用户名: 密码: 验证码:
基于遥感模型和地面观测的河口湿地碳通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地生态系统碳循环是全球气候变化研究的核心内容之一。河口湿地是陆地生态系统碳库的重要组成部分,同时作为一种重要的湿地类型,具有其独特的物质循环和能量收支方式,并且对人为或自然的干扰极为敏感。相对于其它陆地生态系统,有关河口湿地碳循环的研究还比较少,对其过程以及驱动因子还了解甚少。涡度协方差技术(eddy covariance)可以提供长期连续的观测数据,但其观测结果本身却只能代表特定生态系统在特定环境中的碳通量特征,不能直接应用在其它区域。遥感是目前进行生态系统变化的大尺度、连续和定量观测的唯一可行的手段,遥感数据为河口湿地碳通量的模拟及尺度推绎提供了可能。本研究基于崇明东滩建立的长期定位野外观测站,采用涡度协方差技术对长江河口湿地的二氧化碳通量进行直接监测,为河口湿地生态系统的碳通量及其变化提供精确估计。本研究尝试融合涡度协方差技术和遥感技术,评估应用遥感模型估算河口湿地碳通量的可行性,并尝试建立一种适合河口湿地生态系统特点的碳通量估算模型,同时揭示河口湿地的潮汐过程对生态系统的碳收支平衡和净生态系统碳交换的影响。主要结论如下:
     1)通过基于MODIS计算的光谱指数与微气象因子[如水汽压亏缺(VPD)、土壤含水量(VWC)、土壤温度等]之间关系的分析,研究发现遥感光谱指数能较好地反映研究区内主要微气象因子的时间动态,并准确地捕获了许多微气象因子在通量站点间的空间差异。这些空间差异主要是由站点的植被组成和覆盖不同及离海距离的远近所导致的。在近海站点,地表水分指数(LSWI)和增强植被指数(EVI)被用来解释主要微气象因子季节变化,相对于距离海水较远的站点,LSWI被用来解释主要微气象因子的时间变化。本研究提示,用遥感数据对地表参数的反演需要根据生态系统的空间异质性选用不同的遥感参数。
     2)通过对从大坝到近海的沿东—西横断面上6个样地的EVI和LSWI的时间序列分析,研究发现EVI、LSWI以及二者之间的差值(DVEL)均能反映出横断面上的植物群落类型和分布,及地表水分的变化特征,并可判断卫星过境前后各样地受潮水淹没状况。然而,遥感数据监测的难度会随着背景复杂性的增加而增大(如从近海到大坝)。鉴于河口湿地土壤背景变化多样,EVI能用于分析植被,但却难于扣除水分的影响。因此,本文构建一个融合植被信息和水分信息的综合湿地指数,并发现年均综合湿地指数可以更好地反映湿地的植被演替过程,例如当基于EVI的综合湿地指数(EVI/LSWI)小于0.25时,该区域处在演替发展前期,表现为无任何植被覆盖,经常被潮水淹没;当综合湿地指数介于0.25-0.75之间时,该区域则处在演替先锋阶段,表现为稀疏的植被覆盖和大面积的裸地等。
     3)受潮汐作用的影响,河口湿地生态系统有着独特的碳循环过程,即横向碳交换以及湿地土壤在厌氧条件下甲烷气体的释放。可见,用于非湿地的经典遥感模型(光能利用效率(LUE)模型)不能直接应用于河口湿地初级生产力(GPP)的估算。本研究结果表明LUE模型估算的GPP和碳通量塔观测的GPP之间存在的差异无法完全用观测误差来进行解释,模型的拟合度也很低(R~2=0.55),这远远低于文献报导的关于该模型在森林、草原等生态系统中估算GPP的准确性(R~2在0.85以上)。由此,我们将潮汐作用所可能导致的横向碳交换及湿地土壤由于厌氧环境下产生的甲烷气体释放的影响加入到模型中,并选择地表水分指数(LSWI)、蒸发蒸腾量(ET)和潮高(TH)作为其解释变量,模型的拟合度得到明显改进。改进后的模型估算的GPP与碳通量塔观测的GPP之间匹配良好(R~2=0.88)。
     4)为了分析遥感数据估算NEE及模拟环境梯度上NEE变化特征的可行性,本研究结合通量塔测量的NEE数据和遥感数据,采用分段回归模型估算NEE,其中模型的解释因子为地表反射率(7个波段)和光谱指数[NDVI、EVI、LSWI及LSWI(2100)],这些解释因子均来自MODIS的8d合成数据。结果显示模型估算的NEE与实测的NEE之间匹配良好(R~2=0.78),这说明用MODIS数据来估算NEE是可行的,而且模型估算的NEE值能从整体上反映研究范围内的NEE时空变异性以及受不同驱动因子而呈现的NEE变化特征。高潮带体现了由植被季节性变化而驱动的碳循环过程,而低潮带体现了因潮汐活动等因子驱动的碳循环过程。
     5)本研究结合基于涡度协方差技术的通量塔测量的数据,全面探讨了遥感数据在河口湿地碳循环的影响因子分析以及碳通量估算中的可行性及研究方法上的改进。研究表明本研究提出的模型在河口湿地GPP和NEE估算以及其季节性动态的定量评价上具有一定的潜力,这为全球变化背景下的河口湿地碳通量闭合研究提供了借鉴。
The carbon cycle of terrestrial ecosystem is an important part of global climate change study. Estuarine wetland, as an important type of terrestrial ecosystems, has its unique material cycle and energy budget and plays an important role in the carbon cycle. Estuarine wetland also shows high sensitivity to global climate change and is vulnerable to natural or anthropogenic disturbance. Compared to other terrestrial ecosystems, rare research has been done on carbon cycle of the estuarine wetland, especially on its processes and driving factors. Nowadays, eddy covariance (EC) technology has provided continuous measurement on carbon exchange at ecosystem level. However, the measurement can only represent the carbon flux at scale of tower footprint. On the other hand, remote sensing technology provides the real-time surface information and shows potential on estimating the ecological parameters and carbon flux at regional or global scale. Based on the continuous measurement of three carbon flux towers established in Dongtan of Chongming Island since 2004, the impact factors of carbon cycle (micrometeorological factors and tidal flooding) and the estimation of carbon flux were explored by using remote sensing. Therefore, the aims of this dissertation is to 1) examine the relations between main micrometeorological factors and vegetation indices (VIs) estimated from remotely sensed data, and develop the inversion models of these parameters; 2) detect the spatiotemporal changes of tidal flooding inundation on estuarine wetland and evaluate the vegetation successional stages using remotely sensed time series data; 3) close the carbon budget of estuarine wetlands by coupling tower-based measurements and remotely sensed data; 4) to estimate the net ecosystem carbon exchange (NEE) along the tidal inundation gradient and explore the effect of tidal flooding on the ecosystem carbon cycle. The major findings are summarized as follows:
     1) We analyzed the correlations between VIs and micrometeorological factors at the three towers in 2005 and found that the surface spectral reflectance and VI reflected the spatiotemporal characteristics of micrometeorological factors very well in our study area, and succeeded in capturing the spatial heterogeneity at three towers (site D, M and S). VIs are potential for the inversion of the micrometeorological factors (e.g. VPD, VWC, soil temperature) and different VIs are chosen for each site due to the difference in vegetation composition and cover, and the distance from the sea. For example, the enhanced vegetation index (EVI) and the surface water index (LSWI) is the main explanatory variables at the offshore site (site S), and LSWI is the main explanatory variable at the site far from sea (site D). Our result suggests that the different VIs should be considered to estimate micrometeorological factors at different sites when remotely sensed data are used.
