用户名: 密码: 验证码:
基于金纳米材料的生物传感新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学生物传感技术通常是指是利用待测物与识别单元结合过程中产生的光学信号,通过换能器将信号转换与放大处理,直接转换成可读的数据,而待测物的定性或定量分析则可由最终输出的数据直接读取或者换算实现。光学生物传感技术无需分离、操作简便可原位实时活体测定,越来越受到人们的关注。纳米材料,泛指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或者由该尺度范围的物质为基本结构单元所构成的具有特殊效应的纳米级物质。纳米材料因其特殊的结构组成常具有其他一般材料所不具备的特殊性质,包括光学性、导热性、导电性、磁性等等。处于原子簇和宏观物体交界的过渡区域的纳米颗粒材料更是具有量子尺寸效应、微小尺寸效应、表面效应、量子隧道效应、介电限域效应等。纳米材料已经广泛应用于电子、化工、轻工、纺织、军事、医学等领域。纳米材料与光学生物传感技术相结合在蛋白小分子作用、医学临床诊断、药物筛选、靶向治疗等方面的研究和应用更是极为重要和急需的。本论文以此为前提,将蛋白、磷脂肌醇酶、蛋白转录后修饰酶、毒素等与人类肿瘤及重大疾病等相关的重要生物功能标志物作为研究对象,发展了一系列简单快捷、低成本、高通量、线性范围宽、稳定性好,且高灵敏、高选择性的新型生物传感方法。本研究论文的主要内容概括如下:
     (1)磷酸肌醇酶的功能紊乱与已知的肿瘤、糖尿病等多种疾病有着密切的关系,其可逆调节磷酸化磷酸肌醇信号检测在分子机制的理解和治疗诊断工具的开发方面具有的强大的意义。第2章,发展了一种新颖的基于酶调控金纳米颗粒自组装均相比色传感方法用于检测磷酸肌醇激酶和去磷酸酶的活性。根据酶改性磷酸酰肌醇的首基达到结合普列克底物同源性细胞质蛋白或膜蛋白的胞质结构域(PH)的目的。支持磷脂膜包覆金纳米颗粒表面被设计提供了膜蛋白的胞质结构域(PH)的底物基质,有效的提高了酶反应效率。在靶标磷酸肌醇的存在下,支持磷脂膜修饰的金纳米颗粒与磷脂酰肌醇结合蛋白的PH结构域修饰的金纳米颗粒形成自组装交联聚合物,引起金纳米颗粒的表面等离子耦合共振效应,引发紫外吸收光谱值的变化,实现对磷酸肌醇信号的快速灵敏、均相高通量的检测。
     (2)霍乱弧菌所致的霍乱能导致感染者严重腹泻是流行广泛且古老的烈性传染病,而霍乱毒素(CT)是霍乱弧菌所产生的外毒素,监测霍乱毒素(CT)含量对霍乱的预防、控制工作具有极其重要的意义。人类C反应蛋白(CRP)是与人体内突发性的炎症、或细菌感染、又或者组织损伤、心血管系统疾病(包括冠心病在内)等与发炎相关疾病的指标因子,对于它的评估有着非同寻常的意义。第3章,在前章工作的基础上改进了金纳米颗粒上磷脂膜的修饰方法,使得基于鞘糖脂修饰金纳米颗粒作为可视化生物传感平台用于检测霍乱毒素B亚组分(CTB)及人类C反应蛋白(CRP)更加可靠、灵敏、方便及快速。在此生物传感器的设计上,首先利用带疏水长链烷基的阳离子表面活性剂分子(CTAB)的NH3基端,以Au-NH3键共价作用直接在合成中修饰在金纳米颗粒的表面,紧接着加入鞘糖脂分子。由于鞘糖脂分子含有疏水性的N-脂酰鞘氨醇,它能在合成过程中以范德华(疏水)作用力直接插入到表面活性剂分子(CTAB)的十六烷基疏水链中,在金纳米颗粒表面形成鞘糖脂单分子层,达到将金纳米颗粒表面鞘糖脂功能活化的目的。这种鞘糖脂功能化活性的金纳米颗粒复合物不仅制备过程简单、易操作,而且还具有很好的通用性。利用不同的鞘糖脂及其受体(如霍乱毒素B亚组分(CTB)、人类C反应蛋白(CRP)、破伤风毒素和p糖苷酶等)之间强大的结合力,可以轻松地达到准确定量分析检测毒素及蛋白酶的目的。
     (3)PTM酶活性的识别和定量对于细胞调控机制的研究、诊断学的发展以及疾病的治疗来说都是非常急待解决的问题,发展一个简单快捷、可自由标记并能实时监测PTM酶的方法是一个艰巨的挑战。第4章,构建了一个简单的,以多肽为模板直接快速合成高产率荧光AuNCs的方法,并且研究了PTM酶的转录后修饰对AuNCs的光化学特性的影响。以组蛋白去乙酰化酶(HDAC1)和蛋白激酶A(PKA)这两种PTM酶作为模型系统。HDAC1和PKA都被认为是与细胞周期调控、细胞增殖和癌症的发展紧密相连的,是最有潜力的治疗靶点与诊断的生物标志物。研究中,首次发现了多肽—AuNC的纳米复合材料,在保持底物肽活性的同时,AuNCs会在底物肽的酶活性修饰中发生荧光淬灭现象。这种酶响应荧光纳米簇的信号指示开辟了直接检测JPTMs转录后修饰无标记方法的可能,建立了一个简单且有用的生物传感平台,可用于灵敏的、实时的检钡PTMs酶。PTMs酶在生命体中占有十分重要的地位,它们的发展可能会催化带动AuNCs在新的生物医学应用、生物过程以及疾病的诊断和治疗的等领域的理解应用。
     (4)MDM2癌基因,参予细胞的基本生理过程,它的突变与扩增与肿瘤(比如胶质瘤、骨肉瘤、软组织肉瘤甚至乳腺癌细胞系)的转移密切相关,是一种与多种肿瘤相关的克隆新基因。gp120表面蛋白,是一种病毒外层的糖蛋白,它对于艾滋病毒进入宿主细胞引起病毒感染等方面至关重要。第5章,在前章工作基础上,提出了一个基于蛋白保护生物活性分子的生物传感分析方法用于小分子结合蛋白的研究。理论上,羧基肽酶Y可以将生物多肽链水解成氨基酸小片段,可是,当生物多肽链与其靶向蛋白绑定结合后,靶向蛋白阻止了羧基肽酶Y的水解作用保证了生物多肽链的完整性。本生物传感平台基于此原理,结合以多肽为模板合成金纳米簇的方法发展出一种新型的靶向研究蛋白及小分子作用的方法。这种方法较之传统的的研究方法不同,无需对生物多肽链或靶向蛋白进行前处理。基于蛋白质保护的多肽模板金纳米簇为研究小分子及其结合蛋白特异性相互作用提供一个新的超灵敏生物传感平台。
Optical biological sensing technology is usually means that optical signal was produced in the object to be measured and the recognition unit combination process, the determinand and identify the object under test unit combination process of optical signal, through the transducer signal conversion and amplification processing, directly into a readable data, and qualitative or quantitative analysis of the object under test can be read directly by the final output data or conversion. Optical sensing technology without biological separation, can be in situ determination of real-time live is easy to