用户名: 密码: 验证码:
微分析系统在水污染物检测中的发展和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的目的是检测环境污染物,主要是地表水中的重金属离子和饮用水中的消毒副产物。根据这两类物质的不同性质采用相应的两种方法:一类是基于荧光分子传感器的微流控分析法,另一类是电导检测法。
     在第一部分,两种荧光分子传感器和几种微流控芯片被用于地表水中重金属离子的检测。此外,对微流控芯片系统进行了改进。
     一种微流控芯片被设计和制作,用于水中镉离子的选择性检测。在该芯片中,使用了荧光分子探针Rhod-5N对镉离子进行响应。Rhod-5N是由BAPTA基团和一个罗丹明荧光基团组成的。其原理基于光诱导电子转移的发生,在按1:1络合的反应中,电子从BAPTA的一个芳香族氨基上转移到罗丹明荧光基团上。为了消除铅离子的干扰,使用了固相微萃取技术用于分离铅离子和镉离子。然后将探针和分离对象都引入微分析通道中,并使用525nm的UV LED激发。采集荧光信号,得到0-2μM范围内(Rhod-5N,1μgL-1)。的标准曲线,检测限为4nM (0.45μgL-1).
     使用飞秒激光刻蚀法制作一种新的PMMA微流控芯片,并在分子探针Rhod-5N的帮助下,测试其用于镉离子检测。结果与常用的比色皿和PDMS微流控芯片进行对比。遗憾的是,Rhod-5N吸附在PMMA聚合物分子上,从而影响了荧光检测的响应,检测限低于其在PDMS芯片中的结果。
     一种水溶性荧光分子探针DPPS-PEG被用于汞离子检测,该分子是DPPE的衍生物,其后嫁接一个PEG基团以提高水溶性。响应的原理是汞离子与膦硫键中的硫原子以1:1或者1:2的比例络合。在比色皿中得到的检测限是3.8nM。然后使用一种特别为汞离子检测设计制作的长检测通道的微流控芯片。反应物溶剂为有机-水溶液(CH3CN/H2O80:20, pH=4.0),并且添加2-3×10-4Triton×100用于得到稳定的荧光信号。检测限为10nM(2.0μgL-1)。
     在PDMS微流控系统中,常常产生气泡干扰荧光检测的现象,为了解决这个问题,本文采取了一些改进措施。三种措施被用于分离并排除气泡,包括气泡分离器的制作,PDMS亲水性表面处理和芯片中Phase-guide设计。气泡分离器的原理是利用浮力使气泡和液体在进入微流控分析系统之前分离并排除。PDMS的表面处理成亲水性的方法有两种,一种是使用O2plasma(简单,有效,但不稳定),另一种是PEG基团嫁接在PDMS表面(有效并且稳定)。缺点是PEG键合到PDMS表面以后对荧光分子可能发生吸附作用。Phase-guide在检测室中的设计和制作,可以控制灌流。气泡清空检测室,而反应物溶液沿着Phase-guide向前推进并充满了检测室。总之,这些改进对预防,分离和消除气泡非常有效。
     第二部分中采用了电膜萃取-毛细管区带电泳-电容耦合非接触式电导检测法(CE-C4D),建立了一种检测饮用水中的五种卤代乙酸(HAAs)的新方法。目标分析物卤代乙酸在电场推动下,萃取进入有机膜(使用有机溶剂正辛醇固定在中空纤维膜上),然后再反萃取到10微升的接收相中。富集后得到的溶液直接通过CE-C4D进行检测,无需衍生。本实验研究了缓冲溶液、分离电压、进样时间等条件对卤代乙酸的分离度、检测限、回收率的影响。在最佳条件下,饮用水中的五种卤代乙酸(一氯乙酸,二氯乙酸,三氯乙酸,一溴乙酸,二溴乙酸)可以在23min内可以实现基线分离,分析物的浓度和峰面积之间有良好的线性关系,相关系数r>0.999。本实验在30分钟的富集时间内,得到了430-671的富集倍数(EFs)。五种卤代乙酸峰的检测限为0.165ng/mL到0.609ng/mL,面积的相对标准偏差为1.17%-7.08%。本实验方法与传统的气相色谱分析法相比,不需要复杂的样品准备和衍生,为卤代乙酸的分析提供了一种可选择的新方法。
This thesis is aimed at environmental contaminations detection, mainly heavy metal ions in surface water and disinfection by-products (DBPs) in drinking water. The two categories of contaminations have different properties so that two correspondent methods were developed:one is based on fluorescent molecular sensors in a microfabricated device, the other one is based on conductive detection.
     In the first part, two fluorescent molecular sensors and several microfluidic devices were developed and applied for heavy metal ions detection in surface water. Further more, some improvements of the performance of microfluidic chips were made.
     A microfabricated device has been designed and fabricated for selective detection of cadmium ions in water. This method is based on a fluorescent molecular sensor for cadmium sensing in microfluidic chip. Rhod-5N consists of BAPTA moiety and a rhodamine fluorophore. The principle of this probe is photoinduced electron transfer occurring from one of the aromatic amine groups of BAPTA moiety to the rhodamine fluorophore in1:1complex. To eliminate the interference of lead, a solid phase extraction (SPE) preconcentration process was used to separate cadmium and lead. Then the sensor and analyte solutions were introduced into the microchannel and excited by a525nm UV LED. The fluorescence signals were collected and the calibration curve ranges from0to2μM (Rhod-5N1μM), and the limit of detection is4nM (0.45μg L-1).
     A new microchip made of PMMA was fabricated by femtosecond laser ablation and tested for Cd2+sensing based on a fluorescent molecular sensor Rhod-5N. The results were compared with that in cuvette and in PDMS-based microchip. Unfortunately, Rhod-5N molecules adsorbed on PMMA polymers and the adsorption affects the response of fluorescence detection, and the limit of detection is much lower than in PDMS-glass chip.
     A water soluble fluorescent sensor (DPPS-PEG) was used for Hg2+sensing, which is a diphenylphosphanomethane (DPPE) derivative with phosphane sulfide, and a poly(ethylene oxide)(PEG) group introduced to increase the water solubility. The principle of this fluorescent sensor is Hg2+interacted with sulfur atom of phosphane sulfide in1:1or1:2complex. The detection limit obtained in cuvette is3.8nM. Then a long microchip based on PDMS and glass was fabricated for mercury ions detection. The reactants were prepared in organic-aquous solution (CH3CN/H2O80:20at pH4.0), and2~3×10-4Triton X100was added to obtain stable fluorescence signals. The detection limit is about10nM (2.0μg L-1).
     In PDMS-based microfluidic system, air bubbles always occur and affect the fluorescence detection, so some improvements were developed to solve this problem. Three strategies were studied for trapping and debubbling of air bubbles, including portable bubble trap fabrication, hydrophilic PDMS surface treatment and phase-guide in microchip design. The bubble trap is based on the principle of buoyant force so that liquid and air can be separated before introduced into the micro-channel. The hydrophilic treatments were realized by two ways, O2plasma treatment (simple and convenient, but unstable) or PEG-coating on PDMS surface (effective and stable). The drawback is that fluorescent molecules are adsorbed on PEG grafted PDMS surface. Phase-guide was designed and fabricated in the detection chamber, and enable the control of priming. Air bubbles emptied the chamber and the overflow filling the chamber along the phase-guide wall. In general, the work is helpful for air bubbles prevention, separation and elimination.
     A novel method for sensitive determination of five priority haloacetic acids (HAAs) in water systems has been developed based on electromembrane extraction (EME) prior to capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). The target HAAs were extracted into the supported liquid membrane (using a polypropylene membrane supporting1-octanol), and then back-extracted into few microliters of an acceptor solution. The extracted solution was directly analyzed by CE-C4D without derivatization. Several factors that affect separation, detection and extraction efficiency were investigated. Under the optimum conditions, five HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid) could be well separated from other components coexisting in water samples within23min, exhibiting a linear calibration over three orders of magnitude (r>0.999); the obtained enrichment factors (EFs) at430-671were obtained in a30min of extraction, and the limits of detection were in the range of0.165-0.609μg/L with relative standard deviation between1.17%and7.08%. This approach offers an attractive alternative to the official proposed method, which requires complex sample preparation and derivatization prior to analysis by gas chromatography.
引文
1 Y. K. Hui Wang, Haipeng Liu, Zhi Zhu, Suwussa Bamrungsap, and Weihong Tan, Engineering a Unimolecular DNA-Catalytic Probe for Single Lead Ion Monitoring. J. AM. CHEM. SOC.2009,131, 8221-8226.
    2 Y. N. T. Samuel S. Tan, and Eric T. Kool, Selective Sensor for Silver Ions Built From Polyfluorophores on a DNA Backbone. Org. Lett.2012,12,4820-4823.
    3 K. G., Cadmium, osteoporosis and calcium metabolism. Biometals.2004,17,493-498.
    4 J. G Barbier O., Tauc M., Cougnon M. and Poujeol P., Effect of Heavy Metals on, and Handling by, the Kidney. Nephron Physiol 2005,99,105-110.
    5 Z. F. a. W. Zhou, Dithizone chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples. Spectrochim. Acta, Part B 2006,61,870-874.
    6 R. A. M. (Editor-in-Chief), Encyclopedia of Analytical Chemistry:Applications, Theory, and Instrumentation.. Weily 2006, New York
    7 S. G Salieb-Beugelaar G. B., Arora A., Philippi A. and Manz A., Latest developments in microfluidic cell biology and analysis systems. Anal. Chem.2010,82,4848-4864.
    8 S. H. Daniel Mark, Gunter Roth, Felix von Stetten and Roland Zengerle, Microfluidic lab-on-a-chip platforms:requirements, characteristics and applications. Chem. Soc. Rev.2010,39,1153-1182.