     2) A wavelet analysis was performed on time series VIs derived from remotely sensed data to investigate the spatiotemporal dynamic of the tidal flooding inundation in tidal marsh. The results show that MODIS is suitable for monitoring tidal flooding inundation from the dam to the sea front. However, due to the complex background of estuarine wetland, EVI can well detect the vegetation dynamics but cannot exclude the effect of water content, and LSWI can well detect the water content but cannot exclude the effect of vegetation. Therefore, on the basis of the time series analysis of vegetation indices, vegetation-water index (VWI) that merges vegetation and water information was developed to track the vegetation succession in estuarine wetland and the yearly value of VWI is nore more effective. For example, at the primary successional stage, VWR is less than 0.25; at the pioneer stage; VWR is between 0.25 and 0.75; at development stage, VWR is between 0.5 and 2.0.
     3) Compared to other ecosystems, estuarine wetland shows distinct carbon flux dynamics—the lateral carbon flux incurred by tidal flooding and methane generation under anaerobic conditions of wetland soils. In this study, we estimated the 2005's annual carbon budget of an estuarine wetland on Chongming Island and partitioned the losses of carbon due to lateral tidal dynamics and anaerobic methane production using innovative technique. The average GPP calculated from eddy covariance between March and November was 5.65 g C m~(-2) day~(-1), whereas that from the LUE model was 1.27 g C m~(-2) day~(-1). The correlation coefficient between GPP simulated from the LUE model and that calculated from flux tower data was low in the growing season (R~2=0.55). We further hypothesized that tidal activities and uncounted methane release were responsible for the discrepancy, which partly can be predicted from measurements of LSWI, evapotranspiration (ET) and tide height (TH). We developed an integrated GPP model by combining the LUE model and an autoregression model. The average GPP from the integrated model increased to 5.69 g C m~(-2) day~(-1), and R~2 for the correlation between the simulated and calculated data increased to 0.88, demonstrating the potential of our technique for GPP estimation and quantification of seasonal variation in estuarine ecosystems.
     4) To find how the spatial pattern of NEE varies along tidal inundation gradient, we coupled MODIS data and the tower-based NEE measurement to develop a NEE estimation model by using a piecewise regression model. The results show that the model gives a fairly good prediction of NEE (R~2=0.78, p<0.01). We then applied the model to estimate NEE for each 500x500m cell across the transect covering 500 m×3000 m in 2005~2006. Our empirical model captures the expected spatiotemporal patterns of NEE along the tidal inundation gradient. The variations of NEE near the island-side are mainly caused by seasonal shift and yearly cycle of vegetation, whereas in the ocean-side, NEE is more influenced by tidal activities, and in the middle area, NEE is subjected to both phenological conditions of vegetation and tidal cycles. We estimated that the average NEE varies from -2.4 to -1.8 g C m~(-2) d~(-1) along the tidal inundation gradient from island-side to ocean-side. In conclude, this study illustrates that our NEE estimation model derived from MODIS and tower-base flux data is effective for estimating NEE in the similar ecosystem, and the estimates are useful for analyzing the spatiotemporal pattern of NEE and the impacts of climate variability and disturbances on estuarine wetland carbon fluxes.
     5) Coupling the observed data of carbon flux towers, the comprehensive research was conducted to analyze the feasibility of remote sensing data in the evaluation and estimation of the carbon flux in the estuarine wetland, and then the improved models were developed and demonstrated the great potential for correcting unavoidable errors when estimating carbon budget of the estuarine wetland. Our study can be used for reference to study the carbon flux in the similar ecosystem as the estuarine wetland in the context of the global climate change.
