282: 275-278.
    [79] Wan Qi-xin, Xiong Zhi-hua, Jiang Feng-yi. First-principles study of Ag-based p-type doping difficulty in ZnO.Optical Materials,2008,30(6):817-82
    [80]P S Xu,Y M Sun,C S Shi et al.The electronic structure and spectral properties of ZnO and its defects.Nuclear Instruments and Methods in Physics Research B,199,(2003)286-290
    [81]Kuroiwa Y,Aoyagi S,Sawada Aet al.Evidence for Pb-O Covalency in Tetragonal PbTiO3.Phys.Rev.Lett.2001,87:217601(1-4)
    [82]沈益斌,周勋,徐明等.过渡金属掺杂ZnO的电子结构和光学性质.物理学报,2007,56(6):3440-3445
    [83]Liu X C,Shi Er W,Song L X,Zhang W H,Chen Z Z,Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction.Acta.Phys.Sin.,2006,55:2557-2561.(in Chinese).
    [84]Jian Sun,Hui-Tian Wang,Julong He,et al.Ab initio investigations of optical properties of the high-pressure phases of ZnO.Phys.Rev.B,2005,71,125132(1-5)
    [85]Donald A Neamen.Semiconductor Physics and Devices,Basic Principles,Third Edition
    [86]Chert Y,Tuan N T,Segawa Y,et al.Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers.Appl.Phys.Lett.,2001,78:1469-1471
    [87]C Bates,W White,R Roy.New High-Pressure Polymorph of Zinc Oxide.Science,1962,137:993
    [88]Ahuja R,Lars F,Eriksson O.Elastic and high pressure properties of ZnO.J Chem Phys,1998,83(12):8065-8067
    [89]Yamamoto T,Katayama Yoshida H.Unipolarity of ZnO with a wide-band gap and its solution using codoping method.J Cryst Growth,2000,214- 215:552-555
    [90]YO J I MAI,AKIOEATANABE.Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first-principle pseudopotential method.Jounral of Material Inelectronics,2004(15):743-749
    [91]S B Zhang,S H Wei,Alex Zunger.Intrinsicn-type doping asym-metry and defect physics of ZnO.Phys.Rev.B,2001,63,0752059(1-7)
    [92]Yanfa Yah,Jingbo Li,Su-Huai Wei,and M.M.AI-Jassim.Possible Approachto Overcome the Doping Asymmetry in Wideband Gap Semi-conductors.Phys.Rev.Lett.2007,98,135506(1-4)
    [93]D C Look,R L Jones.RSizelove et al.The path to ZnO devices:donor and acceptor dynamics. Phys.Status Solidi A, 2003, 195(1): 171-177
    
    [94] C H Park, S B Zhang, and S.-H. Wei. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B, 2002,66, 073202(1-3)
    
    [95] Duan Li, Lin Binxia, Zhang Weiying, et al. Enhancement of ultraviolet emissions from ZnO films by Ag doping. Appl.Phys. Lett., 2006, 88:232110(1-3)
    
    [96] Zhao Songqing, Zhou Yueliang, Zhao Kun, et al. Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition . Physica B, 2006,373:154-156
    
    [97] A. Janotti, C G Van de Walle. New insights into the role of native point defects in ZnO. J. Cryst. Growth. 2006,287: 58-65
    
    [98] Kanai Y. Admittance Spectroscopy of ZnO Crystals Containing Ag. Jpn. J. Appl. Phys., 1991, 30(9A):2021-2022
    
    [99] N. Gruzintsev. Luminescent Properties of ZnO Films Doped with Group-IB Acceptors. Thin Films, 2002,31(3):200-205
    
    [100] Woo-Jin Lee, Joongoo Kang. Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B, 2006,73:024117(1-6)
    
    [101] U Wahl, E Rita, J G Correia et al. Lattice sites of implanted Cu and Ag in ZnO. Superlattices and Microstructures, 2006, 39: 229-237
    
    [102] Vogel D, Kruger P, Pollmann J. Ab initio electronic_structure calculations for II-VI semiconductors using self_interaction_corrected psendopotentials. Phys. Rev. B, 1995, 52: R14316-R14319
    
    [103] Lee Hyun-Yong, Ko Hang-Ju and Yao Takafumi. Effect of Ag photodoping on deep-level emission spectra of ZnO epitaxial films. Appl. Phys.Lett.,2003, 82(4):523-525
    
    [104] Chen L L; Lu J G; Ye Z Z, et al. p-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett., 2005, 87: 252106(1-3)
    
    [105] Tamura K, Makino T, TsukazakiA, et al. Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO_4(0001) substrates. Solid State Communication, 2003, 127 (4): 265-269
    