    9 L. L. Wen-Ming LIU, Li REN, Jian-Chun WANG, Qin TU, Xue-Qin WANG and Jin-Yi WANG, Diversification of Microfluidic Chip for Applications in Cell-Based Bioanalysis. Chinese Journal of Analytical Chemistry 2012,40,24-31.
    10 B. C. Juien Autebert, Francois-C16ment Bidard, Jean-Yves Pierga, Stephanie Descroix, Laurent Malaquin, and Jean-Louis Viovy, Microfluidic:an innovative tool for efficient cell sorting. Methods 2012, 57,297-307.
    11 M. P. G. a. A. G. E. Alfonso Perez-Garrido, Halogenated derivatives QSAR model using spectral moments to predict haloacetic acids (HAA) mutagenicity. Bioorganic & Medicinal Chemistry 2008,16, 5720-5732.
    12 C. J. a. B. R. Hodgeson J.W., Method 552, determination of haloacetic acid and dalapon in drinking water by liquid-liquid extraction, derivitization and gas chromatography with electron capture detection. US Environmental Protection Agency methods of determination of oragnic compounds in drinking water supplement Ⅰ (EPA/600/4-90/200) [S].
    13 H. J. W. a. B. D., Method 552.1, determination of haloacetic acid and dalapon in drinkingwater by ion-exchange liquid-solid extraction and gas chromatographywith an electron capture detector. US Environmental Protection Agency methods of determination of oragnic compounds in drinkingwater supplement Ⅱ. (EPA/600/R-92/129) [S].
    14 M. J. W. Munch D. J., Pawlecki A.M., et al., Method 552.2, determination of haloacetic acid and dalapon in drinking water by liquid-liquid extraction, derivitization and gas chromatography with electron capture detection. US Environmental Protection Agency methods of determination of oragnic compounds in drinking water supplement Ⅲ. (EPA/600/R95-131) [S].
    15 P. B. V. Domino M. M., Munch D. J., et al., Method 552.3, determination of haloacetic acid and dalapon in drinking water by liquid-liquid extraction, derivitization and gas chromatography with electron capture detection. US Environmental Protection Agency methods of determination of oragnic compounds in drinking water supplement III. (EPA815B-03-002) [S].
    16 B. P. a. L. Barron, Using ion chromatography to monitor haloacetic acids in drinking water:a review of current technologies. J. of Chromatogr. A 2004,1046,1-9.
    17 W. A. a. W. Buchberger, Determination of haloacetic acids by the combination of non-aqueous capillary electrophoresis and mass spectrometry. J. Anal. Chem.1999,365,604-609.
    18 S. P.-B. a. K. E. Rasmussen., Electrokinetic migration across artificial liquid membranes-new concept for rapid sample preparation of biological fluids. J. Chromatogr. A 2006,1109.
    19 F. F. a. Q. Wang, Removal of heavy metal ions from wastewaters:A review. Journal of Environmental Management 2011,92,407-418.
    20 G. J. Brewer, Risks of Copper and Iron Toxicity during Aging in Humans. Chem. Res. Toxicol.2010, 23,319-326.
    21 S. K. Mark R. Bruins, and Frederick W. Oehme, Microbial Resistance to Metals in the Environment. Ecotoxicology and Environmental Safety 2000,45,198-207.
    22 J. M. C. a. X. F. Chung-Shieh Wu, Compact Quantum Dot Probes for Rapid and Sensitive DNA Detection Using Highly Efficient Fluorescence Resonant Energy Transfer. Nanotechnology 2009,20, 305502.
    23 J. A. Cowan, Metal Activation of Enzymes in Nucleic Acid Biochemistry. Chem. Rev..1998,98, 1067-1087.
    24 L. M. J. Todd M. D., Williams J. L., Nalezny J. M., Gee P., Benjamin M. B. and Fair S. B., The CAT-Tox (L) assay:a sensitive and specific measure of stress-induced transcription in transformed human liver cells. Fundam. Appl. Toxicol.1995,28,118-128.
    25 J. G. R. a. C. M. W. J.T. Rogers, Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 2003,64,215/234.
    26 H. T. Yoko Miyake, Mitsuru Tashiro, Hiroshi Yamaguchi, Shuji Oda, Megumi Kudo, Yoshiyuki Tanaka, Yoshinori Kondo, Ryuichi Sawa, Takashi Fujimoto, Tomoya Machinami, and Akira Ono, Mercury Ⅱ-Mediated Formation of Thymine-Hg 11-Thymine Base Pairs in DNA Duplexes. J. AM. CHEM. SOC.2006,128,2172-2173.
    27 I. R. Hee-Kyung Kim, Juewen Liu, Taekjip Ha and Yi Lu, Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nature Chemical Biology 2007,3,763-768.
    28 S. F. H. Hussein, K. Kandil and H. Moawad, Tolerance and uptake of heavy metals by Pseudomonads. Process Biochemistry 2005,40,955-961.
    29 J. O. Nriagu, A global assessment of natural sources of atmospheric trace-metals. Nature 1989,338, 47-49.
    30 C. J. A. K. B. M. B. R. D. M., Group assessment:elemental speciation. Ecotoxicol. EnViron. Saf. 2003,56,32-44.
    31 T. Q. J. B. B, Mercury speciation analysis in soil samples by ion chromatography, post-column cold vapor generation and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom 2003,18, 696-701.
    32 K. M. M. T. C. Hutchinson, Lead, Mercury, Cadmium and Arsenic in the Environment.1987.
    33 http://water.epa.govldrink/contaminants/basicinformation/mercury.cfm.
    34 W. H. Organization, Guidelines for Drinking-Water Quality.2004,188.
    35 J. K. M. Gawin, B. Trzewik, S. Walas and A. Tobiasz, Preparation of a new Cd(Ⅱ)-imprinted polymer and its application to determination of cadmium(Ⅱ) via flow-injection-flame atomic absorption spectrometry. Talanta 2010,80,1305.
    36 D. S., Cadmium environmental aspects.1992.
    37 Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC,83/513/EEC,84/156/EEC,84/491/EEC,86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. J. Eur. Union 2008,84-97.
    38 A. B.-G. a. S. Rubio, Recent Advances in Environmental Analysis. Anal. Chem.2011,83, 4579-4613.
    39 E. u. r. laboratory, Official methods for the determination of heavy metals in feed and food. Europe Commission May 2010.
    40 J. A. D. E. Hywel Evans, Christopher D. Palmerc and Clare M. M. Smith, Atomic Spectrometry Update. Advances in atomic spectrometry and related techniques. Journal of Analytical Atomic Spectrometry 2009,24,711-733.
    41 J. M. B. Ykbal Kojuncu, Umit Ay, Katarina Cundeva, Trajce Stafilov and Goksel Akcin, Atomic Absorption Spectrometry Determination of Cd, Cu, Fe, Ni, Pb, Zn, and Tl Traces in Seawater Following Flotation Separation. SEPARATION SCIENCE AND TECHNOLOGY 2004,39,2751-2765.
    42 M. G Francisco Ardini, Raquel Sanchez and Jose Luis Todoli, Improving the analytical performances of ICP-AES by using a high-temperature single-pass spray chamber and segmented-injections micro-sample introduction for the analysis of environmental samples. J. Anal. At. Spectrom.2012,27,1400-1404.
    43 J. L. N. Zhang D. J., Zhang Z. J., Shao Y. and Li C. X., Application of ICP-MS/ICP-AES to detecting nutrition and heavy metal contents in grain of detached wheat spikes in vitro culture. Guang Pu Xue Yu Guang Pu Fen Xi (China) 2011,31,1935-1938.
    44 I. B. a. N. Daskalova, A method for determination of toxic and heavy metals in suspended matter from natural waters by inductively coupled plsama atomic emission spectrometry (ICP-AES). Part I. Determination of toxic and heavy metals in surface river water samples. Journal of the University of Chemical Technology and Metallurgy 2007,42,419-426.
    45 C. F. Eva Margui, Katleen Van Meel, Rene Van Grieken, Ignasi Queralt, and Manuela Hidalgo, High-Energy Polarized-Beam Energy-Dispersive X-ray Fluorescence Analysis Combined with Activated Thin Layers for Cadmium Determination at Trace Levels in Complex Environmental Liquid Samples. Anal. Chem.2008,80,2357-2364.
    46 J.-l. Y. Yan Li, and Yan Jiang, Trace Rare Earth Element Detection in Food and Agricultural Products Based on Flow Injection Walnut Shell Packed Microcolumn Preconcentration Coupled with Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food Chem.2012,60,3033-3041.
    47 S. A. A. Mirja H. Piispanen, Bart Van den Broeck, Laura H. Nuutinen, Minna S. Tiainen, Paavo J. Perama'ki, and Risto S. Laitinen, A Comparative Study of Fly ash Characterization by LA-ICP-MS and SEM-EDS. Energy & Fuels 2009,23,3451-3456.
    48 W. X. R. Ha Na Kim, Jong Seung Kim and Juyoung Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev.2012,41,3210-3244.
    49 G. A. a. A. Merkoci, Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta 2012,84,49-61.
    50 S. C. Tanya Shtoyko, Anne T. Maghasi, John N. Richardson, Aigars Piruska, Carl J. Seliskar, and William R. Heineman, Spectroelectrochemical Sensing Based on Attenuated Total Internal Reflectance Stripping Voltammetry.3. Determination of Cadmium and Copper. Anal. Chem.2004,76,1466-1473.
    51 S. A. O. TOKUSuOGy LU, S. AKALIN, S. KOCu AK, AND N. ERSOY, Simultaneous Differential Pulse Polarographic Determination of Cadmium, Lead, and Copper in Milk and Dairy Products. J. Agric. Food Chem.2004,52,1795-1799.