引文
*http://www.fsl.orst.edu/larse/bigfoot/index.html
    *http://ipcc~wgl.ucar.edu/wgl-report.html
    [1] Adiku SGK, Reichstein M, Lohila A, et al. PIXGRO: a model for simulating the ecosystem CO_2 exchange and growth of spring barley [J]. Ecological Modelling,2006, 190(3-4): 260-276.
    [2] Anderson MC, Kustas WP, and Norman JM. Upscaling and downscaling - a regional view of the soil-plant-atmosphere continuum [J]. Agronomy Journal, 2003, 95(6): 1408-1423.
    [3] Anderson MC, Neale CMU, Li F, et al. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery [J]. Remote Sensing of Environment, 2004, 92(4): 447-464.
    [4] Asner GP, Wessman CA, Schimel DS, et al. Variability in leaf and litter optical properties: implications for BRDF model inversions using AVHRR, MODIS, and MISR [J]. Remote Sensing of Environment, 1998, 63(3): 243-257.
    [5] Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J]. Global Change Biology, 2003, 9: 479-492.
    [6] Baldocchi D, Falge E, Gu LH, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society, 2001, 82(11):2415-2434.
    [7] Bange HW. Nitrous oxide and methane in European coastal waters [J]. Estuarine Coastal and Shelf Science, 2006, 70(3): 361-374.
    [8] Bartlett DS and Klemas V. Quantitative assessment of tidal wetlands using remote-sensing [J]. Environmental Management, 1980, 4(4): 337-345.
    [9] Bergamaschi P, Frankenberg C, Meirink JF, et al. Satellite chartography of atmospheric methane from SCIAMACHYon board ENV1SAT: 2. Evaluation based on inverse model simulations [J]. Journal of Geophysical Research-Atmospheres, 2007,112:D02304, doi: 10.1026/2006JD007268.
    [10] Bicheron P, Leroy M, and Hautecoeur O. Retrieving of LAI and fAPAR with airborne POLDER data over various biomes [J]. Igarss '97 - 1997 International Geoscience and Remote Sensing Symposium, Proceedings Vols Ⅰ-Ⅳ, 1997: 556-558.
    [11] Bicheron P, Leroy M, and Hautecoeur O. LAI and fAPAR mapping at global scale by model inversion against spaceborne POLDER data [J]. Igarss '98 - 1998 International Geoscience and Remote Sensing Symposium, Proceedings Vols 1-5, 1998: 1228-1230.
    [12] Boegh E and Soegaard H. Remote sensing based estimation of evapotranspiration rates [J]. International Journal of Remote Sensing, 2004, 25(13): 2535-2551.
    [13] Boelman NT, Stieglitz M, Rueth HM, et al. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra [J]. Oecologia, 2003, 135(3): 414-421.
    [14] Bonneville MC, Strachan IB, Humphreys ER, et al. Net ecosystem CO_2 exchange in a temperate cattail marsh in relation to biophysical properties [J]. Agricultural and Forest Meteorology, 2008, 148: 69-81.
    [15] Bowling DR, Pataki DE, and Ehleringer JR. Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of CO_2 [J]. Agricultural and Forest Meteorology, 2003, 116(3-4): 159-179.
    [16] Bowling DR, Tans PP, and Monson RK. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO_2 [J]. Global Change Biology, 2001, 7(2): 127-145.
    [17] Brix H, Sorrell BK, and Lorenzen B. Are Phragmites-dommated wetlands a net source or net sink of greenhouse gases? [J]. Aquatic Botany, 2001, 69(2-4): 313-324.
    [18] Brunsell NA and Gillies RR. Length scale analysis of surface energy fluxes derivedfrom remote sensing [J]. Journal of Hydrometeorology, 2003, 4(6): 1212-1219.
    [19] Bubier JL, Bhatia G, Moore TR, et al. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada [J]. Ecosystems, 2003, 6(4): 353-367.
    [20] Bubier JL, Crill PM, Moore TR, et al. Seasonal patterns and controls on net ecosystem CO_2 exchange in a boreal peatland complex [J]. Global Biogeochemical Cycles, 1998, 12(4): 703-714.
    [21] Canada. National climate change process [R]. National Sinks Tables Foundation Paper. 1998.71.
    [22] Chen JM, Liu J, Cihlar J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications [J]. Ecological Modelling, 1999, 124(2-3): 99-119.
    [23] Chen ZY, Li B, Zhong Y, et al. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences [J]. Hydrobiologia, 2004, 528(1-3): 99-106.
    [24] Cheng Y, Gamon JA, Fuentes DA, et al. A multi-scale analysis of dynamic optical signals in a Southern California chaparral ecosystem: A comparison of field, AVIRIS and MODIS data [J]. Remote Sensing of Environment, 2006, 103: 369-378.
    [25] Chiesi M, Maselli F, Bindi M, et al. Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements [J]. Agricultural and Forest Meteorology, 2005, 135(1-4): 22-34,
    [26] Chimner RA and Cooper DJ. Influence of water table levels on CO_2 emissions in a Colorado subalpine fen: an in situ microcosm study [J]. Soil Biology & Biochemistry, 2003, 35(3): 345-351.
    [27] Chmura GL, Anisfeld SC, Cahoon DR, et al. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochemical Cycles, 2003, 17(4): 1111, doi:10.1029/2002GB001917.
    [28] Choi YH and Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements [J]. Global Biogeochemical Cycles, 2004, 18(4): GB40 16, doi: 10.102912004GB002261.
    [29] Choudhury LJ. A biophysical process based approach for estimating net primary production using satellite and ground observations [J]. Earth's Atmosphere, Ocean and Surface Studies, 2002, 30(11): 2505-2510.
    [30] Cohen WB, Maiersperger TK, Turner DP, et al. MODIS land cover and LAI collection 4 product quality across nine sites in the western hemisphere [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1843-1857.
