用户名: 密码: 验证码:
乙烯调控早熟苹果果实软化和裂果机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由硬度和脆度构成的果实质地品质是苹果品质的重要构成因素之一。它不仅影响苹果的鲜食品质,也是限制苹果贮运品质的重要因素。因此探讨苹果质地品质形成的机理也具有重要的意义。本课题组育成的早熟苹果新品种‘泰山早霞’综合经济性状优良,但依然存在果实容易软化变绵这一早熟苹果的共性问题,特别是全红期采收的果实在室温条件下存放3~5d后就软化变绵甚至裂果,严重影响了苹果的品质。因此研究早熟果实质地品质的形成机理,改善早熟苹果果实质地品质是当前培育优质早熟苹果品种急需解决的问题。本文以‘泰山早霞’苹果为试材,分别测定果实生长发育期和贮藏期以及采后用乙烯抑制剂1-MCP处理果实的内源乙烯合成,PG酶活性和果实硬度的变化。克隆了五个乙烯信号转导途径的调控基因(ZMdEIL1、ZMdEIL2、ZMdEIL3、ZMdERF1和ZMdERF2)和一个功能基因ZMdPG1,并研究乙烯信号调控基因和ZMdPG1在苹果果实生长发育和成熟软化过程中的表达模式,以及对1-MCP(1.0μl·L-1)处理的应答模式,鉴别参与苹果果实成熟软化的重要基因;验证乙烯信号转导途径调控基因和功能基因ZMdPG1的作用;初步探索乙烯信号编码基因对功能基因ZMdPG1的调控作用,明确乙烯与苹果果实软化和裂果的关系。主要研究结果如下:
     1.‘泰山早霞’果实成熟过程中,内源乙烯大量积累,PG酶活性急剧增加,果实硬度快速下降;乙烯抑制剂1-MCP能够抑制内源乙烯合成,同时PG酶活性下降,果实硬度软化趋势被延缓,果实裂果现象也被抑制。
     2.在‘泰山早霞’果实整个发育过程中ZMdERF1基因持续性表达;ZMdEIL2基因的表达量在果实发育前期和后期均较高,中期比较低;而且,ZMdERF1和ZMdEIL2基因的表达丰度均在花后65d即内源乙烯开始大量积累时增高;ZMdERF2基因的表达量在花后75d升高;ZMdEIL1和ZMdEIL3基因的表达量在果实的整个发育过程中都较低。ZMdPG1基因的表达量在果实生长发育过程中较低,在软化果实和裂果果实中显著增强。用乙烯抑制剂1-MCP处理果实后,伴随着内源乙烯积累的迅速降低,ZMdPG1、ZMdERF1、ZMdEIL1和ZMdEIL2基因的转录明显被抑制,ZMdERF2的表达也降低,ZMdEIL3基因的表达未有明显的变化。ZMdPG1、ZMdERF1、ZMdERF2和ZMdEIL2基因的表达响应内源乙烯的调控,并协同调节苹果果实的成熟软化和裂果。
     3.利用RT-PCR技术克隆了ERFs家族的ZMdERF1和ZMdERF2,EIN3/EILs家族的ZMdEIL1、ZMdEIL2、ZMdEIL3和功能基因ZMdPG1;其中,ZMdERF1和ZMdERF2的氨基酸序列包含ERFs家族的两个保守区域YRG和RAYD,ZMdEIL1、ZMdEIL2和ZMdEIL3的氨基酸序列含有EIN3/EILs家族的特征元件AD、BDI、BDII、BDIII、BDIV、BDV和PR,并采用High-tail PCR克隆得到ZMdPG1的启动子,它包含有多个调控元件,如:A-box、AT-rich sequence、BoxI、G-Box、BoxIII、CCGTCC-box、CGTCA-motif等。亚细胞定位显示ZMdEIL1、ZMdEIL2、ZMdEIL3、ZMdERF1和ZMdERF2均定位在细胞核内,ZMdPG1定位在细胞壁和细胞质膜中。
     4.在拟南芥中超表达ZMdPG1基因,加速了果皮细胞壁的降解,细胞与细胞之间的结合力减弱从而引发果皮缝合处的细胞分离,导致果荚提早开裂,而反义ZMdPG1转基因拟南芥抑制了果荚正常开裂。在番茄中超表达ZMdPG1基因引起大量落花和果实不完全发育。
     5. ZMdPG1启动子上含有多个调控元件,其中包括蛋白结合元件BOXIII,但由ZMdPG1启动子合成的探针不与ZMdERF1蛋白结合,表明ZMdERF1不直接调控目的基因ZMdPG1。
     6.苹果乙烯信号编码基因之间存在相互作用,ZMdERF1/ZMdEIL2组合之间和ZMdERF2/ZMdEIL2组合之间分别存在互补关系,表明ZMdERF1蛋白和ZMdERF2蛋白特异的与ZMdEIL2蛋白互作。
Apple is one of the most important fruit crop in China. It is important to investigate themechanism of texture quality including firmness and fragility which influences the eatingand shipping quality.‘Taishanzaoxia’ is one of the early-ripening apple cultivars and hasexcellent quality, but it is easy softening and even dehiscence. This greatly reduce itscommercial value. Therefore, studying the mechanism of fruit texture quality is very importfor improving the fruit quality. In this study, the ethylene production, PG activity and fruitfirmness during fruit development and storage stages were analysed. The treatment with1-MCP(1.0μL·L-1) was also used during storage stage. Five ethylene signal transcriptionfactors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1and ZMdERF2) and one functional geneZMdPG1which encodes polygalacturonase were identified. The expression patterns ofZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1, ZMdERF2and ZMdPG1were studied.Transcription factors and promoter interaction and functional transgenic works were alsoconducted in the study. The main results are as follows:
     1. PG activity and fruit softening of ‘Taishanzaoxia’ fruit rapidly increased followed byethylene burst. With treatment of1-MCP, ethylene production was sharply reduced.Furthermore, the PG activity, fruit softening and dehiscence were significantly inhibited. Itsuggested that endogenous ethylene could play important role in the regulation of fruit softingand dehiscence.
     2. ZMdERF1and ZMdEIL2transcription were more abundant in ‘Taishanzaoxia’softening fruit and dehiscent fruit and their expression were inhibited by an ethylene inhibitor1-MCP. Therefore, ZMdERF1and ZMdEIL2expression were response to endogenousethylene and associated with fruit softening and dehiscence. ZMdPG1expression was inducedduring fruit softening and dehiscence, but it can be blocked by1-MCP, indicating thatZMdPG1was essential for fruit softening and dehiscence and its expression was mediated bythe endogenously occurred ethylene. The expression of ZMdERF2,ZMdEIL1and ZMdEIL3maintained low level during fruit development, and there was little increase in ZMdERF2butit was inhibited by1-MCP in softening fruit. These results indicated that the transcription ofZMdERF1,ZMdERF2,ZMdEIL2and ZMdPG1were closely connected in ethylene during fruit softening and dehiscence stages.