operate, so more and more get the attention of people. Nanomaterials, referring in three-dimensional space in at least one dimension in the nanometer scale (1-100nm), or by the scale of the material as the basic structural unit of nanoscale materials with special effects. Because of its special structure, nanomaterials often have special properties, including optical properties, thermal conductivity, electrical conductivity, magnetism and so on. The nanoparticles materials, between the atom clusters and macroscopic object boundary, it has a quantum size effect, small size effect, surface effect, quantum tunnel effect, dielectric confined effect, etc. Nanomaterials have been widely used in electronics, chemical industry, light industry, textile, military, medical and other fields. By combining both nano materials and optical biological sensing technology, applicationing in the small molecular protein, clinical diagnosis, drug screening and target therapy is a very important and urgent. To sum up, put the protein, phospholipids signal inositol, protein post-translational modifications enzymes, toxins and other major diseases, such as human tumor nuclear important biological functions related biomarkers as the research object, development a series of new biological sensing method whit simple and quick, low cost, high flux, wide linear range, good stability, and high sensitivity, high selectivity. The mainly points are as follows:
     (1) Enzyme mediated phosphoinositide signaling plays important regulatory roles in diverse cellular processes and has close implication in human diseases. Phosphoinositide signaling system, regulated by reversible phosphorylation of the inositol headgroup by phosphoinositide kinases and phosphatases, plays important roles in diverse fundamental cellular processes. In chapter2, we have developed a novel enzyme-activated AuNPs assembly strategy as a homogeneous colorimetric biosensor for activity detection of phosphoinositide kinases and phosphatases. This strategy utilizes a biomimetic mechanism of phosphoinositide signaling, in which AuNP supported phospholipid membranes was constructed to mimic the cellular membrane substrate, and AuNP modified binding PH domain was designed for specific recognition of the phosphorylated phosphoinositides. The biomimetic strategy enables efficient enzymatic reactions of the substrate and highly selective detection of the target enzyme with minimized interference. The developed biosensor strategy allows convenient, rapid, sensitive visual detection of phosphoinositide enzymes with a pM detection limit and a four-decade wide dynamic range. The biosensor is also demonstrated for the utility for enzyme assay in real cell lysate samples. Moreover, the biosensor is configured into a homogeneous format that increases the potential for high-throughput analysis. In view of these advantages, the developed strategy might create a general biosensor platform for visual detection of phosphoinositide signaling with high sensitivity and selectivity in biomedical research and clinical diagnostics.
