用户名: 密码: 验证码:
弱凝胶调剖剂的研究及在采油九厂的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弱凝胶调驱体系是指使用略高于聚合物驱浓度的聚合物,加入少量延缓型交联剂,使之在地层内缓慢生成弱凝胶。一方面弱凝胶具有一定强度,能对地层中的高渗透通道产生一定封堵作用,使后续注入水绕流至中低渗透层,起到调剖作用:另一方面,由于交联强度不高,弱凝胶在后续注入水的推动下,在该高渗透通道中还能缓慢向地层深部移动,产生像聚合物驱一样的驱油效果,这种动态的波及效果要远远好于固定凝胶的波及效果,从而能更大限度地扩大波及体积和提高驱油效率。
     文中筛选出最佳凝胶液配方:聚丙烯酰胺含量为0.3%、苯酚含量1.1%、交联剂含量1.2%、调节剂含量0.4%。在这组配方下,凝胶液的凝胶强度相对较大、成胶时间相对较长;随着交联剂含量的增加(其它组分含量不变),凝胶液的凝胶强度增大,凝胶液的成胶时间减小;随着苯酚含量的增加(其它组分含量不变),凝胶液的凝胶强度增大,凝胶液的成胶时间减小;随着调节剂含量的增加(其它组分含量不变),凝胶液的成胶时间减小,但对凝胶液的凝胶强度却无多大影响;随着温度的升高(其它组分含量不变),凝胶液的凝胶强度增大,成胶时间减小。苯酚和甲醛交联剂之间的反应,导致凝胶溶液在胶凝之前很久就有明显的浊度出现。然而,过滤试验和岩心驱替试验表明,相分离物质的存在对凝胶溶液的波及或注入能力的影响是微不足道的。
     弱凝胶调驱剂既能起到封堵作用,又能在后续水驱的作用下,沿高渗透层缓慢地向地层深部运移。扩大水驱波及面积和提高驱油效率,改善开发效果。弱凝胶调驱剂具有较好的渗透率选择性,即优先进入高渗透的大孔道,进入低渗透部位者很少。
     现场应用表明,外围油田开展弱凝胶深度调剖是可行的,且推广应用前景好。一是从地层条件上看,空气渗透率在87×10~(-3)μm~2以上,孔隙度在20%以上,单层有效厚度在0.8m以上,砂体发育面积大,水驱控制程度高的油层均可应用该项技术;二是从注水井上看,无法实现分层调剖的笼统井调剖后也能见到较好的效果。通过弱凝胶调剖之后,制约油田开发的层间、平面、层内矛盾能得到有效缓解,采收率可提高2%以上。
Weak gel profile controlling and oil-displacing system is just such a kind of system: using polymers whose concentration is a little higher than polymeric displacing concentration, and adding little delaying cross-linking agent into it, make it be weak gel slowly in stratum. One side, weak gel has some intensity, and can produce some sealing to the high osmotic channels in stratum making succeeding injecting water flow to mid-low osmotic layers, so getting profile controlling. Another side, because the cross-linking intensity is not high, weak gel in the high osmotic channels can also move to the deep stratum slowly under the pushing of the succeeding water and produce oil displacing consequence as same as polymeric displacement. Such dynamic conformance consequence is far better than the conformance consequence of regular gel, so can enlarge swept volume and enhance oil productivity on more extent.
    The article screened out the best formula of gel solution: polyarylamid content is 0.3%, phenol content is 1.1%, cross-linking agent content is 1.2%, adjusting agent content is 0.4%. In such kind of formula, the gelation intensity of gel solution is comparative high; the gelating time is comparative long. The gelation intensity of gel solution is increasing ana the gelating time is getting shorter with the increasing of cross-linking agent content (other indigent contents are not changing). The gelation intensity of gel solution is increasing and the gelating time is getting shorter with the increasing of phenol content (other indigent contents are not changing). The gelating time is getting shorter with the increasing of adjusting agent content (other indigent contents are not changing), but such change has litter influence on the gelation intensity of gel solution. The gelation intensity of gei solution is increasing and the gelating time is getting shorter with the increasing of temperature (other indigen
    t contents are not changing). The reaction between phenol and methonal cross-linking agent cause the cloudiness appear obviously in the gel solution long before gelating. But filtering experiments and core displacing tests show that the existing of phase separating substances has little influence on the sweeping and inputting ability of gel solution, and the influence is not worth mentioning.
    Weak gel not only can produce sealing, but also can move to the deeper stratum slowly along high osmotic layers under the pushing of succeeding water. It can enlarge swept area and enhance oil-displacing efficiency, improve exploiting consequence. Weak gel profile controlling and oil-displacing agent has comparative good selectivity on permeability, it prefer to move into high osmotic large channels and those move into low osmotic channels are very little.
    On-spot tests show that taking weak gel profile control on deep stratum in peripheral oilfields is viable and the prospecting of popularizing using is good. First, looking from stratum conditions, air permeability is over 87X10-3 m2, porosity is over 20%, the pay thickness of single layer is over 0.8m, the sand developing area is large, high water displacing controlling oil layers can all use this technique. Second, looking from water inputting wells, the common well's'can also get comparative good consequence after profile control, such wells can't achieve of profile control respectively on each layer. Through weak gel profile control, the contradictions between layers, on plane, or in layers containing of oilfield exploitation can be resolved successfully, oil productivity can be enhanced by over 2%.
引文
[1] 马宝歧、吴安明等编著.油田化学原理与技术.北京:石油工业出版社,1995年4月
    [2] 刘庆旺等.FW调剖剂的研制及其在大庆油田的应用.大庆石油学院学报.2000,24(2)
    [3] 刘翔鹗等.采油技术手册,第十分册(堵水技术).北京:石油工业出版社,1991年.
