用户名: 密码: 验证码:
基于GIS的长江口九段沙湿地地貌变迁及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
九段沙位处长江口拦门沙地区,它导致长江三角洲产生第三级分汉,是目前长江口最大的沙洲湿地,也是国家级河口湿地保护区。近50年来,由于自然条件(流域水沙、海洋动力、两翼河槽)变化以及人类活动(长江口深水航道工程)的影响,九段沙发生了剧烈的形态演变。对九段沙这一湿地的演化规律进行研究,不但可以深化陆海相互作用下分汉河口地貌发育理论的认识,而且能为九段沙湿地保护区的规划和管理提供重要的科学依据。
     本文利用过去50年的海图测量数据以及长江口来水来沙数据等资料,结合过去3年来通过RTK-GPS实地采集的地形数据等资料,建立了九段沙基础地理信息数据库,通过改进空间插值方法生成了九段沙不同时段的数字高程模型,利用GlS(Geographical Inforrnation System,地理信息系统)技术及空间分析技术对九段沙自1958年来的演变过程进行了多方面的定量分析,主要结论如下:
     1)近半个世纪九段沙湿地经历了强烈的地形演变。总体来说,由于不断淤积的过程主导研究时段内的九段沙演变,其5m等深线以上的面积及体积分别增加了96%和156%;其潮间带面积及体积分别增加了331%和504%。九段沙滩顶高程从0.3m淤高至4.9m,其盐沼植被带的面积从0增加至潮间带总面积的40%。以上结果反映九段沙的发育逐渐趋于成熟。
     2)九段沙的演变可划分为四个阶段:1958年至1971年是九段沙的新生时期,此阶段九段沙以散沙合并为主要特点,快速淤积扩大;1971年至1989年是九段沙的快速增长期,九段沙保持稳定的整体形状,总体快速淤长,其形态发生顺时针的旋转,总体位置向下游方向移动;1989年至1994年,江亚南沙并入九段沙系,使得九段沙总体形状发生了改变,其面积、体积亦有大幅度增长。并沙事件改变了原有的九段沙形态发育趋势,也改变了区域水动力状况;1994年至2005年是九段沙的稳定时期,此间九段沙的整体形态稳定,面积体积变化速率逐渐减小,工程建设使得九段沙的局部冲淤模式发生了调整。
     3)九段沙的演变受到流域和海洋、自然和人类活动的共同影响。流域来沙是九段沙发育的重要物质基础,它控制着九段沙面积和体积的长期变化趋势。河口动力条件是九段沙物质搬运的重要营力,同时制约着九段沙的几何形状的变化。沼泽植物具有明显的消能、捕沙作用,它促进了潮间带的成陆作用。近期的北槽深水航道工程南导堤一鱼咀工程改变了九段沙局部的动力条件和泥沙输移通量,对九段沙的演变产生了深刻影响。
     4)由于流域来沙的急剧减少和南、北槽的制约(因长江径流量变化不大,南北槽将不会有大的容积变化),已经趋于成熟的九段沙在未来几十年将不会迅速扩大,取而代之的是面积较为稳定和局部的冲淤调整。
Jiuduansha shoals(JDS) are the neonatal wetland of the Yangtze Estuary that divide the South Channel into the North and South Passages and form the 3~(rd) fork of the Yangtze river mouth. They are of great significance to the local ecosystem, and also a National Nature Reserve of China. Different from other inland wetlands, Jiuduansha are surrounded by river channels and the open sea thus is highly dynamic. This paper endeavors to quantify the morphological change of the Jiuduansha shoals since their birth by using a bunch of geo-statistical and spatial analytical methods with Geographic Information System(GIS) software and discuss the possible causes of the evolution with historical data and events.
     Several Geographical Information System(GIS) techniques including analysis of geometry parameters, DEM construction and calculation of accretion and erosion were combined in this study to develop a detailed understanding of the morphological evolution of JDS in the Yangtze Estuary between 1958 and 2005. Elevation data from historical bathymetric maps, several in situ topographic surveys were collected as the major data sources for the topographic changes. Annual water discharge(WD) and sediment discharge(SD) were employed in this study as the backgrounds of the basic riverine characters. Analysis results indicate that:
     1) From 1958 to 2005, JDS underwent intense morphological evolution. The area and sediment volume of JDS increased by 96% and 156% above the 5m isobath and by 331% and 504% above the Lowest Astronomic Tide(LAT). Specifically, the maximum elevation of the island increased from 0.3 to 4.9m above the LAT and the salt marsh increased from 0 to 40% of the intertidal area.