    52 A. T. M. Tanya Shtoyko, John N. Richardson, Carl J. Seliskar, and William R. Heineman, Spectroelectrochemical Sensing Based on Attenuated Total Internal Reflectance Stripping^ Voltammetry.1. Determination of Lead and Cadmium. Anal. Chem.2003,75,4585-4590.
    53 J. W. Jianfeng Ping, Yibin Ying, Maohua Wang, Gang Liu, and Miao Zhang, Evaluation of Trace Heavy Metal Levels in Soil Samples Using an Ionic Liquid Modified Carbon Paste Electrode. J. Agric. Food Chem.2011,59,4418-4423.
    54 Y. W. Dawei Pan, Zhaopeng Chen, Tingling Lou and Wei Qin, Nanomaterial/Ionophore-Based Electrode for Anodic Stripping Voltammetric Determination of Lead:An Electrochemical Sensing Platform toward Heavy Metals. Anal. Chem.2009,81,5088-5094.
    55 P. S. n. a. C. M. G. v. d. Berg, Voltammetric Detection of Mercury and Copper in Seawater Using a Gold Microwire Electrode. Anal. Chem.2006,78,5052-5060.
    56 Y. L. Guodong Liu, Yi Tub and Zhifeng Ren, Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. The Analyst 2005,130,1098-1101.
    57 L. R. Qin W, Fu X, Wang Q, Yin T and Song W, Trace-level potentiometric detection in the presence of a high electrolyte background. Anal. Chem.2012,84,10509-10513.
    58 W. Y. C. a. M. H., Studies of Intramolecular Excimer Formation in Dibenzyl Ether, Dibenzylamine, and Its Derivatives. J. Am. Chem. Soc. Rev.1976,98,3611-3615.
    59 T. S. M. a. G D. W. A. Prasanna de Silva, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 2009,134,2385-2393.
    60 A. P. d. Silva, Luminescent Photoinduced Electron Transfer (PET) Molecules for Sensing and Logic Operations. J. Phys. Chem. Lett.2009,2,2865-2871.
    61 T. P. Xiaoqiang Chen, Fang Wang, Jong Seung Kim and Juyoung Yoon, Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev.2012,112,1910-1956.
    62 P. L. Xiaoyan Zhou, Zhaohua Shi, Xiaoliang Tang, Chunyang Chen and Weisheng Liu, A Highly Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions Based on a Quinoline Platform, Inorg. Chem.2012,51,9226-9231.
    63 X.-H. P. Xiao-Liang Tang, Wei Dou, Jie Mao, Jiang-Rong Zheng, Wen-Wu Qin, Wei-Sheng Liu,*, Jin Chang and Xiao-Jun Yao, Design of a Semirigid Molecule as a Selective Fluorescent Chemosensor for Recognition of Cd(II). ORGANIC LETTERS'2008,10,3653-3656.
    64 T. C. Yangyang Yang, Weiping Zhu, Yufang Xu and Xuhong Qian, Highly Selective and Sensitive Near-Infrared Fluorescent Sensors for Cadmium in Aqueous Solution. ORGANIC LETTERS 2011,13, 264-267.
    65 S. Z. Hua Lu, HanZhuang Liu, YanWei Wang, Zhen Shen, ChunGen Liu and XiaoZeng You, Experimentation and Theoretic Calculation of a BODIPY Sensor Based on Photoinduced Electron Transfer for Ions Detection. J. Phys. Chem. A 2009,113,14081-14086.
    66 A. M. a. M. Shahid, Chromo and Fluorogenic Properties of Some Azo-Phenol Derivatives and Recognition of Hg2* Ion in Aqueous Medium by Enhanced Fluorescence. J. Phys. Chem. C 2010,114, 16726-16739.
    67 B. L. a. Y. C. Hongliang Tan, Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury(Ⅱ) by Photoinduced Electron Transfer. ACS Nano 2012,6,10505-10511.
    68 R. K. a. R. W. Grabowski Z. R., Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem. Rev.2003,103,3899-4032.
    69 R. W, Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew. Chem. Int. Ed.1986,25,971-988.
    70 M. H. Yu Liu, Heng-Yi Zhang, Li-Xu Yang and Wei Jiang, A Proton-Triggered ON-OFF-ON Fluorescent Chemosensor for Mg(Ⅱ) via Twisted Intramolecular Charge Transfer. ORGANIC LETTERS 2008,10,2873-2876.
    71 D. K. Shin Aoki, Motoo Shiro, Kei Takeda and Eiichi Kimura, Metal Chelation-Controlled Twisted Intramolecular Charge Transfer and Its Application to Fluorescent Sensing of Metal Ions and Anions. J. Am. Chem. Soc.2004,126,13377-13390.
    72 Y. M. a. T. H. Yasuhiro Shiraishi, Phenylbenzoxazole-Amide-Cyclen Linkage as a Ratiometric Fluorescent Receptor for Zn(II) in Water. J. Phys. Chem. A 2013,117,3387-3395.
    73 C.-S. L. a. C.-Y. H. Jye-Shane Yang, Cu2+-Induced Blue Shift of the Pyrene Excimer Emission:A New Signal Transduction Mode of Pyrene Probes. ORGANIC LETTERS 2001,3,889-892.
    74 S. H. K. Jung Kyu Choi, Juyoung Yoon, Keun-Hyeung Lee, Richard A. Bartsch and Jong Seung Kim, A PCT-Based, Pyrene-Armed Calix[4]crown Fluoroionophore.J. Org. Chem,2006,71,8011-8015.
    75 X. Y. H. Y.Wang, L.Wang, Z.B. Shang, J.B. Chao,W.J. Jin, A new acridine derivative as a highly selective'off-on'fluorescence chemosensor for Cd2+ in aqueous media. Sens. Actuators, B 2011,156, 126-131.
    76 P. O.-B. J.F. Garcia-Reyes, A. Molina-Diaz, Sensing of trace amounts of cadmium in drinking water using a single fluorescence-based optosensor. Microchem. J.2006,82,94-99.
    77 C. L. L. Xue, H. Jiang, Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Org. Lett.2009,11,1655-1658.
    78 H. L. Meng Li, Ruili Liu, Jundao Chen, and Chuanfeng Chen, Turn-On Fluorescent Sensor for Selective Detection of.Zn2+, Cd2+, and Hg2+ in Water. J. Org. Chem.2012,77,3670-3673.
    79 G. L. L. Xue, Q. Liu, H. Wang, C. Liu, X. Ding, S. He, H. Jiang, Ratiometric fluorescent sensor based on inhibition of resonance for detection of cadmium in aqueous solution and living cells. Inorg. Chem.2011,50,3680-3690.
    80 Y. X. T. Cheng, S. Zhang, W. Zhu, X. Qian, L. Duan, A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J. Am. Chent Soc.2008,130, 16160-16161.
    81 M. A. B. Nisar Ahamed, and Pradyut Ghosh, Thiomethoxychalcone-Functionalized Ferrocene Ligands as Selective Chemodosimeters for Mercury(Ⅱ):Single-Crystal X-ray Structural Signature of the [Hg8(μ8-S)(SCH3)12]2+ Cluster. Inorg. Chem.2010,49, 4447-4457 10.1021/ic902300c.
    82 X. C. Weiying Lin, Yundi Ding, Lin Yuan and Lingliang Long, A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamide-alkyne sca□old. Chem. Commun.2010,46,3529-3531.
    83 G. K. T. Styliani Voutsadaki, Emmanuel Klontzas, George E. Froudakis and Haralambos E. Katerinopoulos, A "turn-on" coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media. Chem. Commun.2010,46,3292-3294.
    84 T. O. Serdar Atilgan, and Engin U. Akkaya, Selective Hg(Ⅱ) Sensing with Improved Stokes Shift by Coupling the Internal Charge Transfer Process to Excitation Energy Transfer. Org. Lett.2010,12, 4792-4795.
    85 I. K. Serdar Atilgan, Tugba Ozdemir A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Letters 2010,51,892-894.
    86 R. P. Kamal Alizadeh, Payman Hashemi, Behrooz Rezaei and Mohammad Reza Ganjali, A new Schiff's base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. Journal of Hazardous Materials 2011,186,1794-1800.
    87 A. K. M. a. C. P. R. Atanu Mitra, Carbohydrate assisted fluorescence turn-on gluco-imino-anthracenyl conjugate as a Hg(Ⅱ) sensor in milk and blood serum milieu. Chem. Commun. 2011,47,2565-2567.
    88 J. J. Yu Yang, Guoli Shen and Ruqin Yu, An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin Analytica Chimica Acta 2009,636,83-88.
    89 H. B. Youqiang Chen, Wenjing Hong and Gaoquan Shi, Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine. Analyst 2009,134, 2081-2086 10.1039/B910603K.
    90 M. X. Gang Fang, Fang Zeng, and Shuizhu Wu, β-Cyclodextrin as the Vehicle for Forming Ratiometric Mercury Ion Sensor Usable in Aqueous Media, Biological Fluids, and Live Cells. Langmuir 2010,26,17764-17771.
    91 H. S. H. a. E. V. Anslyn, Pattern-Based Recognition of Thiols and Metals Using a Single Squaraine Indicator. J. Am. Chem. Soc.2009,131,13099-13106.
    92 M. Z. Zhen Gu, Yuewei Sheng, Laurent A. Bentolila and Yi Tang, Detection of Mercury Ion by Infrared Fluorescent Protein and Its Hydrogel-Based Paper Assay. Anal. Chem.2011,83,2324-2329.
    93 M. D. Yangyang Zhou, Yuanyuan Du, Shengyong Yan, Rong Huang, Xiaocheng Weng, Chuluo Yang, Xiaolian Zhang and Xiang Zhou, A novel cationic triazatetrabenzcorrole:selective detection of mercury(Ⅱ) by nucleic acid-induced aggregation. Analyst 2011,136,955-961.
