用户名: 密码: 验证码:
润湿灌溉条件下水氮耦合对黄瓜生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润湿灌溉技术是一种新的节水灌溉技术,它是通过润湿灌溉装置来实现植(作)物对水分、养分的高效利用。润湿灌溉装置通过减少栽培植物区域土壤的蒸发及阻隔重力水的下渗,使种植作物的微域环境发生变化,其润湿灌溉区域内的土壤含水量明显高于其他区域。同传统的栽培技术相比较具有操作简便、节水、高产、高效的优点。本试验应用润湿灌溉技术和传统灌溉技术对黄瓜进行了水氮耦合的对比研究。获得以下初步结论:1.通过对润湿灌溉技术与传统灌溉技术条件下,黄瓜幼苗的株高、第三叶片面积、第三叶片叶绿素值(SPAD)、植株干重积累量及茎粗等的对比研究,发现润湿灌溉技术能显著提高黄瓜幼苗对氮肥的利用效率。采用润湿灌溉技术栽培的黄瓜,其上述指标在6个施氮水平上均明显高于传统的栽培方式。2.实验初步得出,在使用润湿灌溉技术的前提下,适宜黄瓜生长的氮素浓度为160 mg/L。在第24 d测定黄瓜第三叶片的光合特性,通过分析得出两种栽培方式与植株叶片的净光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度四者成较好的相关性,在适宜的氮素浓度下,润湿灌溉技术使植株对水分的利用效率比传统灌溉栽培方式大81.18%。3.对黄瓜幼苗植株的第三叶片超氧化物歧化酶(SOD)与过氧化氢酶(CAT)的活性分析表明,使用润湿灌溉技术栽培的黄瓜幼苗植株在相同的氮素供应水平条件下,可以延缓植株叶片的衰老,从而使植株的生物量高于传统灌溉栽培方式。4.田间试验条件下,对黄瓜盛瓜期的产量分析发现,在相同的氮素供应水平上,使用润湿灌溉技术的黄瓜单株产量最大值比传统栽培方式的大5.08%,同时得出使用润湿灌溉技术栽培黄瓜的最优水氮组合为900 mg/L。
Humid irrigation technology is a new type of water-saving irrigation technologies, which isachieved by using humid irrigation equipment for various plants or crops, and make efficient use ofwater and nutrients. Humid irrigation device can obviously reduce soil water evaporation and setbarriers against infiltration and leaching of water and other nutrients by natural gravity flow. Amicro-environment was formed around a single cultivated plant. The soil moisture of the protectedregion was significantly higher than the unprotected areas; therefore, humid irrigation is a simple,water-saving and high efficiency utilization of nutrients compared to traditional cultivation techniques.In the present study, the coupling effect of water and nitrogen for cucumber under humid irrigationwas examined. This investigation was based on humid irrigation technology and traditional irrigationmethod in contrast, and sand culture pot and field experiments for cucumber were conducted,respectively. The obtained results showed that (1) at the same nitrogen level, growth and nutritionalcharacteristics such as plant height of the cucumber seedling cultivated using humid irrigation deviceare much higher than those by the traditional method, and there were extremely significant differencesbetween these two methods. (2) using the new technique, the optimal nitrogen supply, i.e. 160 mg / Lwas found in this study. A good correlation was obtained among the net photosynthetic rate,transpiration rate, intercellular carbon dioxide concentration and stomatal conductance while thephotosynthetic characteristics of the third leaf on the 24th day were measured. The obtained rerultsshowed that the humid irrigation was better than the traditional method in water utilization efficiency.(3)humid irrigation technology can obviously delay leaf senescence of cucumber seedlings, andcaused a higher biomass of plants compared to traditional method by the activities of both SOD andCAT enzymes.(4)at the same nitrogen level, the maximum cucumber yield per individual plantusing the new technique was 5.08% higher than that by the traditional method, and the optimalirrigated water and nitrogen combination, i.e. 900 mg / L was obtained at ripeness stage of cucumberin the field test.
引文
1. Ali MH, Talukder MSU. Increasing water productivity in crop production-A synthesis[J].Agricultural Water Management, 2008, 95(11): 1201-1213.
    2. Camp CR. Subsurface drip irrigation: A review.Transactions of the ASABE, 1998, 41(5): 1353-1367 .
    3. Doll P. Impact of Climate Change and Variability on Irrigation Requirements: A GlobalPerspective[J]. Climatic Change, 2002, 54(3): 269-293.
    4. Fahong W, Xuqing W, Sayre K. Comparison of conventional, flood irrigated, flat planting withfurrow irrigated, raised bed planting for winter wheat in China. Field Crops Research, 2004,87(1): 35-42.
    5. Gutierrez -Boem FH, Thomas GW. Phosphorus nutrition affects wheat response to water deficit[J]. Agronomy Journal, 1998, 90: 166-171.