     3. ZMdERF1, ZMdERF2, ZMdEIL1, ZMdEIL2, ZMdEIL3and ZMdPG1were clonedfrom ‘Taishanzaoxia’ fruit. ZMdERF1and ZMdERF2belong to ERFs family including YRGand RAYD conserved domains. ZMdEIL1, ZMdEIL2and ZMdEIL3belong to EIN3/EILsfamily shared characteristic factors AD, BDI, BDII, BDIII, BDIV, BDV and PR. TheZMdPG1promoter was cloned which contains A-box, AT-rich sequence, BoxI, G-Box,BoxIII, CCGTCC-box and CGTCA-motif regulatory factors. ZMdEIL1, ZMdEIL2andZMdEIL3proteins were located in cell nucleus, while ZMdPG1was located in cell wall andcytoplasmic membrane.
     4. ZMdPG1overexpression in Arabidopsis led to seed silique early dehiscence whilesuppressing ZMdPG1expression by antisense ZMdPG1prevented seed silique naturallyopening. The ectopic expression of ZMdPG1was involved in cell separation and contributedto fruit dehiscence. ZMdPG1overexpression in tomato resulted in flower and fruit abscission.
     5. There were multiple regulatory factors in ZMdPG1promoter including bindingprotein factor BOXIII, however, ZMdERF1didn’t bound to ZMdPG1promoter. Therefore,ZMdERF1did not directly regulate the functional gene ZMdPG1.
     6. BiFC(Bimolecular fluorescence complementation) experiment evidenced thatZMdERF1and ZMdERF2interacted physically with ZMdEIL2.
引文
陈涛和张劲松.乙烯的生物合成与信号传递.植物学通报,2006,(23):519-530.
    冯艳飞和梁月荣.茶树S-腺普甲硫氨酸合成酶基因的克隆和序列分析.茶叶科学,2001,(21):21-25.
    韩亚珊.食品化学实验指导.北京:中国农业出版社,1996,79-81.
    蒋天梅,殷学仁,王平,孙崇德,徐昌杰,李鲜,陈昆松.乙烯调控非跃变型果实成熟衰老研究进展.园艺学报,2011,(38):371-378.
    李曜东,魏玉凝,顾淑荣. PG与番茄果实成熟的关系植物学通报,2004,(21):79-83.
    李正国, Sharkawy I, Lelievre J M.温度,丙烯和1-MCP对西洋梨果实乙烯合成和乙烯受体ETR1同源基因表达的影响.园艺学报,2000,(27):313-316.
    刘超超,魏景利,徐玉亭,焦其庆,孙海兵,王传增,陈学森.苹果3个早熟品种果实发育后期硬度及其相关生理指标的初步研究.园艺学报,2011,(38):133-138.
    刘美艳,魏景利,刘金,房龙,宋杨,崔美,王传增,陈学森.‘泰山早霞’苹果采后1-甲基环丙烯处理对其软化及相关基因表达的影响.园艺学报,2012,(39):845-852.
    陆定志和傅家瑞.植物哀老及其调控.北京:中国农业出版社,1997.
    沈成国.植物衰老生理与分子生物学.北京:中国农业出版社,2001.
    汪沂,田世平,徐勇,范青.硅窗袋处理对肥城桃果实的呼吸速率及乙烯释放速率的影响.园艺学报,2000,(27):331-334.
    魏玉凝,李曜东,马庆虎,宋艳茹.表达多聚半乳糖醛酸酶反义RNA的转基因番茄分析.植物学报,1996,(38):245-248.
    魏潇,刘威生,刘宁,章秋平,张玉萍,刘硕,刘有春.果实软化相关PG基因的进化分析和基因组定位.园艺学报,2011,38(9):1791-1799.
    吴明江,张忠恒,于萍,黄剑,刘武林.苹果成熟软化过程中质壁互作的生理和结构研究.园艺学报,1995,(22):181-182.
    徐昌杰和陈昆松.乙烯生物合成及其控制研究进展.植物学通报,1998,(15):54-61.
    殷学仁.猕猴桃果实后熟进程中乙烯信号转导元件功能及其对非生物胁迫的应答.[博士学位论文].杭州:浙江大学,2009.
    周宏伟和吴耕西.长把梨贮藏中多聚半乳糖醛酸酶与果胶甲酯酶的作用.山东农业大学学报:自然科学版,1992,(23):67-70.
    周玉婵,唐友林,谭兴杰,郭俊彦.采后ABA, GA对芒果细胞壁降解酶,类胡萝卜素含量的作用.植物生理学报,1996,(22):421-426.
    Abeles F. B., Morgan P. W. and Saltveit Jr M. E. Ethylene in plant biology,2nd Edition. SanDiego: Academic Press,1992.
    Adams-Phillips L., Barry C., Kannan P., Leclercq J., Bouzayen M. and Giovannoni J.Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by amultigene family whose members display distinct regulatory features. Plant MolecularBiology,2004,(54):387-404.
    Alexander L. and Grierson D. Ethylene biosynthesis and action in tomato: a model forclimacteric fruit ripening. Journal of Experimental Botany,2002,(53):2039-2055.
    Allen M. D., Yamasaki K., Ohme-Takagi M., Tateno M. and Suzuki M. A novel mode of DNArecognition by a [beta]-sheet revealed by the solution structure of the GCC-boxbinding domain in complex with DNA. The EMBO Journal,1998,(17):5484-5496.
    Alonso J. M., Hirayama T., Roman G., Nourizadeh S. and Ecker J. R. EIN2, a bifunctionaltransducer of ethylene and stress responses in Arabidopsis. Science,1999,(284):2148-2152.
    Alonso J. M., Stepanova A. N., Solano R., Wisman E., Ferrari S., Ausubel F. M. and Ecker J.R. Five components of the ethylene-response pathway identified in a screen for weakethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy ofSciences,2003,(100):2992-2997.
    Argenta L. C., Fan X. and Mattheis J. P. Influence of1-methylcyclopropene on Ripening,Storage Life, and Volatile Production by d'Anjou cv. Pear Fruit. Journal ofAgricultural and Food Chemistry,2003,(51):3858-3864.
    Atkinson R. G. A cDNA clone for endopolygalacturonase from apple. Plant Physiology,1994,(105):1437-1438.
    Atkinson R. G., Schr der R., Hallett I. C., Cohen D. and MacRae E. A. Overexpression ofpolygalacturonase in transgenic apple trees leads to a range of novel phenotypesinvolving changes in cell adhesion. Plant Physiology,2002,(129):122-133.
    Ayub R., Guis M., Amor M. B., Gillot L., Roustan J. P., Latché A., Bouzayen M. and Pech J.C. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melonfruits. Nature biotechnology,1996,(14):862-866.
    Büttner M. and Singh K. B. Arabidopsis thaliana ethylene-responsive element binding protein(AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocselement binding protein. Proceedings of the National Academy of Sciences,1997,(94):5961-5966.
    Bailey B. A., Avni A., Li N., Mattoo A. K. and Anderson J. D. Nucleotide sequence of theNicotiana tabacum cv Xanthi gene encoding1-aminocyclopropane-1-carboxylatesynthase. Plant Physiology,1992,(100):1615.