    [106] Yamamoto T. Codoping for the fabrication of p-type ZnO. Thin Solid Films, 2002, 420-421 (1-2): 100-105
    
    [107] Syh-Yuh Cheng. Properties radio-frequency magnetron of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by sputtering.Appl.Phys.Lett,2004,84(24):5040-5044
    [108]戴江南,ZnO薄膜的常压MOCVD生长及掺杂研究:[博士学位论文].南昌:南昌大学.2007
    [109]张德恒.透明导电膜中光吸收边的移动.半导体杂志,1998,23(3):34-43
    [110]张富春,邓周虎,阎军锋等.Ga掺杂ZnO电子结构的密度泛函计算.功能材料,2005,36(8):1268-1272
    [111]Chris G.Van de Walle.Hydrogen as a Cause of Doping in Zinc Oxide.Phys.Rev.Lett.,2000,85,1012-1015
    [112]武煜宇,邹崇文,徐彭寿.ZnO中H导致的缺陷态的局域振动模式研究.物理学报,2006,55(10),5466-5470
    [113]李瑶,硅基ZnO薄膜的生长及ZnO:H薄膜的特性研究:[博士学位论文].南昌:南昌大学,2007
    [114]E V Lavrov,J Weber,F Borrnert,Chris G.Van de Walle,R.Helbig.Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy.Phys.Rev.B,2002,66,165205(1-7)
    [115]M D McCluskey,S J Jokela,K K Zhuravlev,P J Simpson.Infrared spectroscopy of hydrogen in ZnO.Appl.Phys.Lett.2002,81,3807-3809
    [116]Xiaonan Li Brian Keves Sallv Asher et al.Hvdroeen passivation effect in nitroeen-doped ZnO thin films.Appl.Phys.Lett.,2005,86:122107(1-3)
    [117]Meunier V,Kephart J,Rolang C,Bemholc J.Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems.Phys.Rev.Lett.,2002,88:075506(1-4)
    [118]Xiong Z H,Shi S Q,Ouyang C Y.et al.Ab initio investigation of the surface properties of Cu(111)and Li diffusion in Cu thin film.Physics Letters A,2005,337(3):247-255
    [119]C Y Ouyang,S Q Shi,Z X Wang,X J Huang and L Q Chen.First Principles Study of Li ion Diffusion in LiFePO_4.Phys.Rev.B,2004,69,104303(1-5)
    [120]Park W I,Yi G C,Jang H M.Metalorganic vapor-phase epitaxial growth and photo luminescent properties of Zn_(1-x)Mg_xO(0≤x≤0.49)thin films.Appl.Phys.Lett.,2001,79:2022-2024
    [121]Makino T,Chia C H,Tuan N T,Segawa Y,Kawasaki M,Ohtomo A,Tamura K.Radiative and nonradiative recombination processes in lattice-matched(Cd,Zn)O/(Mg,Zn)O multiquantum wells.Appl.Phys.Lett.,2000,77:1632-1634
    [122]Ma D W,Ye Z Z,Chen L L.Dependence of structural and optical properties of Zn_(1-x)Cd_xO films on the Cd composition.Phys.Status Solidi A,2004,201:2929-2933
    [123]Jin X L,Lou S Y,Kong D G,Li Y C,Du Z L.Investigation on the broadening of band gap of wurtzite ZnO by Mg-doping.Acta Phys.Sin.,2006,55:4809-4815
    [124]Sakurai K,Takagi T,Tanabe T,Takasu H,Fujita S.Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy.J.Cryst.Growth 2002,237-239:514-517
    [125]唐鑫,Cd掺杂纤锌矿ZnO电子结构的第一性原理研究.物理学报,2008,57(2):1066-1072
    [126]Jaffe J E,Snyder J A,Lin Z,Hess A C.LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO.Phys.Rev.B,2000,62:1660-1665
    [127]常凯,夏建白.稀磁半导体-自旋和电荷的桥梁.物理,2004,6:414-418
    [128]J H Li,D Z Shen,J Y Zhang et al.Magnetism origin of Mn-doped ZnO nanoclusters.Journal of Magnetism and Magnetic Materials,2006,302(1):118-121
    [129]B.B.Li,X.Q.Xiu,R.Zhang,Z.K.Tao,L.Chen,Z.L.Xie,Y.D.Zheng and Z.Xie,Study of structure and magnetic properties of Ni-doped ZnO-based DMSs.Materials Science in Semiconductor Processing,2006,9(1-3):141-145
    [130]王漪,孙雷,韩德栋,刘力锋,康晋锋,刘晓彦,张兴,韩汝琦.ZnCoO稀磁半导体的室温磁性.物理学报,2006,55(12):6651-6655
    [131]Dietl T,Ohno H.Zener model description of ferromagnetism in zinc-blende magnetic semiconductors.Science,2000,287(5455):1019-1022
    [132]Sato K,Katayama-Yoshida H.Stabilization of ferromagnetic states by electron doping in Fe-,Co-or Ni-doped ZnO.Jpn.J.Appl.Phys.,2001,40:L334-L336
    [133]Shujun Hu,Shishen Yan,Ming-wen Zhao,and Liang-mo Mei,First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor.Phys.Rev.B,2006,73:245205(1-7)
    [134]Wensheng Yan,Zhihu Sun,Qinghua Liu,Zhongrui Li,Zhiyun Pan,Jie Wang,and Shiqiang Wei,Dan Wang,Yingxue Zhou,and Xinyi Zhang,Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO.Appl.Phys.Lett.2007,91:062113(1-3)
    [135]Tao Zhang,Li-Xin Song,Zhi-Zhan hen,Er-Wei Shi et al.Origin of ferromagnetism of (Co,Al)-codoped ZnO from first-principles calculations.Appl.Phys.Lett.,2006,89:172502(1-3)
    [136]Q Y Wu,Z G Chen,R Wu,G G.Xu,Z G Huang,F M Zhang and Y W.Du.First-prinCiples and Monte Carlo combinational study on Zn_(1-x)Co_xO diluted magnetic semiconductor. Solid State Communications, 2007,142 (4):242-246
    