     (2) Vibrio cholerae causes cholera, cholera can cause infections caused by severe diarrhea is widespread and ancient deadly infectious diseases, the cholera toxin (CT) is the external toxin produced by the bacterium vibrio cholera, so, monitoring the cholera toxin (CT) content on the cholera prevention and control work has very important significance. Human c-reactive protein (CRP) is the index factors of inflammation related diseases in the human body, these diseases include bacterial infection, or tissue damage and cardiovascular system diseases (including coronary heart disease), etc. For assessment of human c-reactive protein (CRP) has extraordinary significance. In chapter3, based on the previous chapter, improved the modification methods of phospholipids membrane on AuNPs, use with hydrophobic long chain alkyl NH3of cationic surfactant molecules (CTAB), Au-covalent NH3key role in the synthesis of modified directly on the surface of AuNPs. Glycosphingolipids N-end is inserted into the gold nanoparticle surface,forming a single molecular layer of glycosphingolipids. Using the Powerful combination between different scabbard glycolipids glycolipids and its receptor (such as the cholera toxin (CTB), human c-reactive protein (CRP), tetanus toxin and beta glycosidase, etc.), it can easily achieve the detection of toxins and proteinase accurate quantification of purpose.
     (3) Protein post-translational modifications (PTMs) play key roles in functional proteomics, via regulating the activity, localization, interactions with other biomolecules, and degradation of proteins. There is a grand need but a daunting challenge in the development of simple and label-free methods that allow rapid and real-time detection of PTM enzymes. In chapter4, we developed a simple, rapid method for highly fluorescent AuNCs synthesis with different peptide templates and discovered that PTM enzymes were able to exert chemical modifications on the peptide-templated AuNCs and quench the AuNCs'fluorescence. The peptide-templated synthesis and the enzyme-responsive property of AuNCs were successfully demonstrated using two PTM enzymes, HDAC1and PKA. It was found that the synthetic method produced highlyfluorescent Au8clusters with compact peptide coating. Enzymatic modification of the peptides could largely quench thefluorescence of the AuNCs, presumably because chemical modifications destroyed the protective peptide coating on AuNCs and induced O2-mediated quenching and oxidation of thefluorescent clusters. This enzyme-responsivefluorescent nanocluster beacon was shown to be highly sensitive and selective for label-free and real-time quantification of HDAC1and PKA with wide linear detection ranges. In virtue of the important biological roles of PTM enzymes and the advantages of the enzyme-responsive nanocluster beacon, this technology indeed created a useful label-free biosensor platform for the detection of PTM enzymes and their inhibitors, implying its great potential in proteomics, biomedical imaging, and clinical theranostics.
     (4) MDM2oncogene, is a clone of new genes associated with wide variety of tumor, basic physiological processes in the cell, its mutation andamplification and tumor (such as glioma, osteosarcoma, soft tissue sarcomaand breast cancer cell line) of metastasis. Gp120surface protein, is a glycoprotein virus outer, it for HIV entry into host cells caused by viral infection is very important. In chapter5, based on the previous chapter, proposed a method of biological sensor protein protection of biologically active molecules for protein analysis based on the study of small molecule. In theory, polypeptide by carboxypeptidase Y hydrolyzed into amino acid fragments, but, when the biological polypeptide chain and its target protein binding, theprotein prevents hydrolysis. Based on this principle, combined with the synthesis method of peptide-template AuNCs, this paper presents a new label-free biosensing platform method for rapid, sensitive detection MDM2and gp120. Also, the new method provides a new ultra sensitive biosensing platform for the study of small molecules and protein binding of specific interaction.