    Bapat V. A., Trivedi P. K., Ghosh A., Sane V. A., Ganapathi T. R. and Nath P. Ripening offleshy fruit: Molecular insight and the role of ethylene. Biotechnology Advances,2010,(28):94-107.
    Barry C. S., Blume B., Bouzayen M., Cooper W., Hamilton A. J. and Grierson D. Differentialexpression of the1-aminocyclopropane-1-carboxylate oxidase gene family of tomato.The Plant Journal,1996,(9):525-535.
    Barry C. S., Llop-Tous M. I. and Grierson D. The regulation of1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1tosystem-2ethylene synthesis in tomato. Plant Physiology,2000,(123):979-986.
    Barry C. S. and Giovannoni J. J. Ethylene and fruit ripening. Journal of Plant GrowthRegulation,2007,(26):143-159.
    Begheldo M., Manganaris G. A., Bonghi C. and Tonutti P. Different postharvestconditionsmodulate ripening and ethylene biosynthetic and signal transductionpathways in Stony Hard peaches Postharvest Biology and Technology,2007,(48):84-91.
    Bennett A. B. and Labavitch J. M. Ethylene and ripening-regulated expression and function offruit cell wall modifying proteins. Plant Science,2008,(175):130-136.
    Bleecker A. B. and Kende H. Ethylene:a gaseous signal moleeule in plants. Annual Review ofCell and Developmental Biology,2000,(16): l-18.
    Blume B., Barry C., Hamilton A., Bouzayen M. and Grierson D. Identification oftransposon-like elements in non-coding regions of tomato ACC oxidase genes.Molecular and General Genetics MGG,1997,(254):297-303.
    Bolitho K. M., Lay-Yee M., Knighton M. L. and Ross G. S. Antisense apple ACC-oxidaseRNA reduces ethylene production in transgenic tomato fruit. Plant Science,1997,(122):91-99.
    Brady C. J. and Speirs J. Ethylene in fruit ontogeny and abscission,1991,235-258.
    Brown K. M. Ethylene and abscission. Physiologia Plantarum,1997,(100):567-576.
    Brummell D. A., Hall B. D. and Bennett A. B. Antisense suppression of tomato endo-1,4-β-glucanase Cel2mRNA accumulation increases the force required to break fruitabscission zones but does not affect fruit softening. Plant Molecular Biology,1999,(40):615-622.
    Burdon J. and Sexton R. Fruit abscission and ethylene production of four blackberry cultivars(Rubus spp.). Annals of applied biology,1993,(123):121-132.
    Cara B. and Giovannoni J. J. Molecular biology of ethylene during tomato fruit developmentand maturation. Plant Science,2008,(175):106-113.
    Calvo G. and Sozzi G. O. Improvement of post-harvest storage quality of 'Red Clapp's' pearsby treatment with1-methylcyclopropene at low temperature. Journal of HorticulturalScience and Biotechnology,2004,(79):930-934.
    Cervantes E., Rodríguez A. and Nicolás G. Ethylene regulates the expression of a cysteineproteinase gene during germination of chickpea (Cicer arietinum L.). Plant MolecularBiology,1994,(25):207-215.
    Chakravarthy S., Tuori R. P., D'Ascenzo M. D., Fobert P. R., Després C. and Martin G. B. Thetomato transcription factor Pti4regulates defense-related gene expression via GCCbox and non-GCC box cis elements. The Plant Cell,2003,(15):3033-3050.
    Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W. and Ecker J. R. Activation of theethylene gas response pathway in Arabidopsis by the nuclear proteinETHYLENE-INSENSITIVE3and related proteins. Cell,1997,(89):1133-1144.
    Chen Y. F., Randlett M. D., Findell J. L. and Schaller G. E. Localization of the ethylenereceptor ETR1to the endoplasmic reticulum of Arabidopsis. Science Signaling,2002,(277):1986.
    Chen Y. F., Etheridge N. and Schaller G. E. Ethylene signal transduction. Annals of Botany,2005,(95):901-915.
    Cho H. T. and Cosgrove D. J. Altered expression of expansin modulates leaf growth andpedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy ofSciences,2000,(97):9783-9788.
    Clark K. L., Larsen P. B., Wang X. and Chang C. Association of the Arabidopsis CTR1Raf-like kinase with the ETR1and ERS ethylene receptors. Proceedings of theNational Academy of Sciences,1998,(95):5401-5406.
    Crookes P. R. and Grierson D. Ultrastructure of tomato fruit ripening and the role ofpolygalacturonase isoenzymes in cell wall degradation. Plant Physiology,1983,(72):1088-1093.
    Dal Cin V., Rizzini F. M., Botton A. and Tonutti P. The ethylene biosynthetic and signaltransduction pathways are differently affected by1-MCP in apple and peach fruit.Postharvest Biology and Technology,2006,(42):125-133.
    Dal Cin V. and Ramina A. MADS box transcript amount is affected by ethylene duringabscission. American Journal of Plant Sciences,2011,(2):308-317.
    Davies K. M. and Grierson D. Identification of cDNA clones for tomato (Lycopersiconesculentum Mill.) mRNAs that accumulate during fruit ripening and leaf senescence inresponse to ethylene. Planta,1989,(179):73-80.
    DellaPenna D., Alexander D. C. and Bennett A. B. Molecular cloning of tomato fruitpolygalacturonase: analysis of polygalacturonase mRNA levels during ripening.Proceedings of the National Academy of Sciences,1986,(83):6420.
    Do C.T., Pollet B., Thévenin J., Sibout R., Denoue D., Barrière Y., Lapierre C. and Jouanin L.Both caffeoyl Coenzyme A3-O-methyltransferase1and caffeic acid O-methyl-transferase1are involved in redundant functions for lignin, flavonoids and sinapoylmalate biosynthesis in Arabidopsis. Planta,2007,(226):1117-1129.
    Dong J. G., Fernandez-Maculet J. C. and Yang S. F. Purification and characterization of1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proceedings of theNational Academy of Sciences,1992,(89):9789-9793.
    Ecker J. R. The ethylene signal transduction pathway in plants. Science,1995,(268):667.
    Ekman J. H., Clayton M., Biasi W. V. and Mitcham E. J. Interactions between1-MCPconcentration, treatment interval and storage time for ‘Bartlett’ pears. PostharvestBiology and Technology,2004,(31):127-136.
    EI-Sharkawy I., Jones B., Li Z. G., Lelivre J. M., Pech J. C. and Latch A. Isolation andcharacterization of four ethylene perception elements and their expression duringripening in pears (Pyrus comm unis L.) with/without cold requirement. Journal ofExperimental Botany,2003,(54):1615-1625.
    El-Sharkawy I., Sherif S., Mila I., Bouzayen M. and Jayasankar S. Molecular characterizationof seven genes encoding ethylene-responsive transcriptional factors during plum fruitdevelopment and ripening. Journal of Experimental Botany,2009,(60):907-922.