    [31] Coops NC, Jassal RS, Leuning R, et al. Incorporation of a soil water modifier into MODIS predictions of temperate Douglas-fir gross primary productivity: Initial model development [J]. Agricultural and Forest Meteorology, 2007, 147: 99-109.
    [32] Costanza R, dArge R, deGroot R, et al. The value of the world's ecosystem services and natural capital [J]. Nature, 1997, 387(6630): 253-260.
    [33] Davidson EA, Savage K, Verchot LV, et al. Minimizing artifacts and biases in chamber-based measurements of soil respiration [J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 21-37.
    [34] Dickinson RE, Pinty B, and Verstraete MM. Relating surface albedos in GCM to remotely sensed data [J]. Agricultural and Forest Meteorology, 1990, 52(1-2): 109-131.
    [35] Drake BG, Muehe MS, Peresta G, et al. Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO_2 concentration [J]. Plant and Soil, 1996, 187(2): 111-118.
    [36] Duan XN, Wang XK, Mu YJ, et al. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China [J]. Atmospheric Environment, 2005, 39(25): 4479-4487.
    [37] Fang C and Moncrieff JB. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO_2 efflux measurement [J]. Functional Ecology, 1998, 12(2): 319-325.
    [38] Field CB, Randerson JT, and Malmstrom CM. Global net primary production - combining ecology and remote-sensing [J]. Remote Sensing of Environment, 1995,51(1): 74-88.
    [39] Foken T and Wichura B. Tools for quality assessment of surface-based flux measurements [J]. Agricultural and Forest Meteorology, 1996, 78(1-2): 83-105.
    [40] Frankenberg C, Meirink JF, Bergamaschi P, et al. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: analysis of the years 2003 and 2004 [J]. Journal of Geophysical Research-Atmospheres, 2006, 111: D07303, doi: 10.1029/2005JD006235.
    [41] Frankenberg C, Meirink JF, van Weele M, et al. Assessing methane emissions from global space-borne observations [J]. Science, 2005, 308(5724): 1010-1014.
    [42] Franses PH, Paap R, and Vroomen B. Forecasting unemployment using an autoregression with censored latent effects parameters [J]. International Journal of Forecasting, 2004, 20(2): 255-271.
    [43] Friedl MA, Davis FW, Michaelsen J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE [J]. Remote Sensing of Environment, 1995,54(3): 233-246.
    [44] Fuentes DA, Gamon JA, Cheng YF, et al. Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS [J]. Remote Sensing of Environment, 2006, 103(3): 312-323.
    [45] Gamon JA, Cheng Y, Claudio H, et al. A mobile tram system for systematic sampling of ecosystem optical properties [J]. Remote Sensing of Environment, 2006a, 103: 264-254.
    [46] Gamon JA, Rahman AF, Dungan JL, et al. Spectral network (SpecNet) - what is it and why do we need it? [J]. Remote Sensing of Environment, 2006b, 103(3): 227-235.
    [47] Gao BC. NDWI- a normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
    [48] Gao F, Morisette JT, Wolfe RE, et al. An algorithm to produce temporally and spatially continuous MODIS-LAI time series [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5: 60-64.
    [49] Gao Q, Yu M, Yang XS, et al. Scaling simulation models for spatially heterogeneous ecosystems with diffusive transportation [J]. Landscape Ecology, 2001, 16(4): 289-300.
    [50] Gockede M, Markkanen T, Hasager CB, et al. Update of a footprint-based approach for the characterisation of complex measurement sites [J]. Boundary-Layer Meteorology, 2006, 118(3): 635-655.
    [51] Gockede M, Rebmann C, and Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites [J ]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.
    [52] Goulden ML, Munger JW, Fan SM, et al. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy [J]. Global Change Biology, 1996, 2(3): 169-182.
    [53] Grunfeld S and Brix H. Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis [J]. Aquatic Botany, 1999, 64(1): 63-75.
    [54] Hammersmark CT, Fleenor WE, and Schladow SG. Simulation of flood impact and habitat extent for a tidal freshwater marsh restoration [J]. Ecological Engineering, 2005,25(2): 137-152.
    [55] Hanan NP. Enhanced two-layer radiative transfer scheme for a land surface model with a discontinuous upper canopy [J]. Agricultural and Forest Meteorology, 2001, 109(4): 265-281.
    [56] Hanan NP, Burba G, Verma SB, et al. Inversion of net ecosystem CO_2flux measurements for estimation of canopy PAR absorption [J]. Global Change Biology,2002, 8(6): 563-574.
    [57] Haus BK, Ramos RJ, Graber HC, et al. Remote observation of the spatial variability of surface waves interacting with an estuarine outflow [J]. IEEE Journal of Oceanic Engineering, 2006, 31 (4): 835-849.
    [58] He YH, Guo XL, Wilmshurst J, et al. Studying mixed grassland ecosystems Ⅱ: optimum pixel size [J]. Canadian Journal of Remote Sensing, 2006, 32(2): 108-115.
    [59] Heinsch FA, Zhao MS, Running SW, et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7):1908-1925.
    [60] Hoffert MI, Caldeira K, Benford G, et al. Advanced technology paths to global climate stability: energy for a greenhouse planet [J]. Science, 2002, 298(5595): 981-987.
    [61] Houborg RM and Soegaard H. Regional simulation of ecosystem CO_2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data: application to Zealand, Denmark [J]. Remote Sensing of Environment, 2004,93(1-2): 150-167.
    [62] Huang C and Townshend JRG A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover [J]. International Journal of Remote Sensing, 2003, 24(1): 75-90.
    [63] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J]. Remote Sensing of Environment, 2002, 83(1-2): 195-213.
    [64] Huete A, Justice C, and Liu H. Development of Vegetation and Soil Indexes for Modis-Eos [J]. Remote Sensing of Environment, 1994, 49(3): 224-234.