引文
[1]Vanderlaan M, Watkins B E, Stanker L. Environmental monitoring by immunoassay. Environmental Science and Technology,1998,22(2):247-254
    [2]Wang J, Tian B, Rogers K R. Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label. Analytical Chemistry, 1998,70(9):1682-1685
    [3]Narayanaswamy R, Wolfbeis O S. Optical sensors. Springer:New York,2004, 18-22
    [4]Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [5]Trojanowicz M. Analytical applications of carbon nanotubes:a review. TrAC Trends in Analytical Chemistry,2006,25(5):480-489
    [6]Knopp D, Tang D, Niessner R. Review:Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Analytica Chimica Acta,2009,647(1):14-30
    [7]Vikesland P J, Wigginton K R. Nanomaterial enabled biosensors for pathogen monitoring-A review. Environmental Science and Technology,2010,44(10): 3356-3669
    [8]Borisenko V E, Ossicini S. What is what in the nanoworld:A Handbook on Nanoscience and Nanotechnology, Second, John Wiley and Sons, Inc,2008
    [9]Denizot F, Lang R. Rapid colorimetricassay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods,1986,89(22):271-277
    [10]Zocher F, Enzelberger M M, Bornscheuer U T, et al. A colorimetric assay suitable for screening epoxide hydrolase activity. Analytica Chimica Acta,1999, 391(3):345-351
    [11]Pena-Pereira F, Lavilla I, Bendicho C. Colorimetric assay for determination of trimethylamine-nitrogen (TMA-N) in fish by combining headspace-single-drop microextraction and microvolume UV-vis spectrophotomet. Food Chemistry, 2010,119(1):402-407
    [12]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277(5329):1078-1081
    [13]Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [14]Otsuka H, Akiyama Y, Nagasaki Y, et al. Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). Journal of the American Chemical Society,2001,123(34):8226-8230
    [15]Hone D C, Haines A H, Russell D A. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir,2003,19(17): 7141-7144
    [16]Sudeep P K, Joseph S T, Thomas K G. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 2005,127(18):6516-6517
    [17]Suksai C, Tuntulani T. Chromogenic anion sensors. Chemical Society Reviews, 2003,32(4):192-202
    [18]Souza G R, Christianson D R, Staquicini F I. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. The Proceedings of the National Academy of Sciences of the United States of America,2006,103(5): 1215-1220
    [19]Yang W, Gooding J J, He Z, et al. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. Journal of Nanoscience and Nanotechnology,2007,7(2):712-716
    [20]Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of "Spectroscopically Silent" heavy metal ions. Nano Letters,2001,1 (4):165-167
    [21]Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry,2008, 80(4):1067-1072
    [22]Lee K, Povlich L K, Kim J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst,2010,135(9):2179-2189
    [23]Jiang Y, Zhao H, Lin Y, et al. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angewandte Chemie International Edition,2010, 49(28):4800-4804
    [24]Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America,2010,107(24):10837-10841
    [25]Mohr G J. Covalent bond formation as an analytical tool to optically detect neutral and anionic analytes. Sensors and Actuators B:Chemical,2005,107(1): 2-13
    [26]Wetzl B K, Yarmoluk S M, Craig D, et al. Chameleon Labels for Staining and Quantifying Proteins. Angewandte Chemie International Edition,2004,43(40): 5400-5402
    [27]Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chemical Reviews,2007, 107(11):4797-4862
    [28]Tang Y, Feng F, He F, et al. Direct visualization of enzymatic cleavage and oxidative damage by hydroxylradicals of single-stranded DNA with a cationic polythiophene derivative. Journal of the American Chemical Society,2006, 128(46):14972-14976
    [29]Herzong V, Fahimi H D. A new sensitive colorimetric assay for peroxidase using 3,3'-diaminobenzidine as hydrogen donor. Analytical Biochemistry,1973, 55(2):554-562
    [30]Liu M, Jia C, Jin Q, et al. Novel colorimetric enzyme immunoassay for the detection of carcinoembryonic antigen. Talanta,2010,81(4-5):1625-1629
    [31]Song Y, Wang X, Zhao C, et al. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry-A EuropeanJournal,2010,16(12): 3617-3621
    [32]Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosensors and Bioelectronics,2011,26(9):3927-3931
    [33]Zhang Y, Tian J, Liu S, et al. Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2and glucose. Analyst, 2012,137(6):1325-1328
    [34]Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society,2003,125(27):8102-8103
    [35]Chen X, Levine L, Kwok P-Y. Fluorescence polarization in homogeneousnucleic acid analysis. GenomeResearch,1999,9(5):492-498
    [36]Simeonov A, Nikiforov T T. Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Research,2002,30(17):e91
    [37]Smith D S, Eremin S A. Fluorescencepolarization immunoassays and related methods for simple, high-throughput screening of small molecules. Analytical and Bioanalytical Chemistry,2008,391(5):1499-1507
    [38]Tian J, Zhou L, Zhao Y, et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta,2012,92(1):72-77
    [39]Tachi T, Kaji N, Tokeshi M, etal. Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab on Chip,2009,9(7):966-971
    [40]Sanchez F G, Navas A, Alonso F. et al. Polarization fluoroimmunoassay of the herbicide dichlorprop. Journal of Agricultural and Food Chemistry,1993,41(11): 2215-2219