    [137] Wahl U, Rita E, Correia J G et al. Lattice location and stability of implanted Cu in ZnO. Phys. Rev. B, 2004, 69, 012102
    
    [138] D B Buchholz, R P H Chang, J H Song et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 2005, 87,082504(1-3)
    
    [139] D M Ceperley, B J Alder. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980,45, 566-56
    
    [140] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 2000, 287, 1019-1022
    
    [141] 刘宜华, 张连生. 物理学进展. 1994, 14(1): 82-120
    
    [142] Sato K, Dederichs P H, Katayama-Yoshida H. Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Euro. phys. Lett., 2003, 61:403- 408
    
    [143] Zeng Y Z, Huang M C. Electronic and magnetic properties of 3d transition-metal-doped III-V magnetic semiconductor. Chin. Phys. Lett., 2004,21(8) :1632 - 1635
    
    [144] D B Buchholz, R P H Chang, J H Song et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 2005, 87, 082504(1-3)
    
    [145] Kenji Ueda, Hitoshi Tabata, and Tomoji Kawai. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett., 2001, 79: 988-990
    
    [146] Ashutosh Tiwari, Michael Snure, Dhananjay Kumar. Ferromagnetism in Cu-doped ZnO films: Role of charge carriers. Appl. Phys. Lett., 2008, 92, 062509(1-3)
    
    [147] Imai Y, Watanabe A, Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first-principle pseudopotential method, J. Mater. Sci.: Mater. Elec, 2004, 15,743-749
    
    [148] Venkatesan M, Fitzgerald C B, Lunney J G, et al, Anisotropic Ferromagnetism in Substituted Zinc Oxide. Phys. Rev. Lett. 2003, 93, 177206-177209
    
    [149] Rao C N R, Deepak F L. Absence of ferromagnetism in Mn- and Co-doped ZnO. J. Mater. Chem. 2005, 15, 573-578
    
    [150] H. Saeki, H. Matsui, T Kawai, et al. Transparent magnetic semiconductors based on ZnO. J. Phys. Condens. Matter, 2004,16 , S5533-S5540
    
    [151] Osuch K, Lombardi E B, Gebick W I. First principles study of ferromagnetism in Ti_(0.0625)Zn_(0.9375)O. Phys. Rev. B, 2006,73, (075202) 1-5
    [152]B Meyer and D Marx.Density-functional study of the structure and stability of ZnO surfaces.Phys.Rev.B,2003,67:035403(1-11)
    [153]V Staemmler et al.Stabilization of Polar ZnO Surfaces:Validating Microscopic Models by Using CO as a Probe Molecule.Phys.Rev.Lett.,2003,90:106102(1-4)
    [154]李拥华,徐彭寿,潘海滨,等.GaN(1010)表面结构的第一性原理计算.物理学报,2005,54(1):3 17-322
    [155]Y.Wang,B.Meyer,X.Yin,et al.Hydrogen Induced Metallicity on the ZnO(1010)Surface.Phys.Rev.Lett.,2005,95:266104(1-4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700