用户名: 密码: 验证码:
含准轮烷滤膜的抗污染及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水处理技术中的膜分离技术普遍存在膜的成本相对较高,易发生污染等问题,这直接影响膜分离过程的效率和经济性。本文针对以上两点问题,开发了低成本,抗污染功能复合膜。在价格低廉的工业滤布支撑基体上经浸渍,涂敷处理制备了耐污染复合膜,并对其结构与性能进行了研究。实验证明,该复合膜是一种亲水性强,抗污染性能优越而且成本较低的新型复合膜。同时,该复合膜在吸附去除水体中有机微污染物方面也具有较好的应用前景。
     (1)采用浸渍涂敷法制备了含环糊精聚合物—准轮烷(Ployrotaxane,PR)/准轮烷、二氧化钛(TiO_2)的聚乙烯醇(Polyvinyl alcohol,PVA)复合膜。过滤人工模拟微污染水体的实验结果表明:铸膜液能与涤纶基膜很好的结合形成具有稳定结构的复合膜,且复合膜在过滤实验中表现出较大的水通量,较好的截留性能和抗污染性能。PR(2%)-PVA(5%)和PR(2%)-PVA(10%)-TiO_2配比的复合膜与其它同类型复合膜相比,具有较好的截留效果以及最低的不可逆膜污染阻力,过滤性质最好。
     (2)在有机微污染物吸附实验中,PR(2%)-PVA(5%)和PR(2%)-PVA(10%)-TiO_2的复合膜都表现出了最佳的吸附效果。当PR含量为2%,PVA含量为5%时,2 h内直径6 cm复合膜对200 mL低浓度(11 mg/L)甲苯溶液的吸附去除量可达1.4 mg,而增加了TiO_2的复合膜的甲苯吸附量达1.3 mg。这表明该复合膜具有理想的吸附去除污染物的能力,这对利用复合膜净化有机微污染水源及对污染物的后续处理具有重要的意义。
     (3)在PR-PVA-TiO_2膜的吸附再生实验中,饱和后的复合膜在经过紫外光照射后仍具有吸附水中微量甲苯的能力。其中PR(1%)-PVA(10%)-TiO_2的再生膜可在2 h内吸附0.9 mg的甲苯,去除率近70%,且吸附效果较再生前有大幅提高,去除率增加35%。
     研究发现PR对改善膜的过滤性具有积极的作用,而PR的特殊结构也使得它在吸附有机小分子方面突出于其它改性材料,TiO_2的加入为膜的再生和重复使用提供了理论上的平台。在此研究基础上可以认为,所制复合膜的应用前景较为广泛。
The problems existed widely in membrane separation are the high cost of membrane and membrane fouling, which directly affect the efficiency and economics of membrane separation. For solving these problems, anti-fouling membranes with lower cost were prepared. The composite membranes were prepared by coating a layer of casting solution on the cheap industrial fabric. The structures and characteristics of membranes were studied. The results proved that the membrane was hydrophilic, antifouling and low-cost and they processed a high property of adsorption.
     (1) The composite membranes were prepared by dip-coating method using casting solution consisted of Polyrotaxane (PR)/Polyrotaxane, TiO_2 and Polyvinyl alcohol (PVA). After filtrating simulated wastewater, the results showed that the membranes had a good compatibility, reasonable flux, good rejection and better antifouling. Compared PR(2%)-PVA(5%) or PR(2%)-PVA(10%)-TiO_2 membrane with other membranes, it had the lowest fouling resistance and better rejection ability.
     (2) During the toluene adsorption experiment, PR(2%)-PVA(5%) and PR(2%)-PVA(10%) -TiO_2 membranes showed a potentially high capacity of adsorption towards micro-pollutants such as toluene. And the best result indicated that the membranes of 6 cm diameter could adsorb 1.4 mg (PR(2%)-PVA(5%)) and 1.3 mg (PR(2%)-PVA(10%)-TiO_2) toluene(11mg/L) after 2 h immersion in 200 mL solution. This is of significance to the purification of micro-polluted water and disposal of adsorptive production.