    Esashi Y., Kuraishi R., Tanaka N. and Satoh S. Transition from primary dormancy tosecondary dormancy in cocklebur seeds. Plant, Cell&Environment,1983,(6):493-499.
    Esashi Y., Isuzugawa K., Matsuyama S., Ashino H. and Hasegawa R. Endogenous evolutionof HCN during pre-germination periods in many seed species. Physiologia Plantarum,1991,(83):27-33.
    Evensen K. B. Ethylene responsiveness changes in Pelargonium×domesticum florets.Physiologia Plantarum,1991,(82):409-412.
    Fabi J. P., Cordenunsi B. R., Seymour G. B., Lajolo F. M. and do Nascimento J. R. O.Molecular cloning and characterization of a ripening-induced polygalacturonaserelated to papaya fruit softening. Plant Physiology and Biochemistry,2009,(47):1075-1081.
    Fujimoto S. Y., Ohta M., Usui A., Shinshi H. and Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors ofGCC box–mediated gene expression. The Plant Cell,2000,(12):393-404.
    Gagne J. M. Arabidopsis EIN3-binding F-box1and2form ubiquitin-protein ligases thatrepress ethylene action and promote growth by directing EIN3degradation.Proceedings of the National Academy of Sciences,2004,(101):6803-6808.
    Giovannoni J. J., DellaPenna D., Bennett A. B. and Fischer R. L. Expression of a chimericpolygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results inpolyuronide degradation but not fruit softening. The Plant Cell,1989,(1):53-63.
    Goldschmidt E., Huberman M. and Goren R. Probing the role of endogenous ethylene in thedegreening of citrus fruit with ethylene antagonists. Plant growth regulation,1993,(12):325-329.
    Gomez-Cadenas A., Tadeo F. R., Talon M. and Primo-Millo E. Leaf abscission induced byethylene in water stressed intact seeding of (Citrus reshni Hort.ex Tan.) requiresprevious abscisic acid acumulation in roots. Plant Physiology,1996,(12):401-408.
    González-Carranza Z. H., Whitelaw C. A., Swarup R. and Roberts J. A. Temporal and spatialexpression of a polygalacturonase during leaf and flower abscission in oilseed rapeand Arabidopsis. Plant Physiology,2002,(128):534-543.
    Goren R. Anatomical, physiological, and hormonal aspects of abscission in citrus.Horticultural Reviews,1993,(15):145-182.
    Gu Y. Q., Yang C., Thara V. K., Zhou J. and Martin G. B. Pti4is induced by ethylene andsalicylic acid, and its product is phosphorylated by the Pto kinase. The Plant Cell,2000,(12):771-786.
    Guo H. and Ecker J. R. The ethylene signaling pathway: new insights. Current Opinion inPlant Biology,2004,(7):40.
    Guzman P. and Ecker J. R. Exploiting the triple response of Arabidopsis to identifyethylene-related mutants. The Plant Cell,1990,(2):513-523.
    Halevy A. H., Porat R., Spiegelstein H., Borochov A., Botha L. and Whitehead C. S.Short-chain saturated fatty acids in the regulation of pollination-induced ethylenesensitivity of Phalaenopsis flowers. Physiologia Plantarum,1996,(97):469-474.
    Hall A. E. and Bleecker A. B. Analysis of combinatorial loss-of-function mutants in theArabidopsis ethylene receptors reveals that the ers1etr1double mutant has severedevelopmental defects that are EIN2dependent. The Plant Cell,2003,(15):2032-2041.
    Hamilton A., Lycett G. and Grierson D. Antisense gene that inhibits synthesis of the hormoneethylene in transgenic plants. Nature,1990,(346):284-287.
    Hamilton A., Bouzayen M. and Grierson D. Identification of a tomato gene for theethylene-forming enzyme by expression in yeast. Proceedings of the NationalAcademy of Sciences,1991,(88):7434-7437.
    Hao D., Ohme-Takagi M. and Sarai A. Unique mode of GCC box recognition by theDNA-binding domain of ethylene-responsive element-binding factor (ERF domain) inplant. Journal of Biological Chemistry,1998,(273):26857-26861.
    Henzi M. X., McNeil D. L., Christey M. C. and Lill R. E. A tomato antisense1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethyleneproduction in transgenic broccoli. Functional Plant Biology,1999,(26):179-183.
    Hirayama T., Kieber J. J., Hirayama N., Kogan M., Guzman P., Nourizadeh S., Alonso J. M.,Dailey W. P., Dancis A. and Ecker J. R. RESPONSIVE-TO-ANTAGONIST1, aMenkes/Wilsondisease related copper transporter, is required for ethylene signaling inArabidopsis. Cell,1999,(97):383-393.
    Hiwasa K., Kinugasa Y., Amano S., Hashimoto A., Nakano R., Inaba A. and Kubo Y. Ethyleneis required for both the initiation and progression of softening in pear (Pyruscommunis L.) fruit. Journal of Experimental Botany,2003,(54):771-779.
    Hiwasa K., Nakano R., Hashimoto A., Matsuzaki M., Murayama H., Inaba A. and Kubo Y.European, Chinese and Japanese pear fruits exhibit differential softeningcharacteristics during ripening. Journal of Experimental Botany,2004,(55):2281-2290.
    Hobson G. The firmness of tomato fruit in relation to polygalacturonase activity. The Journalof Horticultural Science&Biotechnology,1965,(40):66-72.
    Holdsworth M. J., Bird C., Ray J., Schuch W. and Grierson D. Structure and expression of anethylene-related mRNA from tomato. Nucleic Acids Research,1987,(15):731-739
    Hong S. B. and Tucker M. Molecular characterization of a tomato polygalacturonase geneabundantly expressed in the upper third of pistils from opened and unopened flowers.Plant Cell Reports,2000,(19):680-683.
    Hua J., Sakai H., Nourizadeh S., Chen Q. G., Bleecker A. B., Ecker J. R. and Meyerowitz E.M. EIN4and ERS2are members of the putative ethylene receptor gene family inArabidopsis. The Plant Cell,1998,(10):1321-1332.
    Huang S., Sawaki T., Takahashi A., Mizuno S., Takezawa K., Matsumura A., Yokotsuka M.,Hirasawa Y., Sonoda M., Nakagawa H. and Sato T. Melon EIN3-like transcriptionfactors (CmEIL1and CmEIL2) are positive regulators of an ethylene-andripening-induced1-aminocyclopropane-1-carboxylic acid oxidase gene (CM-ACO1).Plant Science,2010,(178):251-257.
    Huang Y., Li H., Hutchison C. E., Laskey J. and Kieber J. J. Biochemical and functionalanalysis of CTR1, a protein kinase that negatively regulates ethylene signaling inArabidopsis. The Plant Journal,2003,(33):221-233.
    Hyodo H., Hashimoto C., Morozumi S., Hu W. and Tanaka K. Characterization and inductionof the activity of1-aminocyclopropane-1-carboxylate oxidase in the woundedmesocarp tissue of Cucurbita maxima. Plant and Cell Physiology,1993,(34):667-671.