    [41]Cruz-Aguado J A, Penner G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Analytical Chemistry, 2008,80(22):8853-8855
    [42]Zhang M, Guan Y, Ye B. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification. Chemical Communications2011,47(12):3478-3480
    [43]Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. The Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17278-17283
    [44]Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry,2005,77(4):1147-1156
    [45]Li J, Lu Y. A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. Journal of the American Chemical Society,2000,122(42):10466-10467
    [46]Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. The Proceedings of the National Academy of Sciences of the United States of America,2007,104(7): 2056-2061
    [47]Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. Journal of the American Chemical Society,2002,124(48):14286-14287
    [48]Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21): 4928-4931
    [49]Haifeng D, Jing Z, Huangxian J, et al. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Analytical chemistry,84(10), 4587-4593
    [50]Zhao H, Chang Y, Liu M, et al. A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chemical Communications,2013,49(3):234-236
    [51]Forster T. Energy migration and fluorescence. Naturwissenschaften,1946,33(6): 166-175
    [52]Forster T. Transfer mechanisms of electronic excitation. Discussions Faraday Society,1959,27(1):7-17
    [53]张志毅,周涛,巩伟丽等.荧光共振能量转移技术在生命科学中的应用及研究进展.电子显微学报,2007,26(6):620-624
    [54]Dirks R W, Molenaar C, Tanke H J. Methods for visualizing RNA processing and transport pathways in living cells. Histochemistry and Cell Biology,2001, 115(1):3-11
    [55]Tsuji A, Sato Y, Hirano M, et al. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophysical Journal,2001,81(1):501-515
    [56]Jobin C M, Chen H, Lin A J, et al. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells. Biochemistry,2003, 42(40):11716-11725
    [57]Miyakawa-Naito A, Uhlen P, Lai M, et al. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. The Journal of Biological Chemistry,2003,278(50):50355-50361
    [58]Niethammer P, Bastiaens P, Karsenti E. Stathmin-tubulin interaction gradients in motile and mitotic cells. Science,2004,303(5665):1862-1866
    [59]Szczesna-Skorupa E, Mallah B, Kemper B. Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells. The Journal of Biological Chemistry,2003,278(33):31269-31276
    [60]Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21): 4928-4931
    [61]Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society,2004,126(5): 1384-1387
    [62]Xiao Y, Plakos K J I, Lou X, et al. Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe. Angewandte Chemie International Edition,2009,48(24):4354-4358
    [63]Lakowicz J R. Principles of fluorescence spectroscopy. Kluwer cademic/Plenum: New York,2006,353-357
    [64]Jinhua L, Changyao W, Ying J, et al. Graphene Signal Amplification for Sensitive and Real-Time Fluorescence Anisotropy Detection of Small Molecules. Analytical Chemistry,2013,85(3):1424-1430
    [65]Bin-Cheng Y, Peng Z, Hao H, et al. DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Analytical Biochemistry,2010,401(1):48-52
    [66]Yongsheng Liu, Shanyong Zhou, Datao Tu, et al. Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles:Optical Spectroscopy, Time-Resolved Fluorescence ResonanceEnergy Transfer Biodetection, and Targeted Imaging. Journal of the American Chemical Society,2012,134(36): 15083-15090
    [67]Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [68]Trojanowicz M. Analytical applications of carbon nanotubes:a review. TrAC Trends in Analytical Chemistry,2006,25(5):480-489
    [69]Knopp D, Tang D, Niessner R. Review. Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Analytica Chimica Acta,2009,647(1):14-30
    [70]Vikesland P J, Wigginton K R. Nanomaterial enabled biosensors for pathogen monitoring-A review. Environmental Science and Technology,2010,44(10): 3356-3669
    [71]Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition,2010,49(19):3280-3294
    [72]Murphy C J, Gole A M, Stone J W, et al. Gold nanoparticles in biology:beyond toxicity to cellular imaging. Accounts of Chemical Research,2008,41(12): 1721-1730
    [73]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B,2006,110(14):7238-7248
    [74]Shiang Y, Huang C, Chang H. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chemical Communications,2009, 45(23):3437-3439
    [75]Lisa M, Chouhan R S, Vinayaka A C, et al. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane:An organochlorine pesticide. Biosensorsand Bioelectronics,2009,25(1):224-227
    [76]Glynou K, Loannou P C, Christopoulos T K, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Analytical Chemistry,2003,75(16):4155-4160
    [77]Feng L Z, Liu Z. Graphene in biomedicine:Opportunities and challenges. Nanomedicine,2011,6(2):317-324
    [78]Jiang H J. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small,2011,7(17):2413-2427
    [79]Guo S J, Dong S J. Graphene nanosheet:Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 2011,40(5):2644-2672
    [80]Yun J S, Ho-Jun S, Hwa Y S, et al. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureusin milk. Biosensors and Bioelectronics,2013,43:432-439
    [81]Suwussa B, Mohammed I S, Weihong T, et al. Detection of Lysozyme Magnetic Relaxation Switches Based on Aptamer-Functionalized Superparamagnetic Nanoparticles. Analytical Chemistry,2011,83 (20):7795-7799.