     (3) The experiments of PR-PVA-TiO_2 membranes regenerating showed that the membranes could be reused after ultraviolet radiating. PR(1%)-PVA(10%)-TiO_2 regenerated membrane could adsorb 0.9 mg toluene, nearly 70% removal efficiency and the removal efficiency highly improved about 35% after regenerating.
     It was found that PR could significantly improve the hydrophilicity and special adsorptive ability of the membranes because of its moleculer structure. And it was possible to use TiO_2 for membrane regenerating. Based on these results, the application of the composite membranes is wide.
引文
[1]唐玉斌.水污染控制工程.哈尔滨:哈尔滨工业大学出版社,2006:4.
    [2]高光智,陈辅利,刘冰.雨水涵养利用与初雨净化的研究.大连水产学院院报,2007,22(3):207-211.
    [3]李圭白,杨艳玲.第三代城市饮用水净化工艺--超滤为核心技术的组合工艺.给水排水,2007,33(4):1.
    [4]汪恂,宛海燕.微污染水源水处理技术的现状与发展.山西建筑,2008,34(32):20-21.
    [5]高廷耀,顾国维.水污染控制工程.北京:高等教育出版社,1999:6-9.
    [6]赵广胜,李清清,崔建平.一种水体修复设施--拼接组合式水生植物浮岛.园林绿化,2008,(10):46-47.
    [7]张琪,胡锋平,马双群.水体修复技术的研究现状及其发展趋势.南昌高专学报,2007,(2):97-99.
    [8]刘青,袁观洁,林济东.浅析微生物净水新技术在流动水体修复中的应用.水环境治理,2008,(3):59-61.
    [9]刘青,袁观洁.微生物净水剂在流动水体修复中的应用.华中科技大学学报,2008,25(1):82-84.
    [10]田伟君.河流微污染水体的直接生物强化净化机理与试验研究:(博士学位论文).河海大学,2005.
    [11]刘晓明,杨翠英,宋吉勇.用活性炭为吸附剂处理含Cr(Ⅵ)电镀废水探讨.山东科技大学学报(自然科学版),2005,24(2):107-110.
    [12]彭光怀,张小联,胡珊玲等.聚环糊精对对硝基苯酚的吸附和脱附性能研究.昆明理工大学学报(理工版),2007,32(1):15-18.
    [13]刘昭明,王静,肖凯军.壳聚糖固载环糊精吸附剂的研究进展。食品科技,2007,(10):147-151.
    [14]Fujishima A,Honda K.Eletrochemical photolysis of water at semianducror Electrode.Nature,1972,238:37-38.
    [15]Cristian L,Juanita F.Optimized photodegradation of Reactive Blue 19 on TiO_2 and ZnO suspensions.Catalysis Today,2002,76:235-246.
    [16]Gerald B,Horst K.Photocatalytic and hotoelectrochemical properties of titania-chloroplatinate(Ⅳ).Coordination Chemistry Reviews,2002,230:41-47.
    [17]Li F B,Li X Z.The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst.Chemosphere,2002,48:1103-1111.
    [18]Istvan I,Andras D.Removal of 2-chlorophenol from water by adsorption combined with TiO_2photocatalysis.Applied Catalysis B:Environmental,2002,39:247-256.
    [19]Muhammad S V,Allen P D.TiO2-Assisted photocatalysis of Iead-EDTA.Water Research,2002,34(3):952-964.
    [20]余家国,赵修建.半导体多相光催化原理及其在环境保护中的应用.武汉工业大学学报(理工版),2000,22(4):12-15.
    [21]Prashant V K,Dan M.Nanoparticles in advanced oxidation processes.Current Opinion in Colloid &Interface Science,2002,7:282-287.
    [22]Hiromi Y,Masaru H.Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts.Journal of Photochemistry and Photobiology A:Chemistry,2002,148:257-261.