     2) During the last half century, JDS developed form neonatal(from 1958 to 1971) to two-phased fast developing(from 1971 to 1989 and from 1989 to 1994) and finally to stable(from 1994 to 2005).
     3) Although persistently being affected by the trends of sediment supply, identical developing pattern of shoals in the Yangtze Estuary and local hydrodynamics, the evolution also severely affected by historical events such as big flood, shoal mergence and embankment, etc. The other factors such as sea-level rise, land subsidence and vegetation plantation contribute less significance to the evolution process. The dominant factors varied between periods. The evolution in neonatal period was mainly dominated by the riverine sediment supply and the identical pattern of the local shoals. The fast developing period was controlled by the variation of water and sediment fluxes between the two river channels that enclosed the shoals. During the latter part of this period a new shoal merged into Jiuduansha shoals system indicating that the paroxysm event dominated the developing process. At last, from 1994 to 2005 the evolution of the shoals turned modest and the local coastal engineering termed the Yangtze Estuary deepwater channel regulation phase-1 gained over the dominating position of the shoals development.
     4) Conservative estimation indicates that under the severe decreasing trend of riverine SD and the self-adaptation of the shoals to the engineering, the fast accretion of Jiuduansha shoals will be replaced by the general-stable-with-local-erosion period, and the erosion will possibly occurs first from the seaward bottom.
引文
[1]陈吉余;恽才兴;徐海根;董永发,1979.两千年来长江河口的发育模式.海洋学报,1(1),103-111.
    [2]陈家宽;马志军;李博,2003.上海九段沙湿地自然保护区科学考察集.科学出版社,249p.
    [3]Goodwin,P.;Mehta,A.J.;Zedler,J.B.,2001.Coastal wetland restoration:An introduction.Journal of Coastal Research Special Issue,27,1-6.
    [4]Costanza,R.;d'Arge,R.;Groot,R.;Farber,S.;Grasso,M.;Hannon,B.;Limburg,K.;Naeem,S.;O'Neill,R.V.;Paruelo,J.;Raskin,R.G;Sutton,P.;van den Belt,M.,1997.The value of the world's ecosystem services and natural capital.Nature,387,253-260.
    [5]恽才兴,2004.长江河口近期演变基本规律.海洋出版社,290p.
    [6]Blodget,H.W.;Taylor,P.T.;Roark,J.H.,1991.Shoreline changes along the Rosetta-Nile Promontory:Monitoring with satellite observations.Marine Geology,99(1-2),67-77.
    [7]Allison,J.E.,1949.The Mersey Estuary.Liverpool University Press,60p.
    [8]萨莫伊洛夫著,谢金赞等译,1958.河口演变过程的理论及其研究方法.科学出版社,343p.
    [9]Folk,R.L.;Ward,W.,1957.Brazos River Bar:A study in the significance of grain size parameters.Journal of Sedimentary Petrology,27,3-26.
    [10] Van Der Wai, D.; Pye, K.; Neal, A., 2002. Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology, 189, 249-266.
    [11]Thomas, C.G; Spearman, J.R.; Turnbull, M.J., 2002. Historical morphological change in the Mersey Estuary. Continental Shelf Research, 22,1775-1794.
    [12]Blott, S.J.; Pye, K.;Van der Wai, D.; Neal, A., 2006. Long-term morphological change and its causes in the Mersey Estuary, NW England. Geomorphology,81(1-2), 185-206.
    [13]Pritchard, D.; Hogg, A.J.; Roberts, W., 2002. Morphological modelling of intertidal mudflats: the row of cross-shore tidal currents. Continental Shelf Research, 22, 1887-1895.
    [14]Lane, A., 2002. Bathymetric evolution of the Mersey Estuary, UK, 1906-1997:causes and effects. Estuarine,Coastal and Shelf Science., 59(2), 249-263.
    [15]Karunarathna, H.; Reeve, D.; Spivack, M., 2007. Long-term morphodynamic evolution of estuaries: An inverse problem. Estuarine, Coastal and Shelf Science,77(3), 385-395.
    [16]Lillesand, T.M.; Kiefer, R.W., 1994. Remote Sensing and Image Interpretation.New York: John Wiley & Sons Ltd., 763p.