    [4] 刘翔鹗等.石油钻采工艺(调剖堵水专集),1988年
    [5] 刘翔鹗、李宇乡等.中国油田堵水技术综述.油田化学,1992(2)
    [6] 王小泉、马宝歧.调整蒸汽注入剖面用的高温堵剂.油田化学,1991(1)
    [7] 谌凡更、马宝歧.木质素堵剂的研究与发展.油田化学,1988(3)
    [8] 油田区块整体堵水调剖技术论文集编委会.油田区块整体堵水调剖技术论文集.北京:石油工业出版社,1994年
    [9] 刘庆旺等.FL调剖剂的研制及其在辽河油田的应用.大庆石油学院学报,2000,24(2)
    [10] Albonico, P, Lockhart, T. P: Divalent Ion-Resistant Polymer Gels for High Temperature Applications. Syneresis Inhibiting Additives, paper SPE 25220 presented at the SPE Intl. Symp. on Oilfield Chemistry, New Orleans, 1993
    [11] Moradi-Araghi, A, Bjomson, G, Doe, P. H. Thermally Stable Gels for Near-Wellbore Permeability Contrast Corrections, SPE Adv. Techn. Ser. (1993) 1,140-145
    [12] Hsieh, H. L, Moradi-Araghi, A: Application of Water-Soluble Polymers to Petroleum Production Under Hostile Environments, Polym. Prepr. (1991) 32(2), 269-270
    [13] 赵福麟.调剖剂.石油大学学报,1990(4)
    [14] 尉小明等.复合离子深度调剖剂的应用.大庆石油学院学报.2000,24(2)
    [15] 赵福麟等.粘土双液法调剖剂封堵地层大孔道.石油学报,1994(1)
    [16] [美]JI迪斯塔肖编,金静芷等译.油田化学剂新发展(美国专利文献汇编).石油工业出版社,1992
    [17] Moradi- Araghi, A: Application of Low-Toxicity Crosslinking System in Production of Thermally Stable Gels, paper SPE/DOE 27826 presented at the SPE/IX )
    
    E Ninth Symp. on Improved Oil Recovery, Tulsa. Apr. 17-20, 1994
    [18] Hauser, T. R, Cummings, R. L: Increasing sensitivity of 3-methyl-2-benzothia-zolone hydrazone test for analysis of aliphatic aldehydes in air, Anal. Chem. (1964) 36,179
    [19] Sorbie, K. S, Yuan, M. D, Todd, A. C, Wat, R. M. S: The Modelling and Design of Scale Inhibitor Squeeze Treatments in Complex Reservoirs, paper SPE 21024 presented at the SPE Intl. Symp. on Oilfield Chemistry, Dallas, 1991
    [20] 高玉军等.稠化油选择性堵水技术.第九次全国油田堵水技术工作会议论文集.石油工业出版社,1997年
    [21] 李宇乡等.我国油田化学堵水调剖剂的开发和应用现状.油田化学,1995,12(1)
    [22] 白宝军、刘翔鹗等.利用平面夹砂模型研究调剖剂.油气采收率技术.1996(1)
    [23] 唐孝芬等.冀东油田复杂断块堵水新技术.油田堵水技术论文集.石油工业出版社.1998(2)
    [24] 蒋成新.木质素磺酸钠—HPAM复合铬冻胶堵水技术.石油钻采工艺(堵水专集),1988年
    [25] Borling, D. C: Injection Conformance Control Case Histories Using Gels at the Wertz Field CO_2 Tertiary Flood in Wyoming, paper SPE/T) OE 27825 presented at the SPE/DOE Ninth Symp. on Improved Oil Recovery, Tulsa, Apr. 17-20. 1994
    [26] Lockhart. T. P, Albonico, P: A New Gelation Technology for In-Depth Placement of Cr~(3-)/Polymer Gels in High-Temperature Reservoirs. paper SPE/DOE 24194 presented at the SPE/DOE Eighth Symp. on Enhanced Oil Recovery, Tulsa, Apr. 22-24, 1992
    [27] Sydansk, R. D, Acrytamide-Polymer/Chromium(Ⅲ)-Carboxylate Gels for Near Well-bore Matrix Treatments, SPE Adv. Techn. Ser. (1993) 1, 146-152
    [28] 勇振明.聚丙烯酰胺类溶液在砂岩油层中选堵效应的实验研究.油田化学,1987(1)
    [29] 赵福麟.采油化学.石油大学出版社,1989(12)
    [30] 李宇乡.TP-910堵水技术研究.石油钻采工艺(堵水专集),1988
    [31] 苗和平等.酚醛树脂堵剂FD-96的研制与应用.油田化学.1999,16(1)
    [32] 姚晓等.DB型油井水泥膨胀剂的研究.油田化学,1999,16(2)
    [33] 张代森等.有机钛-水解聚丙烯腈钠盐堵剂的研究与应用.油田化学,1999,16(3)
    
    
    [34] 王任芳等.无机盐对硅酸凝胶形成的影响.油田化学,1999,16(4)
    [35] 大庆油田有限责任公司油气田开发部“采油工程”编辑部.大庆油田1999年采油工程技术报告汇编
    [36] 袁士义.聚合物地下交联调剖数学模型.石油学报,1991(1)
    [37] Microsoft Word 2000 for Windows 中文版操作手册.中国石化出版社.2000.4
    [38] Microsoft Powerpoint 2000 for Windows 中文版操作手册.中国石化出版社.2000.4
    [39] 左松林.新站油田整体调剖试验研究.大庆油田有限责任公司第九采油厂,2002.2
    [40] 宋才娃等.聚合物深度调剖技术在龙虎泡油田的应用.大庆油田有限责任公司第九采油厂,2001.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700