    [82]Faulk W P, Taylor G M. An immunocolloid method for the election microscope. Immunochemistry,1971,8(11):1081-1083
    [83]Saha K, Agasti S S, Kim C,et al. Gold nanoparticles inchemical and biological sensing. Chemical Reviews,2012,112(5):2739-2779
    [84]Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications:recent advances and perspectives. ChemicalSociety Reviews,2012,41(6):2256-2282
    [85]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B,2006,110(14):7238-7248
    [86]Elghanian R, Storhoff J J, Mirkin C A, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science.1997,277(5329):1078-1081
    [87]Jung H L, Zidong W, Juewen L, et al. Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+):Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. Journal of the American Chemical Society,2008,130 (43):14217-14226
    [88]Hu L, Han S, Parveen S, etal. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors and Bioelectronics,2012, 32(1):297-299
    [89]Tao Y, Lin Y, Ren J, et al. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosensors and Bioelectronics,2013,42(1):41-46
    [90]Chen Z, Zhang X B, Yang R H, et al. Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale,2011,3(5):1949-1956
    [91]Nie H G, Liu S J, Yu R Q, et al. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angewandte Chemie International Edition,2009,48(52):9862-9866
    [92]Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. Journal of the American Chemical Society,2009, 131(34):12325-12332
    [93]Lu C, Yang H, Zhu C, et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [94]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [95]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297
    [96]Bunney T D, Katan M. Phosphoinositide signalling in cancer:beyond PI3K and PTEN. Nature Reviews Cancer,2010,10(5):342-352
    [97]Wymann M P, Schneiter R. Lipid signalling in disease. Nature Reviews Molecular Cell Biology,2008,9(2):162-176
    [98]Knight Z A, Feldman M E, Balla A, et al. A membrane capture assay for lipid kinase activity. Nature Protocols,2007,2(10):2459-2466
    [99]Taniguchi C M, Tran T T, Kondo T, et al. Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proceedings of the National Academy of Sciences,2006,103(32):12093-12097
    [100]Wei Y, Jiang Y, Zou F, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proceedings of the National Academy of Sciences,2013,110(17):6829-6834
    [101]Yuan H T, Khankin E V, Karumanchi S A, et al. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Molecular and Cellular Biology,2009,29(8):2011-2022
    [102]Tzenaki N, Andreou M, Stratigi K, et al. High levels of p110δ PI3K expression in solid tumor cells suppress PTEN activity, generating cellular sensitivity to p110δ inhibitors through PTEN activation. The Federation of American Societies for Experimental Biology,2012,26(6):2498-2508
    [103]Nie H G, Liu S J, Yu R Q, et al. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angewandte Chemie International Edition,2009;48(52):9862-9866
    [104]Liu S J, Wen Q, Tang L J, et al. Phospholipid-graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity. Analytical Chemistry,2012,84(14):5944-5950
    [105]Wang L S, Wu L C, Lu S Y, et al. Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery:improved water suspensibility and decreased nonspecific protein binding. ACS Nano,2010,4(8): 4371-4379
    [106]Zheng W, Liu Y, West A, et al. Quantum Dots Encapsulated within Phospholipid Membranes:Phase-Dependent Structure, Photostability, and Site-Selective Functionalization. Journal of the American Chemical Society,2014,136(5): 1992-1999
    [107]Li L L, Zhang R, Yin L, et al. Biomimetic Surface Engineering of Lanthanide-Doped Upconversion Nanoparticles as Versatile Bioprobes. Angewandte Chemie International Edition,2012,124(25):6225-6229
    [108]Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection. Journal of the American Chemical Society,2011, 133(11):4132-4139
    [109]Qian X, Peng X H, Ansari D O, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 2008,26(1):83-90
    [110]Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biological sensing.Chemical Reviews,2012,112(5):2739-2779
    [111]Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition,2010,49(19): 3280-3294
    [112]Zhang X, Servos M R, Liu J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. Journal of the American Chemical Society,2012,134(17):7266-7269
    [113]Li J, Fu H E, Wu L J, et al. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Analytical Chemistry,2012,84(12):5309-5315
    [114]Chen Z, Tan Y, Zhang C, et al. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosensors and Bioelectronics,2014,56:46-50
    [115]Guo Y, Wang Z, Qu W, et al. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosensors and Bioelectronics,2011,26(10):4064-4069
    [116]Lemmon M A. Membrane recognition by phospholipid-binding domains. Nature Reviews Molecular Cell Biology,2008,9(2):99-111
    [117]Bethoney K A, King M C, Hinshaw J E, et al. A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proceedings of the National Academy of Sciences,2009,106(32):13359-13364
    [118]Cantley L C.. The phosphoinositide 3-kinase pathway. Science 2002,296(5573): 1655-1657
    [119]Cully M, You H, Levine A J, et al. Beyond PTEN mutations:the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews Cancer, 20066(3):184-192
    [120]Martelli A M, Nyakern M, Tabellini G, et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloidleukemia. Leukemia,2006,20(6):911-928
    [121]Li Y, Prasad A, Jia Y, et al. Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood,2011, 117(24):6702-6713.