    94 N. D. Kevin A. Joseph, and Juewen Liu, Electrostatically Directed Visual Fluorescence Response of DNA-Functionalized Monolithic Hydrogels for Highly Sensitive Hg2+ Detection. ACS Appl. Mater. Interfaces 2011,3,733-739.
    95 M. H. Mojtaba Shamsipur, Kamal Alizadeh, Naader Alizadeh, Abdollah Yari, Claudia Caltagirone and Vito Lippolis, Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4,10-dithia-7-oxacyclododecane ([12]aneNS2O) for selective subnanomolar detection of Hg(Ⅱ) ions. Analytica Chimica Acta 2005,533,17-24.
    96 L.-R. L. Yun Yu, Kai-Bin Yang, Xing Zhong, Rong-Bin Huang and Lan-Sun Zheng, p-Dimethylaminobenzaldehyde thiosemicarbazone:A simple novel selective and sensitive fluorescent sensor for mercury (Ⅱ) in aqueous solution. Talanta 2006,69,103.
    97 J.-L. C. Yu-Chi Hsieh, Hsiu-Han Wu, Po-Sheng Chang and An-Tai Wu, A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+. Carbohydrate Research 2009,344,2236-2239.
    98 H. J. K. Ja Hyung Kima, Sang Hoon Kima, Jae Hong Lee, Jung Ho Do, Hae-Jo Kimb, Joung Hae Lee and Jong Seung Kim, Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(Ⅱ) ion in aqueous solution. Tetrahedron Letters 2009,50,5958-5961.
    99 J. E. P. Hee Jung Kim, Myung Gil Choi, Sangdoo Ahn and Suk-Kyu Chang, Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes and Pigments 2010, 84,54-58.
    100 X. G. Yang Yang, John Blecha and Haishi Cao, A highly selective pyrene based fluorescent sensor toward Hg2+ detection. Tetrahedron Letters 2010,51,3422-3425.
    101 R. C. J. a. J. T. H. Youngjin Kim, Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions. Nano Letters 2001,1,165-167.
    102 H.-T. C. Yi-You Chen, Yen-Chun Shiang, Yu-Lun Hung, Cheng-Kang Chiang and Chih-Ching Huang, Colorimetric Assay for Lead Ions Based on the Leaching of Gold Nanoparticles. Anal. Chem. 2009,81,9433-9439.
    103 I. B. I. Yoosaf K., Suresh C. H. and Thomas K. G., In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 2007,111, 12839-12847.
    104 C. W. Fang Chai, Tingting Wang, Lu Li and Zhongmin Su, Colorimetric Detection of Pb2+ Using Glutathione Functionalized Gold Nanoparticles. ACS Appl. Mater. Interfaces 2010,2,1466-1470.
    105 K. M. M. Alizadeh A., Karami Ch, Workentin M. S., Shamsipur M. and Sadeghi M., Rapid and selective lead (Ⅱ) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 2010,21,315503.
    106 J. a. L. Fengge Qu, Huijuan Yan, Lifeng Peng and Haibing Li, Synthesis of organic nanoparticles of naphthalene-thiourea-thiadiazole-linked molecule as highly selective fluorescent and colorimetric sensor for Ag(Ⅰ). Tetrahedron Letters 2008,49,7438-7441.
    107 S. S. Eunjeong Kim, Moo Lyong Seo and Jong Hwa Jung, Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing. Analyst 2010,135,149-156.
    108 A. W. C. J.-P. Desvergne, Chemosensors of Ion and Molecule Recognition. Kluwer Academic Publishers 1997.
    109 H. Q. N. G. A. P. de Silva, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev.1997,97, 1515-1566.
    110 B. V. a. I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev.2000,205,3-40.
    111 J.-P. L. E. Destandau, A. C. F. Eddine, S. Desportes, M. C. Jullien, R. Hierle, I. Leray, B. Valeur, J. A. Delaire, A novel microfluidic flow-injection analysis device with fluorescence detection for cation sensing. Application to potassium. Anal. Bioanal. Chem.2007,387,2627-2632.
    112 T. W. L. Y. Zhao, J. P. Lefevre, I. Leray and J. A. Delaire, Fluorimetric lead detection in a microfluidic device. Lab Chip 2009,9,2818-2823.
    113 E. M. N. a. S. J. Lippard, Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev. 2008,108,3443-3480.
    114 Y. X. Xuhong Qian, Yufang Xu, Xiangfeng Guo, Junhong Qian and Weipin Zhu, "Alive" dyes as fluorescent sensors:fluorophore, mechanism, receptor and images in living cells. Chem. Commun.2010, 46,6418-6436.
    115 N. K. a. S. Kumar, Colorimetric metal ion sensors. Tetrahedron 2011,67,9233-9264.
    116 M. D. a. D. Das, Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. Trends in Analytical Chemistry 2012,32,113-132.
    117 W. X. R. Ha Na Kim, Jong Seung Kim and Juyoung Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev.2012,41,3210-3244.
    118 D. I. D.R. Reyes, P.A. Auroux, A. Manz, Micro Total Analysis Systems.1. Introduction, Theory, and Technology. Anal. Chem.2002,74,2623-2636.
    119 Y. M. A. Manz, J. Miura, Y. Watanabe, H. Miyagi and K. Sato, Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuators, B 1990,249-255.
    120 N. G. a. H. M. W. A. Manz, Miniaturized total chemical analysis systems:a novel concept for chemical sensing. Sens. Actuators, B 1990,244-248.
    121 T. T. Colyer C. L., Chiem N. and Harrison. D J., Clinical potential of microchip capillary electrophoresis systems. Electrophoresis 1997,18,1733-1741.
    122 R. G. Wang J., Cai X., Palecek E., et al., DNA electrochemical biosensors for environmental monitoring-A review. Anal. Chim. Acta 1997,347,1-8.
    123 K. A. Schult K., Trau D., Grawe F., Camman K. and Meusel M., Disposable optical Sensor chip for medical diagnostics:New ways in bioanalysis. Anal. Chem.1999,71,5430-5435.
    124 I. D. Reyes D. R., Auroux P. A. and Manz A., Micro total analysis systems:Introduction, theory and technology. Anal. Chem.2002,74,2623-2636.
    125 J. C. M. a. G M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 2002,35,491-499.
    126 S. P. Rattikan Chantiwas, Steven A. Soper, Byoung Choul Kim, Shuichi Takayama, Vijaya Sunkara, Hyundoo Hwang and Yoon-Kyoung Cho, Flexible fabrication and applications of polymer nanochannels and nanoslits. Chem. Soc. Rev.2011,40,3677-3702.
    127 S. T. Ravi S. Kane, Emanuele Ostuni, Donald E. Ingber and George M. Whitesides, Patterning proteins and cells using soft lithography. Biomaterials 1999,20,2363-2376.
    128 X. P. a. W. G M., Soft lithography. Angew. Chem. Int. Ed. 1998,37,550-575.
    129 J. A. R. a. R. G Nuzzo, Recent progress in soft lithography. Materials today 2005,8,50-56.
    130 Y. X. a. G. M. W. Dong Qin, Soft lithography for micro-and nanoscale patterning, nature protocols 2010,5,491-502.
    131 K. A. a. W. G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett.1993,63,2002-2004.
    132 X. Y. a. W. G M. Kim E., Polymeric microstructures formed by moulding in capillaries. Nature 1995, 376,581-584.
    133 X. Y. Kim E., Zhao X. M. and Whitesides GM., Solvent-assisted microcontact molding:a convenient method for fabricating three-dimensional structures of polymeric materials. Adv. Mater.1997, 9,651-654.
    134 Y. e. a. Xia, Replica molding using polymeric materials:a practical step toward nanomanufacturing. Adv. Mater.1997,9,147-149.
    135 X. Y. a. W. G. M. Zhao X. M., Fabrication of three-dimensional microstructures:microtransfer molding. Adv. Mater.1996,8,837-840.
    136 P. K. E. Rogers J. A., Jackman R. J. and Whitesides G. M., Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl. Phys. Lett.1997,70,2658-2660.
    137 J. S. e. al., Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv. Mater.2004,16,1369-1371.
    138 C. W. R. a. N. R.G., Decal transfer microlithography:a new soft-lithographic patterning method. J. Am. Chem. Soc.2002,124,13583-13596.
    139 R. R. M. Xu Q., Dickey M. D. and Whitesides G. M., Nanoskiving:a new method to produce arrays of nanostructures. Accounts of Chemical Research 2008,41,1566-1577.
    140 J. C. M. David C. Duffy, Olivier J. A. Schueller and George M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem.1998,70,4974-4984.
    141 G. I. Ng J. M. K., Stroock A. D., and Whitesides G. M., Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002,23,3461-3473.
    142 B. H. a. L. L. E., Polymer microfluidic devices. Talanta 2002,56,267-287.
    143 Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips.
    144 J. W. Guoxi Xu, Yi Chen, Luyan Zhang, Derong Wanga and Gang Chen, Fabrication of poly (methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization. Lab Chip 2005.
    145 L. Z. a. G. C. Yun Chen, Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 2008,29,1801-1814.
    146 T. K. Laurie Brown, J. Hugh Horton and Richard D. Oleschuk, Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 2006,5,66-73.
    147 Z. Z. a. G. C. Xiao Yao, Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates. Electrophoresis 2009,30,4225-4229.
    148 A. B. Sumanpreet K. Chhina, Mona Rahbar, Aminreza Ahari Kaleibar, Paul Chi Hang Li and Ash M. Parameswaran, Ultra-low-cost PMMA Microfluidic Device Fabrication and Electrophoretic Pinch Injection. J. Med. Biol. Eng.2011,31,105-110.
    149 W.-J. J. Ting-Fu Hong, Ming-Chang Wu, Chang-Hsien Tai, Chien-Hsiung Tsai and Lung-Ming Fu, Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluidics and Nanofluidics 2010,9,1125-1133.