    Jiang Y. and Fu J. Ethylene regulation of fruit ripening: Molecular aspects. Plant growthregulation,2000,(30):193-200.
    John-Karuppiah K.J. and Burns J. K. Expression of Ethylene Biosynthesis and SignalingGenes during Differential Abscission Responses of Sweet Orange Leaves and MatureFruit. Journal of the American Society for Horticultural Science,2010,(135):456-464.
    Kalaitzis P., Koehler S. M. and Tucker M. L. Cloning of a tomato polygalacturonaseexpressed in abscission. Plant Molecular Biology,1995,(28):647-656.
    Katoh H. and Esashi Y. Dormancy and impotency of cocklebur seeds CO2, C2H4,O2and hightemperature. Plant and Cell Physiology,1975,(16):687-696.
    Katz E., Lagunes P. M., Riov J., Weiss D. and Goldschmidt E. E. Molecular and physiologicalevidence suggests the existence of a systemII-like pathway of ethylene production innon-climacteric Citrus fruit. Planta,2004,(219):243-252.
    Kende H. Ethylene biosynthesis. Annual Review of Plant Biology,1993,(44):283-307.
    Kendrick M. D. and Chang C. Ethylene signaling: new levels of complexity and regulation.Current Opinion in Plant Biology,2008,(11):479-485.
    Ketring D. and Morgan P. Physiology of Oil Seeds IV. Role of Endogenous Ethylene andInhibitory Regulators during Natural and Induced Afterripening of DormantVirginia-type Peanut Seeds. Plant Physiology,1972,(50):382-387.
    Kieber J. J., Rothenberg M., Roman G., Feldmann K. A. and Ecker J. R. CTR1, a negativeregulator of the ethylene response pathway in Arabidopsis, encodes a member of theRaf family of protein kinases. Cell,1993,(72):427-441.
    Kim B.G., Lee Y., Hur H.G., Lim Y. and Ahn J.-H. Flavonoid3′-O-methyltransferase from rice:cDNA cloning, characterization and functional expression. Phytochemistry,2006,(67):387-394.
    Kim C. Y., Liu Y., Thorne E. T., Yang H., Fukushige H., Gassmann W., Hildebrand D., SharpR. E. and Zhang S. Activation of a stress-responsive mitogen-activated protein kinasecascade induces the biosynthesis of ethylene in plants. The Plant Cell,2003,(15):2707-2718.
    Klee H. and Tieman D. The tomato ethylene receptor gene family: form and function.Physiologia Plantarum,2002,(115):336-341.
    Klee H. J. Control of ethylene-mediated processes in tomato at the level of receptors. Journalof Experimental Botany,2002,(53):2057-2063.
    Knoester M., Van Loon L. C., Van Den Heuvel J., Hennig J., Bol J. F. and Linthorst H. J.Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi.Proceedings of the National Academy of Sciences,1998,(95):1933-1937.
    Krammes J. G., Megguer C. A., Argenta L. C., Amarante C. V. T. d. and Grossi D. Uso do1-metilciclopropeno para retardar a matura o de tomate. Hortic. bras,2003,(21):611-614.
    Kubo Y., Hiwasa K., Owino W. O., Nakano R. and Inaba A. Influence of time andconcentration of1-MCP application on the shelf life of pear 'La France' fruitHortScience,2003,(38):1414-1416.
    Lanahan M. B., Yen H. C., Giovannoni J. J. and Klee H. J. The never ripe mutation blocksethylene perception in tomato. The Plant Cell,1994,(6):521-530.
    Lashbrook C. C., Giovannoni J. J., Hall B. D., Fischer R. L. and Bennett A. B. Transgenicanalysis of tomato endo-β-1-4-glucanase gene function. Role of cel1in floralabscission. The Plant Journal,1998a,(13):303-310.
    Lashbrook C. C., Tieman D. M. and Klee H. J. Differential regulation of the tomato ETR genefamily throughout plant development. The Plant Journal,1998b,(15):243-252.
    Lasserre E., Godard F., Bouquin T., Hernandez J., Pech J. C., Roby D. and Balague C.Differential activation of two ACC oxidase gene promoters from melon during plantdevelopment and in response to pathogen attack. Molecular and General GeneticsMGG,1997,(256):211-222.
    Leclercq J., Adams-Phillips L. C., Zegzouti H., Jones B., Latché A., Giovannoni J. J., Pech J.C. and Bouzayen M. LeCTR1, a tomato CTR1-like gene, demonstrates ethylenesignaling ability in Arabidopsis and novel expression patterns in tomato. PlantPhysiology,2002,(130):1132-1142.
    Lee S., Ross G. and Gardner R. An apple (Malus domestica L. Borkh cv Granny Smith)homologue of the ethylene receptor gene ETR1(Accession No. AF032448). PlantPhysiology,1998,(117):1126.
    Lelièvre J. M., Latche A., Jones B., Bouzayen M. and Pech J. C. Ethylene and fruit ripening.Physiologia Plantarum,1997,(101):727-739.
    Li C., Zhong G., Goren R., Jacob-Wilk D. and Holland D. Cloning of a full-length cDNAencoding an ethylene receptor ERS homologue from Citrus. First International CitrusBiotechnology Symposium535(1998),119-126.
    Li H., Xu T., QI M. F., Lü S. S. and LI T. L. The Regulation Role of Calcium on EthyleneReceptor Genes Expression during Ethylene Induced Tomato Pedicel Abscission.Journal of Shenyang Agricultural University,2011,(4):411-416.
    Li J. and Yuan R. NAA and ethylene regulate expression of genes related to ethylenebiosynthesis, perception, and cell wall degradation during fruit abscission and ripeningin 'Delicious' apples. Journal of Plant Growth Regulation,2008,(27):283-295.
    Li J., Zhu H. and Yuan R. Profiling the Expression of Genes Related to Ethylene Biosynthesis,Ethylene Perception, and Cell Wall Degradation during Fruit Abscission and FruitRipening in Apple. Journal of the American Society for Horticultural Science,2010,(135):391-401.
    Li Y., Zhu B., Xu W., Zhu H., Chen A., Xie Y., Shao Y. and Luo Y. LeERF1positivelymodulated ethylene triple response on etiolated seedling, plant development and fruitripening and softening in tomato. Plant Cell Reports,2007,(26):1999-2008.
    Liang X., Abel S. and Keller J. A. The1-aminocyclopropane-1-carboxylate synthase genefamily of Arabidopsis thaliana. Proceedings of the National Academy of Sciences,1992,(89):11046-11050.
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K.Two transcription factors, DREB1and DREB2, with an EREBP/AP2DNA bindingdomain separate two cellular signal transduction pathways in drought-andlow-temperature-responsive gene expression, respectively, in Arabidopsis. The PlantCell,1998,(10):1391-1406.
    Liu X., Shiomi S., Nakatsuka A., Kubo Y., Nakamura R. and Inaba A. Characterization ofethylene biosynthesis associated with ripening in banana fruit. Plant Physiology,1999,(121):1257-1265.
    Liu Y. G. and Chen Y. High-effciency thermal asymmetric interlaced PCR for amplification ofunknown flanking sequences. Bio Techniques,2007,(43):649-656.