    [23]Raffaele M,Michelangelo B.Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water.Catalysis Today,2002,75:77-85.
    [24]Rouby Y,Garin D,Pelandakis M,et al.Evaluation of a tangential flow microfiltration concentration method for the detection of free-living amoebae in water.Water Research,2000,34(14):3630-3634.
    [25]施云海,许振良.微滤膜在超净高纯屯子化学试剂生产中的应用进展.化学世界增刊,2002,187-191.
    [26]Kleine J,Peinemann K V,Schuster C,et al.Multifunctional system for treatment of wastewaters from adhesive-producting industries:separation of solids and oxidation of dissolved pollutants using doted microfiltration membranes.Chemical Engineering Science,2002,57(9):1661-1664.
    [27]Megat M N,Megat J,Nagaoka H,et al.Treatment of high strength industrial wastewater using extended aeration=immersed microfiltration(EAM) process.Desalination,2002,149(1-3):179-183.
    [28]Fabiani C,Ruscio F,Spadoni M,et al.Chromium(Ⅲ) salts recovery process from tannery wastewaters.Desalination,1997,108(1-3):183-191.
    [29]Wasik E,Bohdziewica J,Blaszczyk M.Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane.Process Biochemistry,2001,37(14):57-64.
    [30]Sadr G S B,Madaeni S S,Fane A G,et al.Aspects of microfiltration and reverse osmosis in municipal wastewater reuse.Desalination,1996,106(1-3):25-29.
    [31]Wasik E,Bohdziewicz J,Blaszczk M.Removal of nitrate ions from natural water using a membrane bioreactor.Separation and Purification Technilogy,2001,22-23:383-392.
    [32]Sadr G S B,Beatson P J,Fane A J,et al.Bacterial passage through microfiltration membranes in wastewater applications.Journal of Membrane Science,1999,153(1):71-82.
    [33]Blanpain-Avet P,Doubrovine N,Lafforgue C,et al.The effect of oscillatory flow on crossflow microfiltration of beer in a tubular mineral membrane system-Membrane fouling resistance decrease and energetic considerations.Journal of Membrane Science,1999,152(2):151-174.
    [34]Gan Q.Beer clarification by cross-flow microfiltration-effect of surface hydrodynamics and reversed membrane morphology.Chemical Engineering and Processing,2001,40(5):413-419.
    [35]Gan Q,Howell J A,Field R W,et al.Beer clarification by microfiltration-product quality control and fractionation of particles and macromolecules.Journal of Membrane Science,2001,194(2):185-196.
    [36]张杰,褚良银,陈文梅.膜分离技术在废水处理中的应用.过滤与分离,2004,14(3):8-12.
    [37]张雅君,李卓.膜分离技术在污水处理及再生回用中的应用.北京建筑工程学院学报,2004,20(3):8-10.
    [38]Henrik W,Hans H,John H,et al.Reclamation and reuse of process water from reactive dyeing of cotton.Desalination,2000,130:177-183.
    [39]余跃,冯晖,吴沪宁等.纳滤膜处理印染废水的研究.化工时刊,2004,18(9):26-29.
    [40]宋来洲,李健.连续微滤膜系统应用与污水深度处理.水处理技术,2005,3l(4):74-79.
    [41]卞卫华.膜技术在电厂水处理中的应用.能源与环境,2005,(3):42-44.
    [42]鲁南,普红平.膜生物反应器废水处理新技术.昆明理工大学学报,2004,29(1):100-103.
    [43]Jeantet R,Maubois J L,Boyaval P.Semicontinuous Production of lactic in a bio-reactor coupled with nanofiltration membranes.Enzyme and Microbial Techology,1996,19(8):614-619.
    [42]李超,孟庆波.应用膜生物反应器处理焦化废水.工业水处理,2005,25(4):37-39.
    [43]张忠波,汪诚文,陈吕军等.膜生物反应器处理食品废水的工程应用.给水排水,2004,30(7):42-45.