    150 S. C. Mona Rahbar, Dan Sameoto and M. Parameswaran, Microwave-induced, thermally assisted solvent bonding for low-cost PMMA microfluidic devices. J. Micromech. Microeng.2010,20,015026.
    151 R. S. S. Mathur A., Tweedie M., Mukhopadhyay S., Mitra S. K. and McLaughlin J. A., Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding Current Applied Physics 2009,9,1199-1202.
    152 J. W. Guoxi Xu, Yi Chen, Luyan Zhang, Derong Wang and Gang Chen, Fabrication of poly (methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization. Lab Chip 2006,6, 145-148.
    153 G. P. R. Holt D. B., Kusterbeck A. W. and Ligler F. S., Fabrication of a capillary immunosensor in polymethyl methacrylate. Biosensors & Bioelectronics 2002,17,95-103.
    154 L. L. Jingdong Xu, Michael Gaitan, and Cheng S. Lee, Room-Temperature Imprinting Method for Plastic Microchannel Fabrication. Anal. Chem.2000,72,1930-1933.
    155 T.-H. K. Yeong-Eun Yoo, Tae-Jin Je, Doo-Sun Choi, Chang-Wan Kim and Sun-Kyung Kim, Injection molding of micro patterned PMMA plate. Trans. Nonferrous Met. Soc. China 2011,21, S148-152.
    156 X. C. Song Qu, Di Chen, Penyuan Yang and Gang Chen, Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations. Electrophoresis 2006, 27,4910-4918.
    157 Y. L. a. G. C. Jiang Chen, Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization. Electrophoresis 2007,28,2897-2903.
    158 P. C. B. a. K. D. Weston, Patterned Solvent Delivery and Etching for the Fabrication of Plastic Microfluidic Devices. Anal. Chem.2005,77,7478-7482.
    159 J. P. K. a. O. G. Henning Klank, CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2002,2,242-246.
    160 C.-W. W. Ji-Yen Cheng, Kai-Hsiung Hsu and Tai-Horng Young, Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors and Actuators B 2004,99, 186-196.
    161 D. Y. a. S. Das, Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation. J. Appl. Phys.2007,101,24091.
    162!!! INVALID CITATION!!!
    163 H. Y. C. a. C. T. Y., Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic m-TAS devices. Biomed Microdevices 2007,9,513-522.
    164 M. P. Joseph Wang, Madhu Prakash Chatrathi, Alberto Escarpa, Renate Konrad, Anja Griebel, Wolfgang Dorner and Holger Lowe, Towards disposable lab-on-a-chip:Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis 2002,23,596-601.
    165 J. L. Gang Chen, Song Qu, Di Chen and Penyuan Yang, Low temperature bonding of poly(methyl methacrylate) electrophoresis microchips by in situ polymerization. J. Chromatogr. A 2005,1094, 138-147.
    166 A. N. Benedikt Grau, Matthias JoEhnck, Dirk Siepe, Friedhelm Eisenbeiu, GuEnther Weber and Roland Hergenro Eder, A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensors and Actuators B 2001,72,249-258.
    167 D. F. Liguo Song, Robert K. Kobos, Salvatore J. Pace and Benjamin Chu, Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium. Electrophoresis 1999,20,2847-2855.
    168 M. J. T. Susan L. R. Barker, Heather Canavan, James J. Hickman and Laurie E. Locascio, Plastic Microfluidic Devices Modified with Poly electrolyte Multilayers. Anal. Chem.2000,72,4899-4903.
    169 J. H. J. a. J. B. A. S. C. Terry, A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 1979,26,1880-1886.
    170 K. W. O. a. C. H. Ahn, A review of microvalves. J. Micromech. Microeng.2006,16, R13-39.
    171 J. G. Smits, Piezoelectric micropump with 3 valves working peristaltically. Sensors Actuators A 1990, 21,203-206.
    172 D. J. L. a. J. G Santiago, A review of micropumps. J. Micromech. Microeng.2004,14, R35-R64.
    173 W. C. K. a. P. Cooper, Introduction:classification and selection of pumps Pump Handbook 2001, ed I J Karassik et al (New York:McGraw-Hill).
    174 S. S. Clarissa Lui, Nathaniel Cadyc and Carl Batt, Low-power microfluidic electro-hydraulic pump (EHP). Lab Chip 2010,10,74-79.
    175 H. V. F. Jason W. Munyan, Melissa Draper, Ryan T. Kelly and Adam T. Woolley, Electrically actuated, pressure-driven microfluidic pumps. Lab Chip 2003,3,217-220.
    176 N.-T. N. a. Z. Wu, Micromixers-a review. J. Micromech. Microeng.2005,15, R1-R16.
    177 C.-L. C. Chia-Yen Lee, Yao-Nan Wang and Lung-Ming Fu, Microfluidic Mixing:A Review. International Journal of Molecular Sciences 2011,12,3263-3287.
    178 X. M. Daniel Ahmed, Bala Krishna Juluri and Tony Jun Huang, A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics andNanofluidics 2009,7,727-731.
    179 V.-N. P. a. N.-T. N. Trung-Dung Luong, High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluidics and Nanofluidics 2011,10,619-625.
    180 D. A. M. Campisi, F. Damiani, and P. Dario, A soft-lithographed chaotic electrokinetic micromixer for efficient chemical reactions in lab-on-chips. J. Micro-Nano Mech.2009,5,69-76.
    181 C. o.-K. C. a. C.-C. Cho, Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluidics and Nanofluidics 2008,5,785-793.
    182 Y. C. L. Chun Yee Lim, and Chun Yang, Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics 2010,4,014101.
    183 X. N. a. Y.-K. Lee, Efficient spatial-temporal chaotic mixing in microchannels. J. Micromech. Microeng.2003,13,454-462.
    184 Z. Z. Yan Du, ChaeHo Yim, Min Lin and Xudong Cao, A simplified design of the staggered herringbone micromixer for practical applications. Biomicrofluidics 2010,4,024105.
    185 C.-P. Y. Chih-Yung Wen, Chien-Hsiung Tsai, Lung-Ming Fu, Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 2009,30,4179-4186.
    186 T. N. W. Bin Xu, Nam-Trung Nguyen, Zhizhao Che and John Chee Kiong Chai, Thermal mixing of two miscible fluids in a T-shaped microchannel. Biomicrofluidics 2010,4,044102.
    187 C. W. Wolfgang Buchegger, Bernhard Lendl, Martin Kraft and Michael J. Vellekoop, A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluidics and Nanofluidics 2011,10,889-897.
    188 G G. Jessica Melin, Niclas Roxhed, Wouter van der Wijngaart Wv and Goran Stemme, A fast passive and planar liquid sample micromixer. Lab Chip 2004,4,214-219.
    189 J.-W. C. a. C. H. A. Chien-Chong Hong, A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 2004,4,109-113.
    190 C.-H. T. Che-Hsin Lin, Chih-Wen Pan and Lung-Ming Fu, Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed Microdevices 2007,9,43-50.
    191 S. W. L. Dong Sung Kim, Tai Hun Kwon and Seung S Lee, A barrier embedded chaotic micromixer. J. Micromech. Microeng.2004,14,798-805.
    192 K.-J. H. a. Y.-C. L. Jing-Tang Yang, Geometric effects on fluid mixing in passive grooved micromixers. Lab Chip 2005,5,1140-1147.
    193 C.-Y. W. Chun-Ping Jen, Yu-Cheng Lin and Ching-Yi Wu, Design and simulation of the micromixer with chaotic advection in microchannels. Lab Chip 2003,3,77-81.
    194 D. E. Elaine Biddiss, and Dongqing Li, Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows. Anal. Chem.2004,76,3208-3213.
    195 S. K. W. D. A.D. Stroock, A. Adjari, I. Mezic, H.A. Stone, GM. Whitesides, Chaotic mixer for microchannels. Science 2002,295,647-651.
    196 T. G K. Mrityunjay K. Singh, Han E. H. Meijer and Patrick D. Anderson, The mapping method as a toolbox to analyze, design, and optimize micromixers. Microfluidics and Nanofluidics 2008,5,313-325.
    197 Flow control in microfluidics:are the workhorse flows adequate? Lab Chip 2008,8,383-387.
    198 E. B. a. D. J. Beebe, Flow rate analysis of a surface tension driven passive micropump. Lab Chip 2007,7,1475-1478.
    199 B. J. H. Huh D., Ling Y., Wei H. H., Kripfgans O. D., Fowlkes J. B., Grotberg J. B. and Takayama S., Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem.2007,79,1369-1376.
    200 K. R. R. Amy N. Hellman, Helen H. Yoon, Stephanie Bae, James F. Palmer, K. Scott Phillips, Nancy L. Allbritton and Vasan Venugopalan, Laser-Induced Mixing in Microfluidic Channels. Anal. Chem.2007, 7P,4484-4492.
    201 M. J. K. a. K. S. Breuer, Use of Bacterial Carpets to Enhance Mixing in Microfluidic Systems. J. Fluids Eng.2007,129,319-324.
    202 T. W. L. Zhao, J.-P. Lefevre, I. Leray, J.A. Delaire, Fluorimetric lead detection in a microfluidic device. Lab Chip 2009,9,2818-2823.
    203 S. K. Soo Kyung Kwon, Ha Na Kim, Xiaoqiang Chen, Hyejin Hwang, Seong-Won Nam, So Hyun Kim, K. M. K. Swamya, Sungsu Park and Juyoung Yoon, Sensing cyanide ion via fluorescent change and its application to the microfluidic system. Tetrahedron Letters 2008,49,4102-4105.
    204 H. H. Jeong-A Kim, Eun Jin Jun, Seong-Won Nam, Kang-Mu Lee, So Hyun Kim, Juyoung Yoon, Sukwon Kang and Sungsu Park, A Microfluidic Platform for Preconcentrating and Detecting Cu(II) with a Fluorescent Chemosensor and Cu(Ⅱ)-Chelating Alginate Beads. Bull. Korean Chem. Soc.2008,29, 225-227.