    [65] Huete AR, Liu HQ, Batchily K, et al. A comparison of vegetation indices global set of TM images for EOS-MODIS [J]. Remote Sensing of Environment, 1997, 59(3): 440-451.
    [66] Hughes CE, Binning P, and Willgoose GR. Characterisation of the hydrology of an estuarine wetland [J]. Journal of Hydrology, 1998, 211(1-4): 34-49.
    [67] IPCC. Climate change 2001: the science of climate [R]. Cambridge: Cambridge University Press. 2001.
    [68] Janssens IA and Ceulemans R. Spatial variability in forest soil CO_2 efflux assessed with a calibrated soda lime technique [J]. Ecology Letters, 1998, 1(2): 95-98.
    [69] Janssens IA, Kowalski AS, and Ceulemans R. Forest floor CO_2 fluxes estimated by eddy covariance and chamber-based model [J]. Agricultural and Forest Meteorology, 2001, 106(1): 61-69.
    [70] Kang S, Running SW, Zhao M, et al. Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels [J]. International Journal of Remote Sensing, 2005, 26(8): 1659-1676.
    [71] Katul G, Lai CT, Schafer K, et al. Multiscale analysis of vegetation surface fluxes: from seconds to years [J]. Advances in Water Resources, 2001, 24(9-10): 1119-1132.
    [72] Kaufman YJ and Tanre D. Atmospherically resistant vegetation Index (ARVI) for EOS-MODIS [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.
    [73] Keronen P, Reissell A, Rannik U, et al. Ozone flux measurements over a scots pine forest using eddy covariance method: performance evaluation and comparison with flux-profile method [J]. Boreal Environment Research, 2003, 8(4): 425-443.
    [74] Kim J, Guo Q, Baldocchi DD, et al. Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover [J]. Agricultural and Forest Meteorology, 2006, 136(3-4): 132-146.
    [75] Kimball JS, Running SW, and Saatchi SS. Sensitivity of boreal forest regional water flux and net primary production simulations to sub-grid-scale land cover complexity [J ]. Journal of Geophysical Research-Atmospheres, 1999, 104(D22): 27789-27801.
    [76] Kimball JS, Thornton PE, White MA, et al. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region [J]. Tree Physiology, 1997, 17(8-9): 589-599.
    [77] Kustas WP, Prueger JH, Hipps LE, et al. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment [J]. Agricultural and Forest Meteorology, 1998, 90(4): 257-263.
    [78] Lafleur PM, Roulet NT, and Admiral SW. Annual cycle of CO_2 exchange at a bog peatland [J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D3):3071-3081.
    [79] Lafleur PM, Roulet NT, Bubier JL, et al. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog [J]. Global Biogeochemical Cycles, 2003, 17(2).
    [80] Lakshmi V and Zehrfuhs D. Normalization and comparison of surface temperatures across a range of scales [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2636-2646.
    [81] Lee X. On micrometeorological observations of surface-air exchange over tall vegetation [J]. Agricultural and Forest Meteorology, 1998, 91(1-2): 39-49.
    [82] Leifer I, Roberts D, Margolis J, et al. In situ sensing of methane emissions from natural marine hydrocarbon seeps: A potential remote sensing technology [J]. Earth and Planetary Science Letters, 2006, 245(3-4): 509-522.
    [83] Li ZQ, Yu GR, Li QK, et al. Effect of spatial variation on areal evapotranspiration simulation in Haibei, Tibet plateau, China [J]. International Journal of Remote Sensing, 2006, 27(16): 3487-3498.
    [84] Li ZQ, Yu GR, Xiao XM, et al. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data [J]. Remote Sensing of Environment, 2007, 107(3): 510-519.
    [85] Long S, Farage P, and Garcia R. Measurement of leaf canopy photosynthetic CO2 exchange in the field [J]. Journal of Experimental Botany, 1996, 47(304): 1629-1642.
    [86] Marmorino GO, Shen CY, Evans TE, et al. Use of "velocity projection' to estimate the variation of sea-surface height from HF Doppler radar current measurements [J]. Continental Shelf Research, 2004, 24(3): 353-374.
    [87] Massman WJ and Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges [J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 121-144.
    [88] Monteith JL. Solar radiation and productivity in tropical exosystems [J]. Journal of Applied Ecology, 1972, 9: 747-766.
    [89] Moore CJ. Frequency-response corrections for eddy-correlation Systems [J]. Boundary-Layer Meteorology, 1986, 37(1-2): 17-35.
    [90] Myklebust MC, Hipps LE, and Ryel RJ. Comparison of eddy covariance, chamber, and gradient methods of measuring soil CO2 efflux in an annual semi-arid grass,Bromus tectorum [J]. Agricultural and Forest Meteorology, 2008, 148(11): 1894-1907.
    [91] Myneni RB, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data [J]. Remote Sensing of Environment, 2002, 83(1-2): 214-231.
    [92] Nagler PL, Cleverly J, Glenn E, et al. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data [J]. Remote Sensing of Environment, 2005, 94(1): 17-30.
    [93] Nagler PL, Glenn EP, and Huete AR. Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico [J]. Journal of Arid Environments, 2001, 49(1): 91-110.
    [94] Nelson SAC, Soranno PA, and Qi JG Land-cover change in Upper Barataria Basin Estuary, Louisiana, 1972-1992: increases in wetland area [J]. Environmental Management, 2002, 29(5): 716-727.
    [95] Neue HU, Gaunt JL, Wang ZP, et al. Carbon in tropical wetlands [J]. Geoderma, 1997, 79(1-4): 163-185.
