用户名: 密码: 验证码:
大型预焙阳极铝电解槽焙烧过程热膨胀压力载荷数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对电解槽内物理化学过程认识的进一步加深、数值计算方法与计算机技术的发展、大型有限元计算分析软件的不断完善,给大型铝电解槽耦合场结构仿真模拟提供了在原有基础上进一步发展的可能。由于电解槽焙烧过程中槽壳和摇篮架的变形对电解槽能否正常运行以及槽的寿命影响巨大,因此,用有限元方法仿真得到铝电解槽焙烧变形,研究热膨胀力对槽壳和摇篮架变形的影响规律具有重要意义。
     本文完成了如下研究工作:
     1)根据铝电解槽的结构特点和焙烧工作机理,建立包括内衬材料在内的完整的铝电解槽3D焙烧模型;模型包括了所有可能的接触作用,并考虑材料非线性,使用间接法对焙烧过程的热-结构耦合场进行计算。
     2)采用有限单元法,并用有限元软件ANSYS完成了热-结构耦合场计算。
     3)分析铝电解槽焙烧变形和槽壳应力分布规律,研究加热过程中内衬材料对槽壳等外围结构等效热膨胀压力载荷的作用规律。
     4)在充分研究的基础上给出电解槽简单计算时载荷施加方案。
     通过本文的研究,获得了焙烧过程内衬外表面等效热膨胀压力的最大值及最大值的分布区域;得到了等效热膨胀压力随槽膛内壁加载温度的变化曲线,并由此得出加载的焙烧温度为400℃时槽壳上承受最大等效热膨胀压力载荷的区域进入塑性屈服的结论,并且得出随着温度继续升高,槽壳热应力将继续增加,而且范围变大的结论。
The deeper cognition for the physical and chemic process in aluminum electrolytic cell、the development of numerical calculation method and computer technology and the improvement of finite element calculating and analytical software provide possibility for the more development of aluminum electrolytic cell’s couple field structural emulate and simulation. Because the shell and cradle’s distortions have a great affection on the normal working and life of the cell , it’s means to get the cell’s baking distortions using finite element method and study the laws of heat expansibility’s effect on shell and cradle’s distortions.
     The paper has done such study work as follows:
     1) Full 3D baking aluminum electrolytic cell model including liner material is built bases on the cell’s structural character and baking mechanism; using indirect method to compute the model’s thermal-structural couple field, the model involves all possible contacting effect and take materiel’s nonlinearity into account.
     2) The thermal-structural couple field’s computation is done by the software ANSYS using finite element method.
     3) The cell’s baking distortions and the shell’s stress distribution are got, the equivalent thermal expansion pressure load’s effecting laws on periphery structure including the shell etc from liner material is studied.
     4) The loading project for aluminum electrolytic cell’s simple computing is given under fully study.
     The distributing area and maximum of equivalent thermal expansion pressure on surface of liner materiel in baking process is worked out; The changing curve of equivalent thermal expansion pressure under the loading temperature on chamber wall is got, from which the conclusions that under the loading temperature of 400℃, the shell areas receiving the largest equivalent thermal expansion pressure have turned into their plastic yield and that the value as well as working area of thermal stress on shell will increase with the hoist of the temperature is also got.
引文
[1]梁利.200kA铝电解槽非线性有限元结构分析[硕士学位论文].武汉:华中科技大学,2003
    [2] Daniel Richard, Mario Fafard, ReneH Lacroix et al. Aluminum reduction cell anode stub hole design using weakly coupled thermo-electro-mechanical finite element models. Elsevier Science. 2001.37: 287-304
    [3] Haijun Sun, Oleg Zikanov, Donald P. Ziegler. Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dynamics Research. 2004. 35(4): 255-274
    [4]伍洪泽.大型铝电解槽糟壳位移研究.中国有色金属学报.1997.7(2):65–68
    [5]钱伟长.变分法及有限元.第1版.科学出版社. 1980
    [6] Imad Tabsh. Marc Dupuis. Modeling of Aluminum Reduction Cells Using Finite Element Analysis Techniques. Light Metals. 1995.29: 5-299
    [7]张超英,孟荣光.大型铝电解槽超静定约束反力、变形及摇篮架刚度的工程测试研究.机械.2000.27(l):3-4,7
    [8]姚世焕.200kA预焙槽的设计构思(兼论2000年我国采用多大容量预焙槽的问题).轻金属.1998.7:27-32