    Llop-Tous M. I., Barry C. S. and Grierson D. Regulation of rthylene biosynthesis in responseto pollination in tomato flowers. Plant Physiology,2000,(123).
    Lohani S., Trivedi P. K. and Nath P. Changes in activities of cell wall hydrolases duringethylene-induced ripening in banana: effect of1-MCP, ABA and IAA. PostharvestBiology and Technology,2004,(31):119-126.
    Lynch J. and Brown K. M. Ethylene and plant responses to nutritional stress. PhysiologiaPlantarum,1997,(100):613-619.
    Marangoni A., Palma T. and Stanley D. Membrane effects in postharvest physiology.Postharvest Biology and Technology,1996,(7):193-217.
    Marin A. B., Colonna A. E., Kudo K., Kupferman E. M. and Mattheis J. P. Measuringconsumer response to ‘Gala’apples treated with1-methylcyclopropene (1-MCP).Postharvest Biology and Technology,2009,(51):73-79.
    Martínez P. G., Gómez R. L. and Gómez-Lim M. A. Identification of an ETR1-homologuefrom mango fruit expressing during fruit ripening and wounding. Journal of PlantPhysiology,2001,(158):101-108.
    Mattheis J. P., Fan X. and Argenta L. C. Interactive responses of Gala apple fruit volatileproduction to controlled atmosphere storage and chemical inhibition of ethylene action.Journal of Agricultural and Food Chemistry,2005,(53):4510-4516.
    Mbéguié-A-Mbéguié D., Hubert O., Fils-Lycaon B., Chillet M. and Baurens F. C. EIN3-likegene expression during fruit ripening of Cavendish banana (Musa acuminata cv.Grande naine). Physiologia Plantarum,2008,(133):435-448.
    McManus M. T. Further Examination of Abscission Zone Cells as Ethylene Target Cells inHigher Plants. Annals of Botany,2008,(101):285-292.
    Mita S., Kawamura S., Yamawaki K., Nakamura K. and Hyodo H. Differential expression ofgenes involved in the biosynthesis and perception of ethylene during ripening ofpassion fruit (Passiflora edulis Sims). Plant and Cell Physiology,1998,(39):1209-1217.
    Mita S., Kawamura S. and Asai T. Regulation of the expression of a putative ethylene receptor,PeERS2, during the development of passion fruit (Passiflora edulis). PhysiologiaPlantarum,2002,(114):271-280.
    Morgan P. W., He C. J. and Drew M. C. Intact leaves exhibit a climacteric-like rise in ethyleneproduction before abscission. Plant Physiology,1992,(100):1587-1590.
    Nakajima N., Mori H., Yamazaki K. i. and Imaseki H. Molecular cloning and sequence of acomplementary DNA encoding1-aminocyclopropane-l-carboxylate synthase inducedby tissue wounding. Plant and Cell Physiology,1990,(31):1021-1029.
    Nijenhuis-de Vries M., Faivre M., Ruys G., Somhorst D., Philosoph-Hadas S., Woltering E.,Friedman H. and Balk P. Regulation and Role of Differential Ethylene Biosynthesis inGravistimulated Antirrhinum majus L. Cut Flower Stems. VIII InternationalSymposium on Postharvest Physiology of Ornamental Plants669(2003),213-218.
    O'Donnell P. J., Calvert C., Atzorn R., Wasternack C., Leyser H. M. O. and Bowles D. J.Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science,1996,(274):1914-1917.
    Oeller P. W., Lu M. W., Taylor L. P., Pike D. A. and Theologis A. Reversible inhibition oftomato fruit senescence by antisense RNA. Science,1991,(254):437-439.
    Ogawa M., Kay P., Wilson S. and Swain S. M. ARABIDOPSIS DEHISCENCE ZONEPOLYGALACTURONASE1(ADPG1), ADPG2, and QUARTET2are Polygala-cturonases required for cell separation during reproductive development inArabidopsis. The Plant Cell,2009,(21):216-233.
    Ohme-Takagi M. and Shinshi H. Ethylene-inducible DNA binding proteins that interact withan ethylene-responsive element. The Plant Cell,1995,(7):173-182.
    Okamuro J. K., Caster B., Villarroel R., Van Montagu M. and Jofuku K. D. The AP2domainof APETALA2defines a large new family of DNA binding proteins in Arabidopsis.Proceedings of the National Academy of Sciences,1997,(94):7076-7081.
    Opiyo A. M. and Ying T. J. The effects of1-methylcyclopropene treatment on the shelf lifeand quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruit.International Journal of Food Science&Technology,2005,(40):665-673.
    Ouaked F., Rozhon W., Lecourieux D. and Hirt H. A MAPK pathway mediates ethylenesignaling in plants. The EMBO Journal,2003,(22):1282-1288.
    Paksasorn A., Hayasaka T., Matsui H., Ohara H. and Hirata N. Relationship of polyaminecontent to ACC content and ethylene evolution in Japanese apricot fruit. Journal of theJapanese Society for Horticultural Science,1995,(63):761-766.
    Park J. M., Park C. J., Lee S. B., Ham B. K., Shin R. and Paek K. H. Overexpression of thetobacco Tsi1gene encoding an EREBP/AP2-type transcription factor enhancesresistance against pathogen attack and osmotic stress in tobacco. The Plant Cell,2001,(13):1035-1046.
    Peace C. P., Crisosto C. H. and Gradziel T. M. Endopolygalacturonase: a Candidate Gene forFreestone and Melting Fleshin Peach. Molecular Breeding,2005,(16):21-31.
    Pech J.C., Bouzayen M. and Latché A. Climacteric fruit ripening: ethylene-dependent andindependent regulation of ripening pathways in melon fruit. Plant Science,2008,(175):114-120.
    Pelayo C., Vilas-Boas E., Benichou M. and Kader A. Variability in responses of partially ripebananas to1-methylcyclopropene. Postharvest Biology and Technology,2003,(28):75-85.
    Potuschak T., Lechner E., Parmentier Y., Yanagisawa S., Grava S., Koncz C. and Genschik P.EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by TwoArabidopsis F Box Proteins-EBF1and EBF2. Cell,2003,(115):679-690.
    Purvis A. C. and Barmore C. R. Involvement of ethylene in chlorophyll degradation in peel ofcitrus fruits. Plant Physiology,1981,(68):854-856.
    Qiao H., Chang K. N., Yazaki J. and Ecker J. R. Interplay between ethylene, ETP1/ETP2F-box proteins, and degradation of EIN2triggers ethylene responses in Arabidopsis.Genes&Development,2009,(23):512-521.
    Quesada M. A., Blanco-Portales R., Posé S., García-Gago J. A., Jiménez-Bermúdez S.,Mu oz-Serrano A., Caballero J. L., Pliego-Alfaro F., Mercado J. A. and Mu oz-Blanco J. Antisense down-regulation of the FaPG1gene reveals an unexpected centralrole for polygalacturonase in strawberry fruit softening. Plant Physiology,2009,(150):1022-1032.