    [44]王从厚,吴鸣.国外膜工业发展概况.膜科学与技术,2002,22(1):65-72.
    [45]汪洪生,陆雍森.国外膜材料及膜工艺进展.污染防治技术,1999,12(2):111-113.
    [46]王湛.膜分离技术基础.北京:化学工业出版社,2000:16-24.
    [47]刘茉娥.膜分离技术.北京:化学工业出版社.2001:123-134.
    [48]徐铜文.膜化学与技术教程.安徽:中国科学技术大学出版社.2003:59-68.
    [49]郭有智.中国膜工业发展战略研究.化工新型材料,2002,30(6):78-80.
    [50]翟莹雪.膜法水处理技术及研究进展.环境保护科学.2002,28(112):18-20,44.
    [51]王洪生,陆雍森.国外膜技术进展及其在水处理中的应用.膜科学与技术.1998,19(4):17-21.
    [52]Yang Q,Xu Z K,Dai Z,et al.Surface modification of polypropylene microporous membranes with a novel glycopolymer.Chemistry of Materials,2005,17:3050-3058.
    [53]郭有智.用微孔滤膜去肝复舒口服液中杂质的研究和设计.膜科学与技术.1994,14(3):63-65.
    [54]张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报,2005,25(2):249-253.
    [55]邓杰博.含TiO_2复合膜及其过滤性能研究:(硕士学位论文)。大连理工大学,2007.
    [56]Taniguchi M,Kilduff J E,Belfort G.Low fouling synthetic membranes by UV-assisted graft polymerization:monomer selection to mitigate fouling by natural organic matter.Journal of Membrane Science,2003,222:59-70.
    [57]Kaeselev B,Kingshott P,Jonsson G.Influence of the surface structure on the filtration performance of UV-modified PES membranes.Desalination,2002,146:156-161.
    [58]Pieracci J,Crivello JV,Belfort G.Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes.Journal of Membrane Science,2002,202:1-16.
    [59]Bequet S,Remigy J C,Rouch J C,et al.From ultrafiltration to nanofiltration hollow fiber membranes:a continuous UV-photografting process.Desalination,2002,144:9-14.
    [60]高以垣,叶凌碧。膜分离技术基础.北京:科学出版社,1989:115-122.
    [61]张国亮,陈益棠.膜技术在处理有机废水中的应用.水处理技术,2002,26(2):67-70.
    [62]Childress A E,Deshmukh S S.Effect of humic substances and anionic surfactant on the surface charge and Performance of reverse osmosis membrane.Desalination,1998,118:167-174.
    [63]Childress A E,Elimeleeh M.Effect of solution chemistry on the surface charge of Polymeric reverse osmosis and nonofiltration membrane.Journal of Membrane Science,1996,119:253-268.
    [64]徐又一,徐志康.高分子膜材料.北京:化学工业出版社,2005:17-19.
    [65]赵英.膜生物反应器中膜污染控制方法的研究:(博士学位论文).天津大学,2005.
    [66]潘见,李琳琳,杨毅.磁性PSf/CoFe_2O_4杂化超滤膜的研究.膜科学与技术,2008,28(5):11-15.
    [67]张浴晖,齐宏进.FC/ZnO杂化材科的制备及结构与性能.高分子材枓科学与工程,2008,24(10):47-50.
    [68]辛嘉英,崔俊儒,陈建波等.甲烷氧化菌吸附膜反应器中环氧丙烷的连续生物转化.生物工程学报,2002,17(1):89-93.
    [69]郑永杰,孙德智,赵新.高效有机吸附膜数学模型的建立及应用.哈尔滨工业大学学报,2006,38(11):1844-1846.
    [70]花海蓉.膜分离-光催化组合工艺的研究:(硕士学位论文).南京理工大学,2006.
    [71]黄齐林,环糊精的研究进展及其在中约中的应用,玉溪师范学院学报,2004,20(12):12-17.