    [17]Butler, D.R.; Walsh, S.J., 1998. The application of remote sensing and geographic information systems in the study of geomorphology: an introduction.Geomorphology, 21, 179-181.
    [18]Cracknell, A.P., 1999. Remote sensing techniques in estuaries and coastal zone:an update. International Journal of Remote Sensing, 19(3), 485-496.
    [19] Mason, D.C.; Davenport, I.; Flather, R.A., 1997. Interpolation of an intertidal digital elevation model from heighted shorelines: a case study in the western Wash. Estuarine, Coastal and Shelf Science., 45, 599-612.
    [20]Lohani, B.; Mason, D.C., 1999. Construction of a digital elevation model of the holderness coast using the waterline method and airborne thematic mapper data.International Journal of Remote Sensing, 20(3), 593-607.
    [21]Ryu, J.H.; Kim, C.H.; Lee, Y.K.; Won, J.S., 2008. Detecting the intertidal morphologic change using satellite data. Estuarine, Coastal and Shelf Science, 78, 623-632.
    [22]Bagheri, S.; Stein, M.; Dios, R., 1998. Utility of hyperspectral data for bathymetric mapping in a turbid estuary. International Journal of Remote Sensing,19(6), 1179-1188.
    [23] Yang, X., 2005. Use of LIDAR elevation data to construct a high-resolution digital terrain model for an estuarine marsh area. International Journal of Remote Sensing, 26(23), 5163-5166.
    [24]Mason, D.C.; Marani, M.; Belluco, E.; Feola, A.; Ferrari, S.; Katzenbeisser, R.;Lohani, B.; Menenti, M.; Paterson, D.M.; Scott, T.R.; Vardy, S.; Wang C.; Wang.H-J., 2005. LIDAR Mapping of Tidal Marshes for Ecogeomorphological Modelling in the Tide Project. In Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, 17-19 May.
    [25]Kobashi, R.; Ohtsuki, H.; Hasebe, S.; Andreyev, A.S.; Bezglasnyi, S.P.; Little,L.S.; Edwards, D.; Porter, D.E., 1997. Kriging in estuaries: as the crow flies, or as the fish swims? Journal of Experimental Marine Biology and Ecology, 213(1),1-11.
    [26]Woolard, J.W.; Colby, J.D., 2002. Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology, 48(1-3), 269-287.
    [27]Venturato, A.J., 2005. A Digital Elevation Model for Seaside, Oregon: Procedures,Data Sources, and Analyses. NOAA Technical Memorandum OAR PMEL-129,21p.
    [28] Mandelbrot, B.B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636-638.
    [29] Phillips, J.D., 1986. Spatial Analysis of Shoreline Erosion, Delaware Bay, New Jersey. Annals of the Association of American Geographers, 76(1), 50-62.
    [30]Zhu, X.; Cai, Y.; Yang, X., 2004. On Fractal Dimensions of China's Coastlines.Mathematical Geology, 36(4), 447-461.
    [31]Pari, Y.; Ramana Murthy, M.V.; Jaya kumar, S.; Subramanian, B.R.;Ramachandran, S., 2008. Morphological changes at Vellar estuary, India—Impact of the December 2004 tsunami.Journal of Environmental Management,89(1),45-57.
    [32]陈吉佘,1957.长江三角洲江口段的地形发育.地理学报,23(3),241-253.
    [33]Chen,J.Y.;Zhu,S.Z.;Lv,Q.R.;Zhou,Y.Q.;He,S.L.,1982.Descriptions of the morphology and sedimentary structures of the river mouth bar in the Changjiang Estuary.New York:Academic Press,667-675.
    [34]Chen,J.Y.;Zhu,H.F;Dong,Y.E.;Sun,I.M.,1985.Development of the Changjiang Estuary and its submerged delta.Continental Shelf Research,447-56.
    [35]陈吉余,1995.长江口拦门沙及水下三角洲的动力沉积,演变和深水航道治理.华东师范大学学报(长江口深水航道治理与建设专集),1-22.
    [36]孙效功;杨作升,1995.利用输沙量预测现代黄河三角洲的面积增长.海洋与湖沼,26(1),76-82.
    [37]陈卫民;杨作升,2001.现代长江,黄河河口水下三角洲不稳定性的对比研究.青岛海洋大学学报(自然科学版),31(2),249-255.
    [38]吴超羽;任杰;包芸;史合印;雷亚平;何志刚;唐兆民,2006.珠江河口门的地貌动力学初探.地理学报,61(5),537-548.