    [122]Hill HD, Mirkin C A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature Protocols, 2006;1(1):324-336
    [123]Thaxton CS, Daniel W L, Giljohann D A, et al. Templated spherical high density lipoprotein nanoparticles. Journal of the American Chemical Society,2009, 131(4):1384-1385
    [124]Tam N C, Scott B M, Voicu D, et al. Facile synthesis of Raman active phospholipid gold nanoparticles. Bioconjugate Chemistry.2010,21(12): 2178-2182.
    [125]Tam N C, McVeigh P Z, MacDonald T D, et al. Porphyrin-lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging. Bioconjugate Chemistry.2012,23(9):1726-1730
    [126]Ip S, MacLaughlin C M, Gunari N, et al. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering. Langmuir,2011,27(11): 7024-7033
    [127]Levan S, De S, Olson R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. Journal of Molecular Cell Biology,2013,425(5):944-957
    [128]Shojaee M, Fereydooni Golpasha M, Maliji G, et al. C-reactive protein levels in patients with periodontal disease and normal subjects. International Journal of Molecular and Cellular Medicine,2013,2(3):151-155
    [129]Chen C, Fu Z J, Kim J J, et al. Gangliosides as high affinity receptors for tetanus neurotoxin. The Journal of Biological Chemisitry,2009,284(39):26569-26577
    [130]Kuziemko G M, Stroh M, Stevens R C. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry,1996,35(20):6375-6384
    [131]MacKenzie C R, Hirama T, Lee K K, et al. Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. The Journal of Biological Chemistry,1997,272(9):5533-5538
    [132]Chinnapen D J F, Chinnapen H, Saslowsky D, et al. Rafting with chelora toxin: endocytosis and trafficking from plasma membrance to ER. FEMS Microbiology Letters,2007,266(2):129-137
    [133]Deribe Y L, Pawson T, Dikic I. Post-translational modifications in signal integration. Nature Structural & Molecular Biology,2010,17(6):666-672
    [134]Walsh C T, Garneau-Tsodikova S, Gatto, G J. Protein posttranslational modifications:the chemistry of proteome diversifications. Angewandte Chemie International Edition,2005,44(45):7342-7372
    [135]Wang Y, Zhang C H, Tang L J, et al. Enzymatic control of plasmonic coupling and surface enhanced Raman scattering transduction for sensitive detection of DNA demethylation. Analytical Chemistry,2012,84(20):8602-8606
    [136]Zhen Z, Tang L J, Long H, et al.Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes. Analytical Chemistry,2012,84(8):3614-3620.
    [137]Wang Z, Levy R, Fernig DG, et al. Kinase-catalyzed modification of gold nanoparticles:a new approach to colorimetric kinase activity screening. Journal of the American Chemical Society,2006,128(7):2214-2215
    [138]Cole P A. Chemical probes for histone-modifying enzymes. Nature Chemical Biology,2008,4(10):590-597
    [139]Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annual Review of Physical Chemistry,2007,58:409-431
    [140]Wang Z, Hu J, Jin Y, et al. In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clinical Chemistry,2006,52(10):1958-1961
    [141]Wang M, Sun C, Wang L, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003 33(5):1117-1125
    [142]Chen T, Hu Y, Cen Y, et al. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. Journal of the American Chemical Society,2013,135(31): 11595-11602
    [143]Lin S Y, Chen N T, Sun S P, et al. The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. Journal of the American Chemical Society,2010,132(24):8309-8315
    [144]Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angewandte Chemie International Edition, 2007,46(36):6824-6828
    [145]Kairdolf B A, Nie S. Multidentate-protected colloidal gold nanocrystals:pH control of cooperative precipitation and surface layer shedding. Journal of the American Chemical Society,2011,133(19):7268-7271
    [146]Kennedy T A, MacLean J L, Liu J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chemical Communications,2012,48(54):6845-6847
    [147]Yu M, Zhou C, Liu J, et al. Luminescent gold nanoparticles with pH-dependent membrane adsorption. Journal of the American Chemical Society,2011,133(29): 11014-11017
    [148]Wang Y, Chen J, Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano,2011,5(12): 9718-9725
    [149]Liu C L, Wu H T, Hsiao Y H, et al. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angewandte Chemie International Edition,2011,50(31):7056-7060
    [150]Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society,2009,131(3):888-889
    [151]Collins I, Workman P. New approaches to molecular cancer therapeutics. Nature Chemical Biology,2006,2(12):689-700
    [152]Riester D,, Hildmann C, Grunewald S, et al. Factors affecting the substrate specificity of histone deacetylases. Biochemical and Biophysical Research Communication,2007,357(2):439-445