    [96] Norby RJ and Luo YQ. Evaluating ecosystem responses to rising atmospheric CO_2 and global warming in a multi-factor world [J]. New Phytologist, 2004, 162(2): 281-293.
    [97] Odum EP. A research challenge: evaluating the productivity of coastal and estuarine water [A], in Proceedings of the Second Sea Grant Congress [G] University of Rhode Island, Rhode Island, USA, 1968. 6364.
    [98] Odum EP, Tidal marshes as upwelling/pulsing systems [A], in Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers [M], Kreeger M.P. Weinstein, D.A, Editor. 2000: Dordrecht, p. 3-7
    [99] Oliphant A, Susan C, Grimmond B, et al. Local-scale heterogeneity of photosynthetically active radiation (PAR),absorbed PAR and net radiation as a function of topography,sky conditions and leaf area index [J]. Remote Sensing of Environment, 2006, 103: 324-337.
    [100] Oren R, Ellsworth DS, Johnsen KH, et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO_2-enriched atmosphere [J]. Nature, 2001, 411(6836): 469-472.
    [101] Pataki DE, Bowling DR, and Ehleringer JR. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects [J].Journal of Geophysical Research-Atmospheres, 2003, 108(D23).
    [102] Paul E. D. Winter, Schlacher TA, and Baird D. Carbon flux between an estuary and the ocean: a case for outwelling [J]. Hydrobiologia, 1996, 337: 123-132.
    [103] Perez.A., Damen.M., Geneletti.D., et al. Monitoring a recent delta formation in a tropical coastal wetland using remote sensing and GIS [J]. Environment, Development and Sustainability, 2002(4): 201-219.
    [104] Pettorelli N, Vik JO, Mysterud A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change [J]. Trends in Ecology & Evolution,2005, 20(9): 503-510.
    [105] Potter C, Klooster S, Hiatt S, et al. Wetlands in the United States: satellite-derived estimation based on ecosystem carbon [J]. Earth Interactions, 2006, 10.
    [106] Potter CS. An ecosystem simulation model for methane production and emission from wetlands [J]. Global Biogeochemical Cycles, 1997, 11(4): 495-506.
    [107] Potter CS, Randerson JT, Field CB, et al. Terrestrial ecosytem production: a process model based on global satellute and surface data [J]. Global Biogeochemical Cycles,1993, 7(4): 811-842.
    [108] Prince SD and Goward SN. Global primary production: a remote sensing approach [J]. Journal of Biogeography, 1995, 22(4-5): 815-835.
    [109] Rebmann C, Gockede M, Foken T, et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling [J]. Theoretical and Applied Climatology, 2005, 80(2-4): 121-141.
    [110] Reich PB, Turner DP, and Bolstad P. An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products [J]. Remote Sensing of Environment, 1999, 70(1): 69-81.
    [111] Reithmaier LM, Gockede M, Markkanen T, et al. Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites [J]. Theoretical and Applied Climatology, 2006, 84(4): 219-233.
    [112] Ruimy A, Dedieu G, and Saugier B. TURC: a diagnostic model of continental gross primary productivity and net primary productivity [J]. Global Biogeochemical Cycles,1996, 10(2): 269-285.
    [113] Ruimy A, Jarvis PG, Baldocchi DD, et al. CO_2 fluxes over plant canopies and solar radiation: A review [J]. Advances in Ecological Research, 1995: 1-16.
    [114] Ruimy A, Kergoat L, and Bondeau A. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency [J]. Global Change Biology, 1999, 5(S1): 56-64.
    [115] Running SW, Baldocchi DD, Turner DP, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data [J]. Remote Sensing of Environment, 1999, 70(1): 108-127.
    [116] Running SW, Justice CO, Salomonson V, et al. Terrestrial remote-sensing science and algorithms planned for EOS MODIS [J]. International Journal of Remote Sensing, 1994, 15(17): 3587-3620.
    [117] Running SW, Nemani RR, Heinsch FA, et al. A continuous satellite-derived measure of global terrestrial primary production [J]. BioScience, 2004, 54(6): 547-560.
    [118] Ryan MG and Law BE. Interpreting, measuring, and modeling soil respiration [J]. Biogeochemistry, 2005, 73(1): 3-27.
    [119] Sakamoto T, Van Nguyen N, Kotera A, et al. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery [J]. Remote Sensing of Environment, 2007, 109(3):295-313.
    [120] Sakamoto T, Van Nguyen N, Ohno H, et al. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers [J]. Remote Sensing of Environment,2006,100{1):1-16.
    [121] Sakamoto T, Yokozawa M, Toritani H, et al. A crop phenology detection method using time-series MODIS data [J]. Remote Sensing of Environment, 2005, 96(3-4): 366-374.
    [122] Saunders KM, McMinn A, Roberts D, et al. Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management [J]. Aquatic Conservation-Marine and Freshwater Ecosystems, 2007, 17(1): 51-70.
    [123] Saunders SC, Chen JQ, Crow TR, et al. Hierarchical relationships between landscape structure and temperature in a managed forest landscape [J]. Landscape Ecology, 1998, 13(6): 381-395.
    [124] Schimel DS, House JI, Hibbard KA, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J]. Nature, 2001, 414(6860): 169-172.
    [125] Schlesinger WH and Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO_2 [J]. Nature, 2001, 411(6836): 466-469.
    [126] Schmid HP. Experimental design for flux measurements: matching scales of observations and fluxes [J]. Agricultural and Forest Meteorology, 1997, 87(2-3): 179-200.
    [127] Schmid HP. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective [J]. Agricultural and Forest Meteorology, 2002, 113: 159-183.
    [128] Sentchev A, Yaremchuk M, and Lyard F. Residual circulation in the English Channel as a dynamically consistent synthesis of shore-based observations of sea level and currents [J]. Continental Shelf Research, 2006, 26(16): 1884-1904.