    [39]杜国明;汪光松;吴超羽;刘秋海,2007.克里金在珠江河道地形空间数据内插中的应用.中山大学学报(自然科学版),46(1),119-122.
    [40]恽才兴;益建芳;陈希海,1986.遥感图像在河口演变及沿海潮滩调查研究中的应用.海洋调查,237-241.
    [41]黄海军;樊辉,2004.1976年黄河改道以来三角洲近岸区变化遥感监测.海洋与湖沼,35(4),306-314.
    [42]朱晓华;查勇,2002.江苏淤泥质海岸海岸线分形机理研究.海洋科学,26(9),70-73.
    [43]黄卫凯,1993.长江口拦门沙变化的经验特征函数模型.海洋学报,15(2),48-56.
    [44]黄卫凯;陈吉余,1995.长江河口拦门沙地形变化的统计预报.海洋与湖沼,26(4),343-349.
    [45]童朝锋;严以新;林跃华,2003.长江口深水航道数学模型信息系统研究.海 洋工程,21(1),101-104.
    [46]谢小平,2004.长江河口九段沙形成发展及演化规律研究.华东师范大学博士学位论文,101p.
    [47]杨世伦;贺松林;谢文辉,1998.长江口九段沙的形成演变及其与南北槽发育的关系.海洋工程,16(4),55-65.
    [48]上海市航道局,1997.河床演变规律分析.长江口深水航道治理工程汇报会材料.
    [49]Yang,S.L.,1999.Sedimentation on a growing intertidal island in the Yangtze River mouth.Estuarine,Coastal and Shelf Science,49,401-410.
    [50]杨世伦;朱骏;李鹏,2005.长江口前沿潮滩对来沙锐减和海面上升的响应.海洋科学进展,23(2),152-15.
    [51]Du,J.L.;Gao,A.;Yang,S.L.;Zhang,W.X.;Zhao,H.Y.;Li,P.,2005.A Preliminary Study on the Calculating Method for the Evolution of Siltation and Erosion of Tidal Flat Based on GIS.Marine Science Bulletin,7(1),45-53.
    [52]杨世伦;杜景龙;郜昂;李鹏;李明;赵华云,2006.近半个世纪长江口九段沙湿地的冲淤演变.地理科学,26(3),335-339.
    [53]刘杰;陈吉余;乐嘉海;黄仁元,2005.长江口深水航道治理一期工程实施对南槽冲淤演变的影响.泥沙研究,5,40-44.
    [54]李九发;万新宁;应铭;左书华;付桂,2006.长江河口九段沙沙洲形成和演变过程研究.泥沙研究,6,44-49.
    [55]沈芳;周云轩;张杰;吴建平;杨世伦,2006.九段沙湿地植被时空遥感监测与分析.海洋与湖沼,37(6),498-504.
    [56]沈芳;郜昂;吴建平;周云轩;张杰,2008.淤泥质潮滩水边线提取的遥感研究及DEM构建,以长江口九段沙为例.测绘学报,37(1),24-30.
    [1]谢小平,2004.长江河口九段沙形成发展及演化规律研究.华东师范大学博士学位论文,101p.
    [2]恽才兴,2004.长江河口近期演变基本规律.海洋出版社,290p.
    [3]中国海湾志编纂委员会,1998.中国海湾志地十四分册.海洋出版社,799p.
    [4]陈吉佘;沈焕庭;恽才兴,1988.长江河口动力过程和地貌演变.上海科学技术出版社,454p.
    [5]陈吉佘;恽才兴;徐海根,1979.两千年来长江河口的发育模式.海洋学报,1(1),103-111.
    [6]Yang,S.L.;Ding,EX.;Chen,S.L.,2001.Changes in progradation rate of the tidal flats at the mouth of the Changjiang(Yangtze) River,China.Geomorphology,38(1-2),167-180.
    [7]Yang,S.L.,1999.Sedimentation on a growing intertidal island in the Yangtze River mouth.Estuarine,Coastal and Shelf Science,49,401-410.
    [8]上海市海岛资源综合调查报告编写组,1996.上海市海岛资源综合调查报告.上海市科技出版社,249p.
    [9]上海市海岛资源综合调查报告编写组,1998.上海市海岛资源综合调查报告.上海市科技出版社,390p.
    [10]杨世伦,1994.长江口沉积物粒度参数的统计规律及其沉积动力学解释.泥沙研究,3,23-31.