    205 S.-W. N. Songzi Kou, Wahhida Shumi, Min Hee Lee, Se Won Bae, Jianjun Du, Jong Seung Kim, Jong-In Hong, Xiaojun Peng, Juyoung Yoon and Sungsu Park, Microfluidic Detection of Multiple Heavy Metal Ions Using Fluorescent Chemosensors. Bull. Korean Chem. Soc.2009,30,1173-1176.
    206 S. H. Chunhui Fan, Gang Liu, Lianhui Wang and Sniping Song, A Portable and Power-Free Microfluidic Device for Rapid and Sensitive Lead (Pb2+) Detection. Sensors 2012,12,9467-9475.
    207 J. L. Xuefei Mao, Yatao Huang, Li Feng, Lihua Zhang, Xiaoyan Tang, Jian Zhou, Yongzhong Qian and Min Wang, Assessment of Homogeneity and Minimum Sample Mass for Cadmium Analysis in Powdered Certified Reference Materials and Real Rice Samples by Solid Sampling Electrothermal Vaporization Atomic Fluorescence Spectrometry. J. Agric. Food Chem.2013,61,848-853.
    208 L. W. Gang Li, Juanjuan Xin and Xiandeng Hou, Chemical vapor generation by reaction of cadmium with potassium tetrahydroborate and sodium iodate in acidic aqueous solution for atomic fluorescence spectrometric application. J. An al. A t. Sp ectr om.2004,19,1010.
    209 Y.-H. W. Y. Wang, Z.-L. Fang, Octadecyl immobilized surface for precipitate collection with a renewable microcolumn in a lab-on-valve coupled to an electrothermal atomic absorption spectrometer for ultratrace cadmium determination. Anal. Chem.2005,77,5396-5401.
    210 Y. L. Q.-Y. Ye, Y. Jiang, X.-P. Yan, Determination of trace cadmiumin rice by flaw injection on-line filterless precipitation-dissolution preconcentration coupled with flame atomic absorption spectrometry. J. Agric. Food Chem.2003,51,2111-2114.
    211 W. Z. Z. Fan, Dithizone-chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples. Spectrochim. Acta, Part B 2006,61,870-874.
    212 A. B. N.H. Bings, J.A.C. Broekaert, Atomic Spectroscopy. Anal. Chem.2002,74,2671-2712.
    213 M. F. S. S. Cerutti, J.A. Gasquez, R.A. Olsina, L.D.Martinez, On-line preconcentration determination of cadmium in drinking water on activated carbon using 8-hydroxyquinoline in a flow injection system coupled to an inductively coupled plasma optical emission spectrometer. Spectrochim. Acta, PartB 1998,53,1281-1287.
    214 J. C. C. Cloquet, G. Libourel, T. Sterckeman, E. Perdrix, Tracing source pollution in soils using cadmium and lead isotopes. Environ. Sci. Technol.2006,40,2525-2530.
    215 B. H. F. Zheng, Thermo-responsive polymer coated fiber-in-tube capillary microextraction and its application to on-line determination of Co, Ni and Cd by inductively coupled plasma mass spectrometry (ICP-MS). Talanta 2011,85,1166-1173.
    216 J. A. D. E. Hywel Evans, Christopher D. Palmer and Clare M. M. Smith, Atomic Spectrometry Update. Advances in atomic spectrometry and related techniques. J. Anal. At. Spectrom 2009,24, 711-733.
    217 X. W. G. a. X. M. Guo, Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Analytica Chimica Acta 1995, 310,377-385.
    218 J. J. S. Suteerapataranon, Y. Vaneesorn, K. Grudpan, Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals. Talanta 2002,58,1235-1242.
    219 G. T. C. Locatelli, Analytical procedures for the simultaneous voltammetric determination of heavy metals in meals. Microchem. J.2003,75,233-240.
    220 G L. Danielle W. Kimmel, Mika E. Meschievitz and David E. Cliffel, Electrochemical Sensors and Biosensors. Anal. Chem.2012,84,685-707.
    221 R. S. S. Senthilkumar, Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes:optimization and field measurements. Sens. Actuators, B 2009,141,65-75.
    222 E. K.-E. Y. Bonfil, Determination of nanomolar concentrations of lead and cadmium by anodic-stripping voltammetry at the silver electrode. Anal. Chim. Acta 2002,457,285-296.
    223 O. S. W. I. Oehme, Optical sensors for determination of heavy metal ions. Mikrochim. Acta 1997, 126,177-192.
    224 B. V. I. Leray, Calixarene-based fluorescent molecular sensors for toxic metals. Eur. J. Inorg. Chem. 2009,3525-3535.
    225 M. D. a. D. Das, Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. Trends in Analytical Chemistry 2012,32,113-132.
    226 V. S. M. Soibinet, I. Leray, B. Valeur, Rhod-5N as a fluorescent molecular sensor of cadmium(Ⅱ) ion. J. Fluoresc.2008,18,1077-1082.
    227 I. L. T. Wu, V. Genot, J.P. Leftvre, A. Korovitch, N.-T. Ha-Duong, J.-M. El Hage Chahine, J.A. Delaire, Thermodynamics and kinetics of the complexation reaction of lead by Calix-DANS4. Chemphyschem 2010,11,3355-3362.
    228 R. E. K. Carl E. Janson, Lawrence H. Tucker, Treatment of heavy metals in wastewaters. What wastewater-treatment method is most cost-effective for electroplating and finishing operations? Here are the alternatives. Environmental Progress 1982,1,212-216.
    229 J. L. R. Koivula, L. Pajo, T. Gale, H. Leinonen, Purification of metal plating rinse waters with chelating ion exchangers. Hydrometallurgy 2000,56,93-108.
    230 V. Camel, Solid phase extraction of trace elements. Spectrochimica. Acta, Part B 2003,58, 1177-1233.
    231 Z. N. I. A.A. Ensafi, A simple optical sensor for cadmium ions assay in water samples using spectrophotometry. J. Anal. Chem.2011,66,151-157.
    232 P. W. Atkins, Physical Chemistry.1982,1023.
    233 I. d. H. D. Perez-Quintanilla, M. Fajardo, I. Sierra, Mesoporous silica functionalized with 2-mercaptopyridine:synthesis, characterization and employment for Hg(Ⅱ) adsorption. Microporous Mesoporous Mater.2006,89,58-68.
    234 M. E. A.Walcarius, J. Bessiere, Rate of access to the binding sites in organically modified silicates.1. Amorphous silica gels graftedwith amine or thiol groups. Chem. Mater.2002,14,2757-2766.
    235 M. d. R. F. d.1. C. G. Alvarez-Llamas, A. Sanz-Medel, ICP-MS for specific detection in capillary electrophoresis. Trends Anal. Chem.2005,24,28-36.
    236 L. E. S. Saracoglu, Column solid-phase extraction with Chromosorb-102 resin and determination of trace elements in water and sediment samples by flame atomic absorption spectrometry. Anal. Chim. Acta 2002,452,77-83.
    237 J. M. A. J. Aguado, A. Arencibia, M. Lindo, V. Gascon, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater.2009,163,213-222.
    238 J.-Y. K. a. A. I. B. Christopher J. Frederickson, The neurobiology of zinc in health and disease. Nature Reviews Neuroscience 2005,6,449-462.
    239 M. F. M. Alexander Ciupa, Paul A. De Bank and Lorenzo Caggiano, Simple pyrazoline and pyrazole "turn on" fluorescent sensors selective for Ca2+ and Zn2+ in MeCN. Org. Biomol. Chem.2012,10, 8753-8757.
    240 T.-C. C. Chia-Yu Lee, Shau-Chun Wang, Chih-Wei Chien and Chung-Wei Cheng, Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip. Biomicrofluidics 2010,4,046502.
    241 S. M. E. Rebeca Martinez Vazquez, Roberta Ramponi, Giulio Cerullo and Roberto Osellame, Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation. Optics Express 2011,19,11597-11604.
    242 Y.-L. Z. Bin-Bin Xu, Hong Xia, Wen-Fei Dong, Hong Dingc and Hong-Bo Sun, Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 2013,13, 1677-1690.
    243 K. S. a. Y. Cheng, Femtosecond laser processing for optofluidic fabrication. Lab Chip 2012,12, 3576-3589.
    244 N. Bityurin,8 Studies on laser ablation of polymers. Annu. Rep. Prog. Chem., Sect. C:Phys. Chem. 2005,101,216-247.
    245 S. M. E. Carmela De Marco, Raffaella Suriano, Stefano Turri, Marinella Levi, Roberta Ramponi, Giulio Cerullo and Roberto Osellame, Surface Properties of Femtosecond Laser Ablated PMMA. ACS Appl. Mater. Interfaces 2010,2,2377-2384.
    246 D. Bauerle, Laser Processing and Chemistry. Springer-Verlag, Berlin 2000,3rd ed..
    247 B. Craig, Ultrafast pulses promise better processing of fine structures. Laser Focus World 1998,34, 79-88.
    248 Z. H. Y. Deng Y. Z., Murukeshan V. M., Wang X. C., Lin G. C. and Ngoi B. K. A., In-princess monitoring of femtosecond laser material processing Int. J. Nanosci.2005,4,761.
    249 D. A. I. V. Stoian, A. Rosenfeld and E. E. B. Campbell, On the physics of material processing with femtosecond lasers. Riken Rev.2001,32,23-30.
    250 M. A. W. Udara Dharmasiri, Andre A. Adams, John K. Osiri, Mateusz L. Hupert, Thomas S. Bianchi, Daniel L. Roelke, and Steven A. Soper, Enrichment and Detection of Escherichia coli O157.H7 from Water Samples Using an Antibody Modified Microfluidic Chip. Anal. Chem.2010,82,2844-2849.