    [129] Shi YF, Zhu JW, Xie ZR, et al. Prediction and prevention of the impacts of sea level rise on the Yangtze River Delta and its adjacent areas [J]. Science in China Series D-Earth Sciences, 2000, 43(4): 412-422.
    [130] Shimoda S, Murayama S, Mo W, et al. Seasonal contribution of C_3 and C_4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO_2 at a grassland in Japan [J]. Agricultural and Forest Meteorology,2009, 149(3-4): 603-613.
    [131] Sims DA, Rahman AF, Cordova VD, et al. Midday values of gross CO_2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux [J]. Agricultural and Forest Meteorology, 2005, 131(1-2): 1-12.
    [132] Sims DA, Rahman AF, Cordova VD, et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems [J]. Journal of Geophysical Research-Biogeosciences, 2006, 111(G4).
    [133] Smith GM, Spencer T, Murray AL, et al. Assessing seasonal vegetation change in coastal wetlands with airborne remote sensing: an outline methodology [J].Mangroves and Salt Marshes, 1998,2(1): 15-28.
    [134] Still CJ, Berry JA, Ribas-Carbo M, et al. The contribution of C_3 and C_4 plants to the carbon cycle of a tallgrass prairie: an isotopic approach [J]. Oecologia, 2003, 136:347-359.
    [135] Stoy PC, Katul GG, Siqueira MBS, et al. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis [J]. Tree Physiology, 2005, 25(7): 887-902.
    [136] Sun SC, Cai YL, and Liu H. Biomass allocation of Scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River estuary [J]. Acta Botanica Sinica, 2001, 43(2): 178-185.
    [137] Tanaka M, Sugimura T, Tanaka S, et al. Flood-drought cycle of Tonle Sap and Mekong Delta area observed by DMSP-SSM/I [J]. International Journal of Remote Sensing, 2003, 24(7): 1487-1504.
    [138] Tang B, Li Z, and Zhang R. A direct method for estimating net surface shortwave radiation from MODIS data [J]. Remote Sensing of Environment, 2006, 103(1): 115-126.
    [139] Teal JM. Energy flow in the salt marsh ecosystem of Georgia [J]. Ecology, 1962, 43: 614-624.
    [140] Thomas CD, Cameron A, Green RE, et al. Extinction risk from climate change [J]. Nature, 2004a, 427(6970): 145-148.
    [141] Thomas CD, Williams SE, Cameron A, et al. Biodiversity conservation - uncertainty in predictions of extinction risk - effects of changes in climate and land use - climate change and extinction risk - reply [J]. Nature, 2004b, 430(6995).
    [142] Trettin CC, Laiho R, Minkkinen K, et al. Influence of climate change factors on carbon dynamics in northern forested peatlands [J]. Canadian Journal of Soil Science, 2006, 86(2): 269-280.
    [143] Turner DP, Gower ST, Cohen WB, et al. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring [J]. Remote Sensing of Environment, 2002, 80(3): 397-405.
    [144] Turner DP, Ollinger S, Smith ML, et al. Scaling net primary production to a MODIS ootprint in support of earth observing system product validation [J]. International Journal of Remote Sensing, 2004, 25(10): 1961-1979.
    [145] Turner DP, Ritts WD, Cohen WB, et al. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation [J]. Remote Sensing of Environment, 2003a, 88(3): 256-270.
    [146] Turner DP, Ritts WD, Cohen WB, et al. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring[J].Global Change Biology,2005,11(4):666-684.
    [147]Turner DP,Ritts WD,Zhao MS,et al.Assessing interannual variation in MODIS-based estimates of gross primary production[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1899-1907.
    [148]Turner DP,Urbanski S,Bremer D,et al.A cross-biome comparison of daily light use efficiency for gross primary production[J].Global Change Biology,2003b,9(3):383-395.
    [149]Vermote EF,EI Saleous NZ,and Justice CO.Atmospheric correction of MODIS data in the visible to middle infrared:first results[J].Remote Sensing of Environment,2002,83(1-2):97-111.
    [150]Wang Q,Tenhunen J,Falge E,et al.Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests[J].Global Change Biology,2004,10(1):37-51.
    [151]Wang SP,Niu HS,Cui XY,et al.Plant communities - ecosystem stability in Inner Mongolia[J].Nature,2005,435(7045):E5-E6.
    [152]Waring RH,Law BE,Goulden ML,et al.Scaling gross ecosystem production at Harvard forest with remote-sensing - a comparison of estimates from a constrained quantum-use efficiency model and eddy-correlation[J].Plant Cell and Environment,1995,18(10):1201-1213.
    [153]Weltzin JF,Bridgham SD,Pastor J,et al.Potential effects of warming and drying on peatland plant community composition[J].Global Change Biology,2003,9(2):141-151.
    [154]Westra T and De WulfRR.Monitoring Sahelian floodplains using Fourier analysis of MODIS time-series data and artificial neural networks[J].International Journal of Remote Sensing,2007,28(7-8):1595-1610.
    [155]Wilson K,Goldstein A,Falge E,et al.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology,2002,113(1-4):223-243.
    [156]Wolfe DW,Gifford RM,Hilbert D,et al.Integration of photosynthetic acclimation to CO_2 at the whole-plant level[J].Global Change Biology,1998,4(8):879-893.
    [157] Wylie BK, Fosnight EA, Gilmanov TG, et al. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains [J]. Remote Sensing of Environment, 2007, 106(4): 399-413.
    [158] Wylie BK, Johnson DA, Laca E, et al. Calibration of remotely sensed, coarse resolution NDVI to CO_2 fluxes in a sagebrush-steppe ecosystem [J]. Remote Sensing of Environment, 2003, 85(2): 243-255.