    [11]沈焕庭;潘定安,2001.长江河口最大浑浊带.海洋出版社,194p.
    [12]宋连清,1997.互花米草及其对海岸的防护作用.东海海洋,15(1),11-19.
    [13]宋国元;袁峻峰;左本荣,2001.九段沙植被分布及其环境因子研究.上海师范大学学报(自然科学版),30(1),69-73.
    [14]唐承佳;陆健健,2003.长江口九段沙植物群落研究.生态学报,23(2),399-403.
    [15]陈家宽;马志军;李博,2003.上海九段沙湿地自然保护区科学考察集.科学出版社,249p.
    [1]Zeiler,M.,1999.Modeling Our World,ESRI press,202p.
    [2]李国标;庄雅平;王珏华,2001.面向对象的GIS数据模型--地理数据库.测绘通报,(6),37-39.
    [3]Booth,B.;Shaner,J.;MacDonald,A.;Sanchez,P.;Pfaff,R.,2004.Geodatabase Workbook,ESRI press,262p.
    [4]Johnston,K.;Ver Hoef,J.M.;Krivoruchko,K.;Lucas,N.,2001.Using ArcGIS Geostatistical Analyst,ESRI Press,306p.
    [5]邬伦;刘瑜;张晶;马修军;韦中亚;田原,2001.地理信息系统,原理,方法和应用.科学出版社,466p.
    [6]Tobler,W.R.,1970.A computer movie simulating urban growth in the Detroit region.Economic Geography,46(2),234-240.
    [7]Burrough,P.A.;McDonnell,R.,1998.Principles of Geographical Information Systems.New York:Oxford University Press,333p.
    [8]Peuker,T.J.;Fowler,R.J.;Little,J.J.;Mark,D.M.,1978.The triangular irregular network.Proceedings of the ASP Digital Terrain Model(DTM) Symposium,96-103.
    [9]武晓波;王世新;肖春生,1999.Delaunay三角网的生成算法研究.测绘学报,28(1),28-35.
    [10]Philip,G.M.;Watson,D.F.,1982.A Precise Method for Determining Contoured Surfaces.Australian Petroleum Exploration Association Journal,22,205-212.
    [11]Sibson,R.,1981.A brief description of natural neighbour interpolation.In Interpreting Multivariate Data.John Wiley & Sons,New York,21-36.
    [12]Oliver,M.A.,1990.Kriging:A Method of Interpolation for Geographical Information Systems.International Journal of Geographic Information Systems,4,313-332.
    [1]Xie,W.H.;Yang,S.L.,1999.Evolution of the Jiuduansha Shoal and its influence on adjacent channels in the Changjiang Estuary.China Ocean Engineering,13(2),185-196.
    [2]United Nations Educational,Scientific and Cultural Organization(UNESCO),1971.Convention on Wetlands of International Importance especially as Waterfowl Habitat.,WWW page,http://www.ramsar.org/key_conv_e.htm.
    [3]梁东方;李玉梁;江春波,2002.测量分维的数盒子算法研究.中国图象图形学报,7(3),246-250.
    [4]陈建安,1999.分形维数的定义及测定方法.电子科技,444-46.
    [5]冯金良;郑丽,1997.海岸线分维的地质意义浅析.海洋地质与第四纪地质,17(1),45-51.
    [6]朱晓华;查勇.2002.江苏淤泥质海岸海岸线分形机理研究.海洋科学,26(9),70-7Z
    [7]Mandelbrot,B.B.,1967.How long is the coast of Britain? Statistical self-similarity and fractional dimension.Science,156,636-638.
    [8]杜景龙;杨世伦;张文祥,2005.长江口北槽深水航道工程对九段沙冲淤影响研究.海洋工程,23(3),78-83.
    [9]刘杰;乐嘉海;胡志峰;丁光明,2003.长江口深水航道治理一期工程实施对北槽拦门沙的影响.海洋工程,21(2),58-64.
    [10]恽才兴,2004.长江河口近期演变基本规律.海洋出版社,290p.
    [11]杨世伦,2007.九段沙湿地的动态监测报告.上海,华东师范大学,130p.
    [12]Yang,S.L.;Zhang,J.;Zhu,J.;Smith,J.P.;Dai,S.B.;Gao,A.,2005.Impact of Dams on Yangtze River Sediment Supply to the Sea and Delta Wetland Response.Journal of Geophysical Research,110,F03006,DOI:10.1029/2004JF000271.