    6. Gutiérrez -Boem FH, Thomas GW. Phosphorus nutrition and water deficits in field-grownsoybeans[J]. Plant and Soil, 1999, 207(1): 87-96.
    7. Howell TA. Enhancing Water Use Efficiency in Irrigated Agriculture. Agronomy Journal, 2001,93: 281-289.
    8. Marcel Fuchs. Impact of research on water use for irrigation in Israel [J]. Springer Berlin /Heidelberg, 2007, 25(4): 443-445.
    9. McCauley GN. Sprinkler vs. Flood Irrigation in Traditional Rice Production Regions ofSoutheast Texas [J]. Agronomy Journal, 1990, 82: 677-683.
    10. Meyer RD, Marcum DB. Potato yield, petiole nitrogen, and soil nitrogen response to water andnitrogen. Agronomy Journal, 1998, 90: 420-429.
    11. Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790): 1068-1072.
    12. Shiklomanov IA. World water resources[M]. Published by the United Nations Educational,Scientific and Cultural Organization(UNESCO), 1998 .
    13. Tilman D, Cassman KG, Matson PA et al. Agricultural sustainability and intensive productionpractices[J]. Nature, 2002, 418: 671-677.
    14. Vorosmarty CJ, Green P, Salisbury J, et al. Global Water Resources: Vulnerability from ClimateChange and Population Growth.[J]. Science, 2000, 289(5477): 284-288.
    15. Wallace JS. Inareasing agriculture water use efficiency to meet future food production[J].Agriculture, Ecosystem and Environment, 2000, 82: 105-119.
    16. Westcott MP, Vines KW. A comparison of sprinkler and flood irrigation for rice [J]. AgronomyJournal, 1986, 78: 637-640.
    17. Yazar A. Evaporation and Drift Losses from Sprinkler Irrigation Systems under VariousOperating Conditions [J]. Agricultural Water Management , 1984, 8(4 ): 439-449.
    18.蔡焕杰.大田作物膜下滴灌的理论与应用[J].杨凌:西北农林科技大学出版社,2003,12.
    19.陈全胜,余寿君,等.黄瓜营养基质无土栽培施肥量的研究[J].上海蔬菜,2003(2):37-38.
    20.程剑平,严俊,尹桂英,等.润湿灌溉埋藏式持水种植方法和装置[P].中国专利:200910305071.1, 2009-12-30.
    21.程先军,许迪,张昊.地下滴灌技术发展及应用现状综述[J].节水灌溉,1999,(04):13-42.
    22.丁果.温室蔬菜滴灌灌溉施肥水肥耦合效应的研究[D].内蒙古农业大学,硕士学位论文,2005.
    23.逢焕成.我国节水灌溉技术现状与发展趋势分析[J].中国土壤与肥料,2006(5):1-6.
    24.逢焕成.我国节水灌溉技术现状与发展趋势分析[J].中国土壤与肥料,2006,26(5):1-6.
    25.高兵,李俊良,陈清,等.设施栽培条件下番茄适宜的氮素管理和灌溉模式[J].中国农业科学,2009,42(6): 2034-2042.
    26.宫飞,陈阜,杨晓光等.喷灌对冬小麦水分利用的影响[J].中国农业大学学报,2001,6(5):30-34.
    27.郭永忠,王峰,刘华等.喷灌条件下不同节水措施对玉米的影响[J].西北农业学报2009,18(1): 285-289.
    28.何华,康绍忠.灌溉施肥深度对玉米同化物分配和水分利用效率的影响[J].植物生态学报,2002,26(4): 454-458.
    29.贺冬梅.水肥耦合对提高玉米产量的效应[D]:贵州大学硕士论文.贵州:贵州大学农学院,2008.
    30.胡芬,梅旭荣,陈尚漠.秸秆搜盖对春玉米农田土城水分的调控作用[J].中国农业气象,2001,22(1): 15-18.
    31.黄义德,张自立,魏凤珍,等.稻覆膜早作的生态生理效应应用生态学报[J].1999,10(3):305-308.
    32.黄云,廖铁军,周建召.覆膜番茄配肥效应研究[J].西南农业大学学报, 2001,23(5).
    33.巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学,2002,35(11): 1361-1368.
    34.康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,20(1): 1-6.
    35.康绍忠,张富仓,梁银丽.土壤水分和CO2浓度增加对小麦、玉米、棉花蒸散、光合及生长的影响[J].作物学报,1999,25(1): 55-63.
    36.康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(l): 11-17.
    37.李百凤,冯浩,吴普特.作物非充分灌溉适宜土壤水分下限指标研究进展[J]. 2007,25(3):227-231.
    38.李建明,邹志荣,王晓燕.蔬菜节水灌溉指标的研究现状及存在问题[J].干旱地区农业研究, 2000,18(2): 118-123.
    39.李恺,史学斌,江惺.地面灌溉的研究现状与发展趋势[J].石河子大学学报,2005,23:78-84.