    [159] Wythers KR, Reich PB, and Turner DP. Predicting leaf area index from scaling principles: corroboration and consequences [J]. Tree Physiology, 2003, 23(17): 1171-1179.
    [160] Xiao XM. Light absorption by leaf chlorophyll and maximum light use efficiency [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1933-1935.
    [161] Xiao XM, Boles S, Frolking S, et al. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data [J]. International Journal of Remote Sensing, 2002a, 23(15): 3009-3022.
    [162] Xiao XM, Boles S, Liu JY, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images [J]. Remote Sensing of Environment, 2005a, 95(4): 480-492.
    [163] Xiao XM, Hagen S, Zhang QY, et al. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images [J]. Remote Sensing of Environment, 2006, 103(4): 465-473.
    [164] Xiao XM, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest [J]. Remote Sensing of Environment, 2004a, 89(4): 519-534.
    [165] Xiao XM, Moore B, Qin X, et al. Large-scale observations of alpine snow and ice cover in Asia: using multi-temporal VEGETATION sensor data [J]. International Journal of Remote Sensing, 2002b, 23(11): 2213-2228.
    [166] Xiao XM, Zhang QY, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 2004b, 91(2): 256-270.
    [167] Xiao XM, Zhang QY, Hollinger D, et al. Modeling gross primary production of an evergreen needleleaf forest using modis and climate data [J]. Ecological Applications, 2005b, 15(3): 954-969.
    [168] Xiao XM, Zhang QY, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest [J]. Remote Sensing of Environment, 2005c, 94(1): 105-122.
    [169] Yakir D and Sternberg LDL. The use of stable isotopes to study ecosystem gas exchange [J]. Oecologia, 2000, 123(3): 297-311.
    [170] Yakir D and Wang XF. Fluxes of CO_2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements [J]. Nature, 1996, 380(6574):515-517.
    [171] Yamaji T, Sakai T, Endo T, et al. Scaling-up technique for net ecosystem productivity of deciduous broadleaved forests in Japan using MODIS data [J]. Ecological Research, 2008, 23(4): 765-775.
    [172] Yim MH, Joo SJ, and Nakane K. Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamer methods [J]. Forest Ecology and Management, 2002, 170: 189-197.
    [173] Yu GR, Zhang LM, Sun XM, et al. Advances in carbon flux observation and research in Asia [J]. Science in China Series D-Earth Sciences, 2005, 48: 1-16.
    [174] Zacharias I, Dimitriou E, and Koussouris T. Quantifying land-use alterations and associated hydrologic impacts at a wetland area by using remote sensing and modeling techniques [J]. Environmental Modeling & Assessment, 2004,9(1): 23-32.
    [175] Zhang RH, Sun XM, Zhu ZL, et al. A remote sensing model of CO_2 flux for wheat and studying of regional distribution [J]. Science in China Series D-Earth Sciences, 1999, 42(3): 325-332.
    [176] Zhang Y, Li CS, Trettin CC, et al. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems [J]. Global Biogeochemical Cycles, 2002, 16(4).
    [177] Zhao B, Guo H, Yan Y, et al. a simple waterline approach for tidelands using multi-temporal satellite images: a case study in the Yangtze Delta [J]. Estuarine Coastal and Shelf Science, 2008, 77(1): 134-142.
    [178]Zhao B,Yan Y,Guo HQ,et al.Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators:an application in the Yangtze River Delta area[J].Ecological Indicators,2009,9(2):346-356.
    [179]邓伟,胡金明.湿地水文学研究进展及科学前沿问题[J].湿地科学,2003,1(1):12-20
    [180]付强,王志良等.多变量自回归模型在三江平原井灌水稻需水量预测中的应用[J].水利学报,2002,8:107-112
    [181]顾永剑.利用涡度协方差技术研究崇明东滩湿地生态系统的CO_2与能量通量[D].上海:复旦大学硕士学位论文,2007
    [182]何美梅.结合地面高光谱遥感与卫星遥感监测崇明东滩互花米草的入侵[D].上海:复旦大学硕士学位论文,2008
    [183]李博,赵斌等译.陆地生态系统生态学原理[M].北京:高等出版社,2005
    [184]林光辉,黄健辉等.生态学中的稳定同位素技术[A],见:陈吉泉,李博,马志军等,生态学家面临的挑战——问题与途径[M].北京:高等教育出版社,2005,103-144
    [185]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628
    [186]王迎红.陆地生态系统温室气体排放观测方法研究、应用及结果比对分析[D].北京:中国科学院大气物理研究所博士学位论文,2005
    [187]王庚辰.陆地生态系统温室气体排放吸收测量方法简评[J].气候与环境研究,1997,2(3):251-263
    [188]吴传庆,童庆禧等.基于小波变换的高光谱图像消噪[J].遥感信息,2005,4:10-13
    [189]于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003
    [190]于贵瑞,孙晓敏等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006
    [191]赵斌,陈世苹.涡度协方差技术在生态学中的应用[A],见:陈吉泉,李博,马志军等,生态学家面临的挑战——问题与途径[M].北京:高等教育出版社,2005:68-10.2
    [192]赵东升,李双成等.青藏高原的气候植被模型研究进展[J].地理科学进展,2006,25(4):68-78
    [193]赵育民,牛树奎等.植被光能利用率研究进展[J].生态学杂志,2007,26(9):1471-1477
    [194]赵英时,编著.遥感应用分析原理与方法[M].北京:科学出版时,2003
    [195]郑循华,徐仲均等.开放式空气CO_2浓度增高影响稻田—大气CO_2静交换的静态暗箱法观测研究[J].应用生态学报,2002,13(10):1240-1244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700