    Rasori A., Ruperti B., Bonghi C., Tonutti P. and Ramina A. Characterization of two putativeethylene recep tor genes exp ressed during peach fruit development and abscission.Journal of Experimental Botany,2002,(53):2333-2339.
    Riechmann J., Heard J., Martin G., Reuber L., Keddie J., Adam L., Pineda O., Ratcliffe O.,Samaha R. and Creelman R. Arabidopsis transcription factors: genome-widecomparative analysis among eukaryotes. Science,2000,(290):2105-2110.
    Rieu I., Mariani C. and Weterings K. Expression analysis of five tobacco EIN3familymembers in relation to tissue-specific ethylene responses. Journal of ExperimentalBotany,2003,(54):2239-2244.
    Roberts J. A., Elliott K. A. and Gonzalez-Carranza Z. H. Abscission, dehiscence, and othercell separation processes. Annual Review of Plant Biology,2002,(53):131-158.
    Rodríguez-Navarro A. and Rubio F. High-affinity potassium and sodium transport systems inplants. Journal of Experimental Botany,2006,(57):1149-1160.
    Roman G. and Ecker J. R. Genetic analysis of a seedling stress response to ethylene inArabidopsis. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,1995,(350):75-81.
    Rombaldi C., Silva J., Wally L., Lucchetta L., Marini L. and Zanuzo M. Characterization oftransgenic melons expressing an apple ACC oxidase antisense gene. Nato ScienceSeries Sub Series I Life and Behavioural Sciences,2003,(349):380-384.
    Sakai H., Hua J., Chen Q. G., Chang C., Medrano L. J., Bleecker A. B. and Meyerowitz E. M.ETR2is an ETR1-like gene involved in ethylene signaling in Arabidopsis.Proceedings of the National Academy of Sciences,1998,(95):5812-5817.
    Sato-Nara K., Yuhashi K. I., Higashi K., Hosoya K., Kubota M. and Ezura H. Stage-andtissue-specific expression of ethylene receptor homolog genes during fruitdevelopment in muskmelon. Plant Physiology,1999,(120):321-330.
    Serek M., Tamari G., Sisler E. and Borochov A. Inhibition of ethylene-induced cellularsenescence symptoms by1-methylcyclopropene, a new inhibitor of ethylene action.Physiologia Plantarum,1995,(94):229-232.
    Sitrit Y. and Bennett A. B. Regulation of tomato fruit polygalacturonase mRNA accumulationby ethylene: a re-examination. Plant Physiology,1998,(116):1145-1150.
    Smith C., Watson C., Ray J., Bird C., Morris P., Schuch W. and Grierson D. Antisense RNAinhibition of polygalacturonase gene expression in transgenic tomatoes. Nature,1988,(334):724-726.
    Smith C. J. S., Watson C. F., Morris P. C., Bird C. R., Seymour G. B., Gray J. E., Arnold C.,Tucker G. A., Schuch W. and Harding S. Inheritance and effect on ripening ofantisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology,1990,(14):369-379.
    Smith D. L., Starrett D. A. and Gross K. C. A Gene Coding for Tomato Fruit β-GalactosidaseII Is Expressed during Fruit Ripening Cloning, Characterization, and ExpressionPattern. Plant Physiology,1998,(117):417-423.
    Solano R., Stepanova A., Chao Q. and Ecker J. R. Nuclear events in ethylene signaling: atranscriptional cascade mediated by ETHYLENE-INSENSITIVE3and ETHYLENE-RESPONSE-FACTOR1. Genes&Development,1998,(12):3703-3714.
    Song S., Qi T., Huang H., Ren Q., Wu D., Chang C., Peng W., Liu Y., Peng J. and Xie D. TheJasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factorsMYB21and MYB24to affect jasmonate-regulated stamen development inArabidopsis. The Plant Cell,2011,(23):1000-1013.
    Stepanova A. N. and Ecker J. R. Ethylene signaling: from mutants to molecules. CurrentOpinion in Plant Biology,2000,(3):353-360.
    Stockinger E. J., Gilmour S. J. and Thomashow M. F. Arabidopsis thaliana CBF1encodes anAP2domain-containing transcriptional activator that binds to the C-repeat/DRE, acis-acting DNA regulatory element that stimulates transcription in response to lowtemperature and water deficit. Proceedings of the National Academy of Sciences,1997,(94):1035-1040.
    Suttle J. C. Involvement of ethylene in potato microtuber dormancy. Plant Physiology,1998,(118):843-848.
    Tacken E., Ireland H., Gunaseelan K., Karunairetnam S., Wang D., Schultz K., Bowen J.,Atkinson R. G., Johnston J. W., Putterill J., Hellens R. P. and Schaffer R. J. The role ofethylene and cold temperature in the regulation of the applePOLYGALACTURONASE1gene and fruit softening. Plant Physiology,2010,(153):294-305.
    Tacken E. J., Ireland H., Wang Y. Y., Putterill J. and Schaffer R. J. Apple EIN3BINDINGF-box1(EBF1) inhibits the activity of three apple EIN3-like transcription factors.AoB Plants,2012,(2012): pls034.
    Tieman D. M. and Handa A. K. Reduction in pectin methylesterase activity modifies tissueintegrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits.Plant Physiology,1994,(106):429-436.
    Tieman D. M. and Klee H. J. Differential expression of two novel members of the tomatoethylene-receptor family. Plant Physiology,1999,(120):165-172.
    Tieman D. M., Ciardi J. A., Taylor M. G. and Klee H. J. Members of the tomato LeEIL(EIN3-like) gene family are functionally redundant and regulate ethylene responsesthroughout plant development. The Plant Journal,2001,(26):47-58.
    Tournier B., Sanchez-Ballesta M. T., Jones B., Pesquet E., Regad F., Latché A., Pech J. C. andBouzayen M. New members of the tomato ERF family show specific expressionpattern and diverse DNA-binding capacity to the GCC box element. FEBS letters,2003,(550):149-154.
    Trainotti L., Zanin D. and Casadoro G. A cell wall-oriented genomic approach reveals a newand unexpected complexity of the softening in peaches. Journal of ExperimentalBotany,2003,(54):1821-1832.
    Trainotti L., Pavanello A. and Casadoro G. Different ethylene receptors show an increasedexpression during the ripening of strawberries: Does such an increment imply a rolefor ethylene in the ripening of these non-climacteric fruits? Journal of ExperimentalBotany,2005,(56):2037-2046.
    Trinchero G. D., Sozzi G. O., Covatta F. and Fraschina A. A. Inhibition of ethylene action by1-methylcyclopropene extends postharvest life of “Bartlett” pears. PostharvestBiology and Technology,2004,(32):193-204.
    Tucker M. L., Sexton R., del Campillo E. and Lewis L. N. Bean abscission cellulasecharacterization of a cDNA clone and regulation of gene expression by ethylene andauxin. Plant Physiology,1988,(88):1257-1262.
    Van Doorn and Wouter G. Effect of ethylene on flower abscission: a survey. Annals of Botany,2002,(89):689-693.