    251 D. H. Yolanda H. Tennico, Myra T. Koesdjojo, Cheryl Moody Bartel, and Vincent T. Remcho, On-Chip Aptamer-Based Sandwich Assay for Thrombin Detection Employing Magnetic Beads and Quantum Dots. Anal. Chem.2010,82,5591-5597.
    252 V. G. Nam Cao Hoai Le, Ram P. Gandhiraman, Stephen Daniels, and David E. Williams, Evaluation of Different Nonspecific Binding Blocking Agents Deposited Inside Poly (methyl methacrylate) Microfluidic Flow-Cells. Langmuir 2011,27,9043-9051.
    253 B. V. Robin L. McCarley, Suying Wei, Alison F. Smith, Ami B. Patel, Juan Feng, Michael C. Murphy, and Steven A. Soper, Resist-Free Patterning of Surface Architectures in Polymer-Based Microanalytical Devices. J. Am. Chem. Soc.2005,127,842-843.
    254 P. K. a. P. C. H. Eva M. Abad-Villar, Determination of biochemical species on electrophoresis chips with an external contactless conductivity detector. Electrophoresis 2005,26,3609-3614.
    255 K. K. Fuquan Dang, Kazuki Nakajima, Yasuo Shinohara, Mitsuru Ishikawa, Noritada Kaji, Manabu Tokeshi, Yoshinobu Baba, Rapid analysis of oligosaccharides derived from glycoproteins by microchip electrophoresis. J. Chromatogr. A 2006,1109,138-143.
    256 S. J. B. Jeff E. Prest, Peter R. Fielden, Nicholas J. Goddard, Kristallia Kalimeri, Bernard J. Treves Brown, Michele Zgraggen, Use of miniaturised isotachophoresis on a planar polymer chip to analyse transition metal ions in solutions from metal processing plants J. Chromatogr. A 2004,1047,289-298.
    257 G. C. Joseph Wang, Alexander Muck Jr., Madhu Prakash Chatrathi, Ashok Mulchandani and Wilfred Chen, Microchip enzymatic assay of organophosphate nerve agents. Analytica Chimica Acta 2004,505, 183-187.
    258 S. J. B. Jeff E. Prest, Peter R. Fielden, Nicholas J. Goddard and Bernard J. Treves Brown, Analysis of chloride, bromide and iodide using miniaturised isotachophoresis on a planar polymer chip. Analyst 2005,130,1375-1382.
    259 K. P. Marian Masar, Mariana Dankova, Dusan Kaniansky and Bernd Stanislawski, Determination of organic acids in wine by zone electrophoresis on a chip with conductivity detection. J. Sep. Sci.2005,28, 905-914.
    260 J. T. a. P. C. Hauser, High-Voltage Capacitively Coupled Contactless Conductivity Detection for Microchip Capillary Electrophoresis. Anal. Chem.2002,74,6378-6382.
    261 Y. Z. Benyan Liu, Dirk Mayer, Hans-Joachim Krause, Qinghui Jin, Jianlong Zhao, Andreas Offenhausser and Yuansen Xu, Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 2012,33,1247-1250.
    262 A. E. A. Sungho Yoon, Audrey P. Wong and Christopher J. Chang, Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor. J. Am. Chem. Soc.2005,727,16030-16031.
    263 S. V. Soibinet M, Leray I and Valeur B., Rhod-5N as a fluorescent molecular sensor of cadmium (Ⅱ) ion.J. Fluoresc.2008,18,1072-1082.
    264 D. F. Haitao Zhang, Jean-Pierre Lefevre, Jacques A. Delaire and Isabelle Leray, Selective fluorimetric detection of cadmium in a microfluidic device. Microchem. J.2012,106,167-173.
    265 S. D. R. a. T. A. Ternes, Water Analysis:Emerging Contaminants and Current Issues. Anal. Chem. 2005,77,3807-3838.
    266 C. J. K. a. A. Moulik, Trends in environmental analysis. Anal. Chem.2005,77,3737-3754.
    267 L. M. a. G. J. M. Thomas W. Clarkson, The Toxicology of Mercury - Current Exposures and Clinical Manifestations. N. Engl. J. Med.2003,349,1731-1737.
    268 E.-H. C. Cristina M.L. Carvalho, Seyed Isaac Hashemy, Jun Lu and Arne Holmgren, A., Inhibition of Human Thioredoxin System:a molecular mechanism of mercury toxicity. J. Biol. Chem.2008,283, 11913-.
    269 B. D. Bo Tang, Kehua Xu and Lili Tong Use of Selenium to Detect Mercury in Water and Cells:An Enhancement of the Sensitivity and Specificity of a Seleno Fluorescent Probe. Chem.-Euro. J.2009,15, 3147-3151.
    270 K.-H. B. Xiaoqiang Chena, Youngmee Kim, Sung-Jin Kim, Injae Shin and Juyoung Yoon, A selenolactone-based fluorescent chemodosimeter to monitor mecury/methylmercury species in vitro and in vivo. Tetrahedron 2010,66,4016-4021.
    271 M. D. M. Jose V. Ros-Lis, Ram6n Martinez-Manez, Knut Rurack and Juan Soto A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination ofHg2+Ions. J. Angew. Chem.2005,44,4405-4407.
    272 K.-J. Y. a. J. T. Young-Keun Yang A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media. J. Am. Chem. Soc.2005,127, 16760-16761.
    273 B. L. a. H. Tian, A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun.2005,3156-3158.
    274 J. S. K. Ki Cheol Song, Sang Mi Park, Kee-Choo Chung, Sangdoo Ahn and Suk-Kyu Chang, Fluorogenic Hg2+ -selective chemodosimeter derived from 8-hydroxyquinoline. Org. Lett.2006,8, 3413-3416.
    275 W. S. a. H. Ma, Rhodamine B thiolactone:a simple chemosensor for Hg2+ in aqueous media. Chem. Commun.2008,1856-1858.
    276 S. W. L. Min Hee Lee, Sang Hoon Kim, Chulhun Kang and Jong Seung Kim, Nanomolar Hg(II) Detection Using Nile Blue Chemodosimeter in Biological Media. Org. Lett.2009,11,2101-2104.
    277 M. T. a. H. Ihmels, Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe. Chem. Commun.2009,3175-3177.
    278 J. R. Paulo Perez-Lourido, Jose A. Garcia-Vazquez, Antonio Sousa, Yifan Zheng, Jonathan R. Dilworthc and Jon Zubieta, Lead(Ⅱ) complexes with phosphorylthiolato and thiophosphorylthiolato ligands. J. Chem. Soc., Dalton Trans.2000,769-774.
    279 V. S. Minh-Huong Ha-Thi, Mael Penhoat, Fabien Miomandre, Jean-Pierre Genet, Isabelle Leray, Veronique Michelet, Synthesis and photophysical properties of a star-shaped fluorescent phosphane sulfide. Letters in Organic Chemistry 2007,4,185-188
    280 M. P. M. H. Ha-Thi, V. Michelet and I. Leray, Highly selective and sensitive phosphane sulfide derivative for the detection ofHg2+ in an organoaqueous medium. Org. Lett.2007,9,1133-1136.
    281 B. J. Samb I, Toullec P Y,et al., Fluorescent phosphane selenide as efficient mercury chemodosimeter. J.Organic Letters 2011,13,1182-1185.
    282 V. S. M. H. Ha-Thi, A. Hamdi, R. Metivier, V. Alain, K. Nakatani, P. G. Lacroix, J. P. Genet, V. Michelet and I. Leray, Synthesis of Novel Rod-Shaped and Star-Shaped Fluorescent Phosphane Oxides-Nonlinear Optical Properties and Photophysical Properties. Chem.-Eur. J.2006,12, 9056-9065.
    283 A. A. a. A. Harriman, Intramolecular charge transfer in 4-cyano-(4'-methylthio)diphenyl-acetylene. Phys. Chem. Chem. Phys.2003,5,1344-1351.
    284 D. D.-K. Valorie Alain-Rizzo, C6dric Rouxel, Issa Samb, Jeremy Bell, Patrick Y. Toullec, Veronique Michelet, Isabelle Leray, Mireille Blanchard-Desce, Synthesis, Photophysical, and Two-Photon Absorption Properties of Elongated Phosphane Oxide and Sulfide Derivatives. Chem.-Asian J.2011,6, 1080-1091.
    285 M. P. M. H. Ha-Thi, D. Drouin, M. Blanchard-Desce, V. Michelet and I. Leray, Synthesis, Fluorescence, and Two-Photon Absorption of Bidentate Phosphane Oxide Derivatives:Complexation with Pb2+ and Cd2+ Cations. Chem.-Eur. J.2008,14,5941-5950.
    286 M. P. Minh-Huong Ha-Thi, Veronique Michelet and Isabelle Leray, Highly selective and sensitive Hg2+ fluorescent sensors based on a phosphane sulfide derivative. Org. Biomol. Chem.2009,7, 1665-1673 10.1039/B821682G
    287 C. L. B. Irina Rudik Miksa, Nancy P. Carpenter and Robert H. Poppenga, Comparison of selenium determination in liver samples by atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry. J. Vet. Diagn. Invest.2005,17,331-340.
    288 T. I. Teruko Arai, Akiko Hokura, Yasuko Terada, Takashi Kunito, Shinsuke Tanabe and Izumi Nakai, Chemical Forms of Mercury and Cadmium Accumulated in Marine Mammals and Seabirds as Determined by XAFS Analysis. Environ. Sci. Technol.2004,38,6468-6474.
    289 B.-C. Y. a. B.-C. Yin, Highly Sensitive Detection of Mercury(Ⅱ) Ions by Fluorescence Polarization Enhanced by Gold Nanoparticles. Angewandte Chemie International Edition 2008,47,8386-8389.