    [13]Yang,S.L.;Li,M.;Dai,S.B.;Liu,Z.;Zhang,J.;Ding,EX.,2006.Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management.Geophysical Research Letters,33,L06408,doi:10.1029/2005GL025507.
    [1]Yang,S.L.,1999.Sedimentation on a growing intertidal island in the Yangtze river mouth.Estuarine,Coastal and Shelf Science,49,401-410.
    [2]恽才兴,2004.长江河口近期演变基本规律,海洋出版社,290p.
    [3]Jay,D.A.;Simenstad,C.A.,1996.Downstream effects of water withdrawal in a small,high-gradient basin:erosion and deposition on the Skokomish River delta.Estuaries,19(3),501-517.
    [4]Yang,S.L.;Li,M.;Dai,S.B.;Liu,Z.;Zhang,J.;Ding,P.X.,2006.Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management.Geophysical Research Letters,33,L06408,doi:10.1029/2005GL025507.
    [5]金元欢,1990.河口分汉的定量表达及其基本模式.地理学报,45(1),56-67.
    [6]金元欢;沈焕庭,1991.分汉河口形成的基本条件.海洋湖沼通报,4,1-9.
    [7]陈吉余;恽才兴;徐海根;董永发,1979.两千年来长江河口的发育模式.海洋学报,1(1),103-111.
    [8]杨世伦;贺松林;谢文辉,1998.长江口九段沙的形成演变及其与南北槽发育的关系.海洋工程,16(4),55-65.
    [9]刘杰;陈吉余;乐嘉海;曹勇,2004.长江口深水航道治理一期工程实施后北槽冲淤分析.泥沙研究,5,15-22.
    [10]上海市海岛资源综合调查报告编写组,1996.上海市海岛资源综合调查报告.上海市科技出版社,249p.
    [11]杨世伦,1997.长江三角洲潮滩季节性冲淤循环多因子分析.地理学报,52(2),123-130
    [12]Yang,S.L.;Friedrichs,C.T.;Ding,P.X.;Zhu,J.;Zhao,Q.Y.,2003.Morphological Response of Tidal Marshes,Flats and Channels of the Outer Yangtze River Mouth to a Major Storm.Estuaries,26(6),1416-1425.
    [13]沈芳;周云轩;张杰;吴建平;杨世伦,2006.九段沙湿地植被时空遥感监测与分析.海洋与湖沼,37(6),498-504.
    [14]Yang,S.L.,1998.The role of Scirpus marsh in attenuation of hydro-dynamics and retention of fine-grained sediment in the Yangtze Estuary.Estuarine,Coastal and Shelf Science,47,227-233.
    [15]Yang,S.L.;Li,H.;Ysebaert,T.;Bouma,T.J.;Zhang,W.X.;Wang,Y.Y.;Li,P.;Li,M.;Ding,P.X.,2007.Spatial and temporal variations in sediment grain size in tidal wetlands,Yangtze delta:On the role of physical and biotic controls.Estuarine,Coastal and Shelf Science,doi,10.1016/j.ecss.2007.10.024.
    [16]He,W.;Feagin,R.;Lu,J.;Liu,W.;Yan,Q.;Xie,Z.,2007.Impacts of introduced Spartina alterniflora along an elevation gradient at the Jiuduansha Shoals in the Yangtze Estuary,suburban Shanghai,China.Ecological Engineering,29,245-248.
    [17]国家海洋信息中心,2001.2000年中国海平面公报.万维网页.
    [18]Douglas,B.C.;Keamey,M.S.;Leatherman,S.P.,2001.Sea Level Rise:History and Consequences.San Diego,USA:Academic Press,232P.
    [19]刘杜娟;叶银灿,2005.长江三角洲地区的相对海平面上升与地面沉降.地质灾害与环境保护,16(4),400-404.
    [1]Yang,S.L.;Li,M.;Dai,S.B.;Liu,Z.;Zhang,J.;Ding,P.X.,2006.Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management.Geophysical Research Letters,33,L06408,doi:10.1029/2005GL025507.
    [2]Douglas,B.C.;Keamey,M.S.;Leatherman,S.P.,2001.Sea Level Rise:History and Consequences.San Diego,USA:Academic Press,232P.
    [3]沈芳;周云轩;张杰;吴建平;杨世伦,2006.九段沙湿地植被时空遥感监测与分析.海洋与湖沼,37(6),498-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700