    Van Zhong G. and Burns J. K. Profiling ethylene-regulated gene expression in Arabidopsisthaliana by microarray analysis. Plant Molecular Biology,2003,(53):117-131.
    Veau E., Gross K. C., Huber D. J. and Watada A. E. Degradation and solubilization of pectinby β-galactosidases purified from avocado mesocarp. Physiologia Plantarum,1993,(87):279-285.
    Wang A., Tan D., Takahashi A., Zhong Li T. and Harada T. MdERFs, two ethylene-responsefactors involved in apple fruit ripening. Journal of Experimental Botany,2007,(58):3743-3748.
    Wang A., Tan D., Tatsuki M., Kasai A., Li T., Saito H. and Harada T. Molecular mechanism ofdistinct ripening profiles in ‘Fuji’ apple fruit and its early maturing sports. PostharvestBiology and Technology,2009a,(52):38-43.
    Wang A., Yamakake J., Kudo H., Wakasa Y., Hatsuyama Y., Igarashi M., Kasai A., Li T. andHarada T. Null mutation of the MdACS3gene, coding for a ripening-specific1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit.Plant Physiology,2009b,(151):391-399.
    Wang W., Hall A. E., O'Malley R. and Bleecker A. B. Canonical histidine kinase activity ofthe transmitter domain of the ETR1ethylene receptor from Arabidopsis is not requiredfor signal transmission. Proceedings of the National Academy of Sciences,2003,(100):352-357.
    Wang X., Liu D., Li A., Sun X., Zhang R., Wu L., Liang Y. and Mao L. Transcriptomeanalysis of tomato flower pedicel tissues reveals abscission zone-specific modulationof key meristem activity genes. PLoS One,2013,(8): e55238.
    Wang Z.Y., MacRae E., Wright M., Bolitho K., Ross G. and Atkinson R. Polygalacturonasegene expression in kiwifruit: relationship to fruit softening and ethylene production.Plant Molecular Biology,2000,(42):317-328.
    Watkins C. B. The use of1-methylcyclopropene (1-MCP) on fruits and vegetables.Biotechnology Advances,2006,(24):389-409.
    Wei J., Ma F., Shi S., Qi X., Zhu X. and Yuan J. Changes and postharvest regulation ofactivity and gene expression of enzymes related to cell wall degradation in ripeningapple fruit. Postharvest Biology and Technology,2010,(56):147-154.
    Wilkinson J. Q., Lanahan M. B., Yen H. C., Giovannoni J. J. and Klee H. J. Anethylene-inducible component of signal transduction encoded by Never-ripe. Science,1995,(270):1807-1809.
    Wills R. B. H. and Ku V. V. V. Use of1-MCP to extend the time to ripen of green tomatoesand postharvest life of ripe tomatoes. Postharvest Biology and Technology,2002,(26):85-90.
    Woltering E. J. Effects of ethylene on ornamental pot plants: a classification. ScientiaHorticulturae,1987,(31):283-294.
    Woltering E. J. and Van Doorn W. G. Role of ethylene in senescence of petals-morphologicaland taxonomical relationships. Journal of Experimental Botany,1988,(39):1605-1616.
    Wong W. S., Ning W., Xu P. L., Kung S. D., Yang S. F. and Li N. Identification of twochilling-regulated1-aminocyclopropane-1-carboxylate synthase genes from citrus(Citrus sinensis Osbeck) fruit. Plant Molecular Biology,1999,(41):587-600.
    Xie X.B., Li S., Zhang R.F., Zhao J., Chen Y.C., Zhao Q., Yao Y. X., You C. X., Zhang X. S.and Hao Y. J. The bHLH transcription factor MdbHLH3promotes anthocyaninaccumulation and fruit colouration in response to low temperature in apples. Plant,Cell&Environment,2012,(35):1884-1897.
    Xue Y., Kubo Y., Inaba A. and Nakamura R. Effects of humidity on ripening and texture inbanana fruit. Journal of the Japanese Society for Horticultural Science,1995,(64):657-664.
    Yamasaki S., Fujii N. and Takahashi H. The ethylene-regulated expression of CS-ETR2andCS-ERS genes in cucumber plants and their possible involvement with sex expressionin flowers. Plant and Cell Physiology,2000,(41):608-616.
    Yang S. F. and Hoffman N. E. Ethylene biosynthesis and its regulation in higher plants.Annual Review of Plant Physiology,1984,(35):155-189.
    Yang Y., Wu Y., Pirrello J., Regad F., Bouzayen M., Deng W. and Li Z. Silencing Sl-EBF1andSl-EBF2expression causes constitutive ethylene response phenotype, acceleratedplant senescence, and fruit ripening in tomato. Journal of Experimental Botany,2010,(61):697-708.
    Yang Z., Tian L., Latoszek-Green M., Brown D. and Wu K. Arabidopsis ERF4is atranscriptional repressor capable of modulating ethylene and abscisic acid responses.Plant Molecular Biology,2005,(58):585-596.
    Yin X. R., Allan A. C., Chen K. S. and Ferguson I. B. Kiwifruit EIL and ERF genes involvedin regulating fruit ripening. Plant Physiology,2010,(153):1280-1292.
    Yokotani N., Tamura S., Nakano R., Inaba A. and Kubo Y. Characterization of a novel tomatoEIN3-like gene (LeEIL4). Journal of Experimental Botany,2003,(54):2775-2776.
    Yu X. M., Griffith M. and Wiseman S. B. Ethylene induces antifreeze activity in winter ryeleaves. Plant Physiology,2001,(126):1232-1240.
    Yu Y. B., Adams D. O. and Yang S. F.1-Aminocyclopropanecarboxylate synthase, a keyenzyme in ethylene biosynthesis. Archives of Biochemistry and Biophysics,1979,(198):280-286.
    Yuan R. and Carbaugh D. H. Effects of NAA, AVG, and1-MCP on ethylene biosynthesis,preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’and ‘GoldenDelicious’ apples. HortScience,2007,(42):101-105.
    Zarembinski T. and Theologis A. Ethylene biosynthesis and action: a case of conservation.Plant Molecular Biology,1994,(26):1579-1597.
    Zhang Z., Zhang H., Quan R., Wang X. C. and Huang R. Transcriptional regulation of theethylene response factor LeERF2in the expression of ethylene biosynthesis genescontrols ethylene production in tomato and tobacco. Plant Physiology,2009,(150):365-377.
    Zhang Z. and Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressingtranscription factor TERF2/LeERF2is modulated by ethylene biosynthesis. PlantMolecular Biology,2010,(73):241-249.
    Zhou D., Kalaitzis P., Mattoo A. K. and Tucker M. L. The mRNA for an ETR1homologue intomato is constitutively expressed in vegetative and reproductive tissues. PlantMolecular Biology,1996,(30):1331-1338.
    Zhou J., Tang X. and Martin G. B. The Pto kinase conferring resistance to tomato bacterialspeck disease interacts with proteins that bind a cis-element of pathogenesis-relatedgenes. The EMBO Journal,1997,(16):3207-3218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700