    40.李生秀,李世清.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1): 38-46.
    41.李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(1): 47-53.
    42.李卫民,周凌云.水肥(氮)条件对小麦光合蒸腾与水分利用的影响[J].土壤通报,2004,35(2): 41-47.
    43.李英能.我国节水灌溉的现状与发展[J].水利水电科技进展,1998,18(1):2-7.
    44.林性粹.低压管道灌溉系统在我国北方渠灌区的发展[J].水利水电技术,1989,4: 42-46.
    45.刘建德,柳小龙.节水灌溉技术与应用[M].兰州:兰州大学出版社. 2007.
    46.罗玮.节水灌溉技术的发展现状及趋势[J].海河水利,2005,(4): 40-42.
    47.孟夏,张庆华,李博杰.我国节水灌溉存在的问题与对策[J].安徽农业科学, 2008,36(4):1606-1608.
    48.任红松,郑重,马富裕,等.滴灌条件下水肥互作对新疆棉花产量的影响[J].石河子大学学报(自然科学版),2002,6(3): 179-181.
    49.山仑,等.节水农业[M].清华大学出版社赞南开大学出版社,2000.
    50.盛国成.节水灌溉技术与应用成效[J].当代蔬菜,2005,(07).
    51.施宏伟,叶亚妮.陕西渭河流域水资源和水环境管理模式演进与管理方法研究.水利科技与经济,2007,13(1): 1-3.
    52.汪德水,邢瑞智.半干旱地区麦田水肥效应研究[J].土壤肥料,1994,2: 1-4.
    53.王晨阳,马冬云,郭天财,等.不同水、氮处理对小麦淀粉组成及特性的影响[J].作物学报, 2004,8(30): 739-744.
    54.王凤新,冯绍元,黄冠华.喷灌条件下冬小麦水肥耦合效应的田间试验研究[J].灌溉排水, 1999,18(1): 10-13.
    55.王同朝,常思敏,刘作新,等.水磷耦合效应对玉米苗期生长和水分利用效率的影响[J].河南农业大学学报,2002,36(3): 214-217.
    56.王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响[J].中国农业科学,2008,41(10): 3015-3024.
    57.吴从林,黄介生,沈荣开.地膜覆盖在冬小麦全生育期内增温保墒作用的试验研究[J].中国农村水利水电,2001,8:7-9.
    58.吴景社.国外节水灌溉技术发展现状与趋势[J].世界农业,1994,7: 29-30.
    59.吴景社.世界灌溉的发展趋向[J].世界农业,1995,(6): 21-23.
    60.吴普特,冯浩,牛文全,等.现代节水农业技术发展趋势与未来研发重点[J].中国工程科学,2007,9(2): 12-18.
    61.吴普特.雨水资源化与现代节水农业[J].中国农业科技导报,2007,9(1): 15-20.
    62.习金根,周建斌,赵满兴,等.滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2004.
    63.肖自添.温室基质培番茄水氮耦合效应研究[D]:硕士学位论文.北京:中国农业科学院,2008.
    64.徐振剑,华珞,蔡典雄.农田水肥关系研究现状[J].首都师范大学学报(自然科学版),2007,28(1): 83-88.
    65.许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,(12):103-108.
    66.许迪,龚时宏.现代农业高效用水技术研究发展趋势与重点[J].武汉大学学报,2009,42(5): 554-559.
    67.杨劼,宋炳煜,朴顺姬,等.皇甫川丘陵沟壑区小流域生态用水实验研究[J].自然资源学报,2003,18(5): 513-521.
    68.袁先江.国内外节水灌溉发展现状与趋势[J].治淮,2001(4): 15-18.
    69.张富仓. C02浓度升高、氮与土壤水分对春小麦生长及干物质积累的效应[J].中国生态农业学报,2003,11(2): 37-40.
    70.张海林,高旺盛,王广章,等.夏米生长及水分利用的研究[J].作物杂志,2000,4: 7-9.
    71.张岁岐,山仑.植物水分利用效率及其研究进展[J].干早地区农业研究,2002,20(4):l-5.
    72.张西平.日光温室膜下滴灌黄瓜需水规律的研究[D]:硕士学位论文,陕西,西北农林科技大学,2005.
    73.张晓伟,黄占斌,李秧秧,等.滴灌条件下玉米的产量和WUE效应研究[J].水土保持研究,1999,6(1): 72-75.
    74.张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990,12-14.
    75.赵满兴,周建斌,杨绒,等.不同施氮量对旱地不同品种冬小麦氮素累积、运输和分配的影响[J].植物营养与肥料学报,2006,12(2): 143-149.
    76.赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响[J].植物营养与肥料学报,2006,12(5): 622-627.
    77.朱祝军,蒋有条.不同形态氮素对不结球白菜生长和硝酸盐积累的影响(简报)[J].植物生理学通讯, 1994, 30(3): 198-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700