    [9] Mohammed, S. A. et al. Mathematical modelling for coke bed preheating of aluminum reduction cell. Light Met. 1997, 457–461. Fuel and Energy Abstracts. 1997. 38(6): 430
    [10]罗海岩,陆继东,黄来等.铝电解槽三维电热场的ANSYS分析.华中科技大学学报(自然科学版).2002.30(7):4-6
    [11] A.Va116s, VLenis. M.Rao. Prediction of Profile in Hall-heroult Cells. Light Metals.1995.3: 9-31,2
    [12] Mohammad M.Megahed, HeshamS. Sayed, MohammadS. Hasanetal. Finite ElementModeling For Structural Analysis of Shells of Reduction Cells .Light Metals.1996.3:375-381
    [13]小飒工作室.最新经典ANSYS及Workbench教程.电子工业出版社. 2006
    [14]龚曙光,罗显光,赵又红等. ANSYS基础应用及范例解析.第1版.机械工业出版社. 2003
    [15] Davidson P A,Lindsay R I. Stability of Interfacial Waves in Aluminum Reduction Cells[J]. J. Fluid Mech.1998.36(2):27-32,9
    [16] Davidson P A, Graham W R O'Brien H L. Instability Mechanism in Aluminum Reduction Cells [J]. Light Metal.1999.3: 27-33
    [17]李贺松,梅炽,廖爱华.铝电解槽焦粒焙烧过程中热应力场数值模拟.中南大学学报(自然科学版).中南大学.2004.35(5):778-782
    [18]李贺松,梅炽.铝电解槽热电场的有限元分析.中国有色金属学报.2004.14(5):854-859
    [19]吴有威.大型铝电槽槽壳结构的非线性分析及其优化[硕士学位论文].武汉,华中科技大学图书馆.1989
    [20] Davidson P A , Lindsay R 1. A New Model of Interfacial Waves in Aluminum Reduction Cells [J]. Light Metal.1997.4(23): 4-28
    [21] Davidson P A. An Energy Analysis of Unstable Aluminum Reduction Cells[J]. European J .of Mech. B.1994.13: 15-32
    [22]王雄.大型预焙铝电解槽焦粒焙烧技术的改进.甘肃冶金.2006.28(3):116-118
    [23]邱竹贤.中国铝电解工业与技术的进展.轻金属.1999.10:23-27,46
    [24]姜玉敬.我国铝工业的发展和进展方向.世界有色金属.1996.6: 4-9
    [25]王铁锁,王建民.浅议我国电解铝工业发展方向.有色金属工业.2002.1: 24-25
    [26]伍洪泽,夏春,危育蒲等.180kA大型铝电解槽力场测试与分析.中国有色金属学报.1996.6(2): 23-27
    [27]伍洪泽,文丕华.180kA级铝电解槽槽壳内壁受力研究.中南工业大学学报.1995.26(1): 66-69
    [28]伍洪泽,文丕华.180kA级铝电解槽槽壳应力数值计算方法.中国有色金属学报.1995.5(1): 30-33
    [29]梁学民,刘静,王有山等.300kA铝电解槽壳变形与反变形研究.世界有色金属.2006.(10): 15-16
    [30] Lindsay R 1, Davidson P A. Application of New Stability Criteria to Industrial Cell Design[J]. Light Metal.1997.423-428
    [31]王进良,欧阳全胜,张松江.320kA预焙铝电解槽阴极内衬早期破损原因分析及预防措施.湖南有色金属.2005.21(4): 10-13
    [32]程祥,贾新武,沈山鸣.350kA预焙电解槽焙烧启动和生产实践.轻金属.2005.(3): 32-35
    [33] Droste C, Segatz M ,Vogelsang D. Improved 2-Dimensional Model Model for Magnetohy-Drodynamics Stability Analysis in Reduction Cells[J]. Light Metal. 1998: 419-428
    [34]葛贵君,田振明,张虎等.SY300kA预焙电解槽焦粒焙烧工艺探索.轻金属.2004.(1): 35-37
    [35]伍洪泽.大型铝电解槽槽壳位移研究.中国有色金属学报.1997.7(2): 65-68
    [36]张超英,孟光荣,沈玖珩.大型铝电解槽超静定约束反力、变形及摇篮架刚度的工程测试研究.机械.2000.27(1): 3-7
    [37]王愚.电解槽启动期间的槽壳上拱.轻金属.2005.4: 31-33
    [38] Roberto Staindler. High-temperature strain-gage behavior on carbon materials. Experimental Mechanics. 1998.28(3): 244-248
    [39]梁学民,于家谋,冯绍忠等.九十年代我国铝电解技术新进展.轻金属.2000.2: 33-38
    [40]钟志宁.铝电解槽槽壳结构对槽寿命的影响.宁夏机械.2005.1: 32-33
    [41]汪洪杰,陈人鑫.铝电解槽槽壳分析的设计与探讨.河南冶金. 2000.41(6): 4-5,11
    [42] Daniel Richard, Mario Fafard, RenéLacroix et al. Aluminum reduction cellanode stub hole design using weakly coupled thermo-electro-mechanical finite element models. Finite Elements in Analysis and Design. 2001. 37(4): 287-304
    [43]张钦松,李劼,赖延清.铝电解槽焦粒焙烧过程的电-热-应力模型研究.矿产保护与利用.2005.2: 39-42
    [44]李贺松,梅炽.铝电解槽电热场的有限元分析.中国有色金属学报.2004.14(5): 854-859
    [45]刘永刚,唐骞,梁韬.铝电解大型预焙槽四种焙烧方法的比较.轻金属.2000.4: 32-34
    [46]牛新国,郝逸云.也谈铝电解槽寿命问题.世界有色金属.2005.11: 19-20,7
    [47]张明谦.200kA预焙铝电解槽焙烧启动实践.有色金属(冶炼部分).2005.3: 28-30
    [48]林文帅,杨朝红,丁吉林等.300kA特大型预焙电解槽系列技术开发与应用.中国有色建设.2005.(3): 38-41
    [49]冯乃祥,彭建平.从铝电解生产新技术看我国与国际水平之差距.轻金属.2005. 3: 3-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700