    290 O. A. Wegner S. V., Chen P. and He C., Design of an Emission Ratiometric Biosensor from MerR Family Proteins:A Sensitive and Selective Sensor for Hg2+. J. Am. Chem. Soc.2007,129,3474-3475.
    291 M. E. R. a. S. J. L. Elizabeth M. Nolan, Selective Hg(Ⅱ) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins. Inorg. Chem.2006,45,2742-2749.
    292 E. M. N. a. S. J. Lippard, Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev. 2008,108,3443-3480.
    293 S. G. Jamil El-Ali, Axel Gunther, Peter K. Sorger, and Klaves F. Jensen, Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Anal. Chem.2005,77,3629-3636
    294 M. P. a. N. Gershenfeld, Microfluidic bubble logic. Science 2007,315,832-835.
    295 J. X. Shaowei Li, Yujun Wang and Guangsheng Luo, Controllable Preparation of Nanoparticles by Drops and Plugs Flow in a Microchannel Device. Langmuir 2008,24,4194-4199.
    296 A. A. G. J. Monahan, and R. G. Nuzzo, A method for filling complex polymeric microfluidic devices and arrays. Anal. Chem.2001,73,3193-3197.
    297 K. S. Kazuo Hosokawa, Naoki Ichikawa and Mizuo Maeda, Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 2004,4,181-185.
    298 J. A. T. a. H. H. B. Changchun Liu, A membrane-based, high-efficiency, microfluidic debubbler. Lab Chip 2011,11,1688-1693.
    299 A. M. S. a. J. Voldman, An active bubble trap and debubbler for microfluidic systems. Lab Chip 2008,8,1733-1737.
    300 Y. C. K. a. J.-K. P. Joo H. Kang, Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 2007,8,176-178.
    301 S. Y. a. A. G. Conrad Lochovsky, Bubbles no more:in-plane trapping and removal of bubbles in microfluidic devices. Lab Chip 2012,12,595-601.
    302 W. Z. Zheng W., Zhang W. and Jiang X., A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells Lab on a chip 2010,10,2906-2910.
    303 L. D. Wang Y., Zhang L., Jeon H., Mendoza-Elias J., Harvat T., Hassan S., Zhou A., Eddington D and Oberholzer J., Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device. Biomed Microdevices 2012,14,419-426.
    304 K. Y. C. a. P. J. K. Kang J. H., Analysis of pressure-driven air bubble elimination in a microfluidic device, lab Chip 2008,8,176-178.
    305 S. A. M. a. V. J., An active bubble trap and debubbler for microfluidic systems. Lab Chip 2008,8, 1733-1737.
    306 W.-b. D. Yang-zhen Huang, Jian-zhang Pan and Qun Fang, Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows. The Analyst 2008,133,1237-1241,
    307 I. W. a. C. M. Ho, Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluidics and Nanofluidics 2009,7,291-306.
    308 H. M. a. A. A. K. F. Abbasi, Modification of polysiloxane polymers for biomedical applications:a review Polymer International 2001,50,1279-1287.
    309 J. K. H. Makamba, K. Lim, N. Park and J.H. Hahn, Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 2003,24,3607-3619.
    310 A. V. E. a. N. H. V. J. Zhou, Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010,31,2-16.
    311 J. F. L.B. Carneiro, M.J.L. Santos, J.P. Monteiro and E.M. Girotto, A new approach to immobilize polyfvinyl alcohol) on poly(dimethylsiloxane) resulting in low protein adsorption. Applied Surface Science 2011,257,10514-10519.
    312 Q. L. T. He, K. Zhang, X. Mu, T. Luo, Y. Wang and G. Luo, A modified microfluidic chip for fabrication of paclitaxel-loaded poly(1-lactic acid) microspheres. Microfluidics and Nanofluidics 2011,10, 1289-1298.
    313 S. K. L. a. S. D. D. Maji, Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surface and Interface Analysis 2012,44,62-69.
    314 J. W. Z. Zhang, T. Qin, N. Nie, J. Sha, W. Liu, R. Liu, Y. Zhang and J. Wang, A modified microfluidic chip for fabrication of paclitaxel-loaded poly (1-lactic acid) microspheres. Colloids and Surfaces B 2011, 88,85-92.
    315 F. W. a. C.-M. H. Peter B. Lillehoj, A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip 2010,10,2265-2270.
    316 J. V. C.-R. Samu Hemmila, Joose Kreutzer, Pasi Kallio, Rapid, simple and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces. Applied Surface Science 2012,258,9864-9875.
    317 I.-J. C. a. E. Lindner, The Stability of Radio-Frequency Plasma-Treated Polydimethylsiloxane Surfaces. Langmuir 2007,23,3118-3122.
    318 J.-B. M. Alexandre Korovitch, Vincent Souchon, Claude Lion, Bernard Valeur, Isabelle Leray, Nguyet-Thanh Ha-Duong and Jean-Michel El Hage Chahine Kinetics, Thermodynamics, and Modeling of Complex Formation between Calix[4]biscrowns and Cesium. J. Phys. Chem. B 2009,113,14247-14256.
    319 S. P. Paul Vulto, Philipp Meyar, Carsten Hermann, Andreas Manz and Gerald A. Urban, Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab Chip 2011,11,1596-1602.
    320 G. M. P Vulto, L Altomare, G A Urban, M Tartagni, R Guerrieri and N Manaresi, Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow. J. Micromech. Microeng.2006,16,1847-1853.
    321 E. C. S. Chibbaro, D. I. Dimitrov, F. Diotallevi, A. Milchev, D. Palmieri, G Pontrelli and S. Succi, Capillary Filling in Microchannels with Wall Corrugations:A Comparative Study of the Concus-Finn Criterion by Continuum, Kinetic, and Atomistic Approaches. Langmuir 2009,25,12653-12660.
    322 G. M. P Vulto, L Altomare, G A Urban, M Tartagni,, R. G. a. N. Manaresi, Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow. J. Micromech. Microeng. 2006,16,1847-1853.
    323 K. M. Villanueva C. M., and Grimalt J. O., Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Res.2003,37,953-958.
    324 W. Y.-1. a. G. Hai-dong., Development of Techniques and Methods for Determination of Haloacetle Acids in Drinking Water. J. Environ. Health (China) 2008,25,459-461.
    325 M. P. G. a. A. G. E. Alfonso Perez-Garrido, Halogenated derivatives QSAR model using spectral moments to predict haloacetic acids (HAA) mutagenicity. Bioorganic & Medicinal Chemistry 2008,16, 5720-5732.
    326 O. o. W. U. S. Environmental Protection Agency (USEPA),2006 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-06-013, Washington, DC 2006.
    327 Standards for drinking water quality, China, (GB/T5750.10-2006)
    328 W. H. O. (WHO), Guidelines for Drinking-Water Quality:Incorporating First Addendum. Vol.1, Recommendations,3rd Edn, Geneva, Switzerland 2006.
    329 Y. Xie, Analyzing haloacetic acids using gas chromatography/mass spectrometry. Water Res.2001, 35,1599-1602.
    330 Y.-C. M. a. C.-Y. Chiang, Evaluation of the effects of various gas chromatographic parameters on haloacetic acids disinfection by-products analysis. J. of Chromatogr. A 2005,1076,216-219.
    331 B. P. a. L. Barron, Using ion chromatography to monitor haloacetic acids in drinking water:a review of current technologies. J. Chromatogr. A 2004,1046,1-9.
    332 J. T. Polona Razpotnik, Marjan Veber and Milko Novic, Efficiency and characteristics of solid-phase (ion-exchange) extraction for removal of Cl- matrix. J. Chromatogr. A 2003,991,23-29.
    333 T. v. d. G. Viorica Lopez-Avila, Bohuslav Gas and Pavel Coufal, Separation of haloacetic acids in water by capillary zone electrophoresis with direct UV detection and contactless conductivity detection. J. Chromatogr. A 2003,993,143-152.
    334 E. S. Andreas J. Zemann, Dietmar Volgger and Gunther K. Bonn, Contactless Conductivity Detection for Capillary Electrophoresis. Anal. Chem.1998,70,563-567.
    335 J. A. F. d. S. a. C. L. d. Lago, An Oscillometric Detector for Capillary Electrophoresis. Anal. Chem. 1998,70,4339-4343.
    336 S. K. a. P. C. H. Worapan Pormsila, Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal. Chim. Acta 2009,636,224-228.
    337 P. K. a. P. C. Hauser, Ten years of axial capacitively coupled contactless conductivity detection for CZE-areview. Electrophoresis 2008,30,176-188.
    338 Y. D. a. K. Rogers, Determination of haloacetic acids in water using solid-phase extraction/microchip capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2010,31,2602-2607.
    339 N. M. Petr Kubanl, Isaac K. Kiplagat and Mihkel Kaljurand, Determination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration. Journal of Separation Science 2012,35,666-673.
    340 C. D. Ning Li, Ning-Yao, Xizhong Shen and Xiangmin Zhang, Determination of acetone, hexanal and heptanal.'in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography-mass spectrometry. Anal. Chim. Acta 2005,540,317-323.
    341 R. K. E. Petersen Nickolaj J., Pedersen-Bjergaard Stig and Gjelstad Astrid, Electromembrane extraction from biological fluids. Analytical Sciences 2011,27,965-972.
    342 F. C. Ya-Li Pan, Meng-Yu Zhang, Tian-Qi Wang, Zi-Chun Xu, Wei Zhang, Qing-Cui Chu and Jian-Nong Ye, Sensitive determination of chloroanilines in water samples by hollow fiber-based liquid-phase microextraction prior to capillary electrophoresis with amperometric detection. Electrophoresis 2013,34,1241-1248.
    343 P. K. a. D. T. A. Tao S. L., Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nature protocols 2006,1,3153-3158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700