    [153]Yu Y, Luo Z, Yu Y, et al. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. ACS Nano,2012,6(9):7920-7927
    [154]Zheng J, Petty J T, Dickson R M. High quantum yield blue emission from water-soluble Au8 nanodots. Journal of the American Chemical Society,2003, 125(26):7780-7781
    [155]Yan L, Cai Y, Zheng B, et al. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. Journal of Materials Chemistry,2012,22(3):1000-1005
    [156]Finnin M S, Donigian J R, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature,1999,401(6749): 188-193
    [157]Demers LM1, Mirkin CA, Mucic RC, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analytical Chemistry,2000,72(22):5535-5541
    [158]Hamilton S D, Pardue H L. Kinetic method having a linear range for substrate concentrations that exceed Michaelis-Menten constants. Clinical Chemistry, 1982,28(12):2359-2365
    [159]Whetten R L, Price R C. Chemistry. Nano-golden order. Science,2007, 318(5849):407-408
    [160]Samia A C, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society,2003,125(51):15736-15737
    [161]Xu S, Liu Y, Wang T, et al. Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Analytical Chemistry, 2010,82(22):9566-9572
    [162]Ji J, Yang H, Liu Y, et al. TiO2-assisted silver enhanced biosensor for kinase activity profiling. Chemical Communications,2009,28(12):1508-1510
    [163]Kerman K, Chikae M, Yamamura S, et al. Gold nanoparticle-based electrochemical detection of protein phosphorylation. Analytica Chimica Acta, 2007,588(1):26-33
    [164]Oishi J, Asami Y, Mori T, et al. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Biomacromolecules,2008,9(9):2301-2308
    [165]Inuzuka H, Tseng A, Gao D, et al.Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell,2010,18(2):147-159
    [166]Lasky L A, Nakamura G, Smith D H, et al. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell,1987,50(6):975-985
    [167]Harris D C, Chu X Z, Jayawickramarajah, J. DNA-small molecule chimera with responsive protein-binding ability. Journal of the American Chemical Society, 2008,130(12):14950-14951
    [168]Gao X H, Cui Y Y, Levenson, R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology,2004,22(8):969-976
    [169]Stephen W, Michnick P H E, Emily, N, et al. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nature Review Drug Discovery,2007,6(10):569-582
    [170]Petrov A, Okhonin V, Berezovski M, Krylov S N. Kinetic capillary electrophoresis (KCE):A conceptual platform for kinetic homogeneous affinity methods. Journal of The American Chemical society,2005,127 (48), 17104-17114
    [171]Drabovich A P, Berezovski M V, Musheev M U, et al. Selection of small-molecule ligands:the proof of principle. Analytical Chemistry,2009,81 (1):490-494
    [172]Taunton J, Hassig C A, Schreiber S L. A mammalian histone deacetylase related to the yeast transcriptional regulator rpd3p. Science,1996,272 (19):408-411
    [173]Terstappen G C, Schlu pen C, Raggiaschi R, et al. Target deconvolution strategies in drug discovery. Nature Review Drug Discovery,2007,6 (5): 891-903
    [174]Zhang J, Campbell R E, Tsien R Y, et al. Creating new fluorescent probes for cell biology. Nature Reviews Molecular Campbell,2002,3(12):906-918
    [175]Clapp, A R, Medintz I L, Uyeda H T, et al. Quantum dot-based multiplexed fluorescence resonance energy transfer. Journal of The American Chemical society,2005,127(51):18212-18221
    [176]Matthew A C. Optical biosensors in drug discovery. Nature Review Drug Discovery,2002,1 (17):515-528
    [177]Kanoh A, Kyo M, Inamori K, et al. SPR imaging of photo-cross-linked small-molecule arrays on gold. Analytical Chemistry,2006,78 (7):2226-2230
    [178]Huang J, Schreiber S L. A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Poceedings of the National Academy of Sciences of the United States of America,1997,94(25): 13396-13401
    [179]Kerppola, T K. Visualization of molecular interactions by fluorescence complementation. Nature Reviews Molecular Cell Biology,2006,7(6):449-456
    [180]Laurence D J R, Biochem J A. Study of the adsorption of dyes on bovine serum albumin by the method of polarization of fluorescence. Biochemical Journal, 1952,51(2):168-180
    [181]Dandliker W B, Feigen G A. Quantification of the antigen-antibody reaction by the polarization of fluorescence. Biochemical and Biophysical Research Communications,1961,26(5):299-304
    [182]Peterson K J, Sadowsky J D, Scheef E A, et al. A fluorescence polarization assay for identifying ligands that bind to vascular endothelial growth factor. Analytical Biochemistry,2008,378(1):8-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700