    [72]Iwao S,Taku M,Anzai J.Superiority of secondary hydroxyl side modification in cyclodextrin complexation for highly hydrophilic adenine nucleotides.Journal of Supramolecular Chemistry,2001,(1):283-288.
    [73]Akira H.Construction of supramolecular structures from cyclodextrins and polymers.Carbohydrate Polymers,1997,34:183-188.
    [74]孔维红.甲基-β-环糊精接枝共聚物的合成,表征及性质研究:(硕士学位论文).山东大学,2006.
    [75]Massimo C,Pierandrea L N,Piero B.a-Cyclodextrin/Polyethylene Clycol Polyrotaxane:A Study of the Threading Process.Langmuir,1997,13:2436-2439.
    [76]Huang F H,Harry W.Gibson.Polypseudorotaxanes and polyrotaxanes.Progress in Polymer Science.2005,30:982-1018.
    [77]靖波,陈晓,柴永存.环糊精与大分子组装(准)聚轮烷.化学进展,2006,18(10):1361-1368.
    [78]卢昌盛,张越,孟庆金等.环糊精与聚合物的包合作用.无机化学学报,2000,16(6):853-861.
    [79]周志军,蔡朵锡,柳能军.含环糊精膜的制备与应用.化学进展,2007,19(9):1436-1442.
    [80]Tooru O,Noritomo K,Takahiro I,et al.Hydrogels having tubular a-cyclodextrin structure:effect of nano-tube structure on long alkyl chain partitions.Advanced Materials,2003,4:39-42.
    [81]李建新,华嘉,何翠翠等.核磁共振技术研究甲基-β-环糊精与水杨酸,苯的相互作用.分析化学,2007,35(7):988-992.
    [82]Takayuki H,Masahiko S,Masaya K,et al.Molecularly Imprinted Cyclodextrins as Selective Receptors for Steroids.Macromolecules,1999,32:2265-2269.
    [83]Takayuki H,Hiroyuki A,Makoto K.Spectroscopic Anatomy of Molecular-Imprinting of Cyclodextrin.Evidence for Preferential Formation of Ordered Cyclodextrin Assemblies.JACS,2002,124(4):570-575.
    [84]吴浩,李海涛,徐滿才.分子印迹球状β-环糊精聚合物的合成及性能研究.离子交换与吸附,2006,22(4):356-362.
    [85]Gregorio C.Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment.Progress In Polymer Science,2005,30:38-70.
    [86]朱凯强,魏宏亮,何吉宇等.自由基引发的可注射PLA-b-PEG-b-PLA大分子单体和a-CD超分子结构水凝胶的合成与表征.高等学校化学学报,2005,26(11):2160-2164.
    [87]Touil S,Tingry S,Palmeri J,et al.Preparation and characterization of a-cyclodextrin-containing membranes-application to the selective extraction of xylene isomers.Polymer,2005,46:9615-9625.
    [88]Ji H S,Yong S K,Jongok W.Poly(vinyl alcohol)- based polymer electrolyte membranes containing polyrotaxane.Membrane Science,2006,281:345-350.
    [89]方志平,姜忠义.聚环糊精填充PDMS滲透蒸发膜分离苯酚水溶液.化工学报,2006,57(4):843-848.
    [90]郝雅琼.基于桥联β-环糊精的分子识别及相关机理研究:(博士学位论文).吉林大学,2006.
    [91]袁超,金征宇,赵建伟等.羟丙基-β-环糊精分子识别能力研究.食品与生物技术学报,2007,26(5):25-30.
    [92]姚红.超分子体系识别作用的研究与应用-β-环糊精分子识别及冠醚衍生物离子识别:(硕士学位论文).西北师范大学,2005.
    [93]彭芳.纳米氧化钛/β-环糊精膜光电化学传感器的研究:(硕士学位论文).中南大学,2008.
    [94]Frank S N,Bard A J.Semiconductor Electrodes Photoassisted Oxidations and Photoelectrosythesis at Polycrystalline TiO_2 Electrodes.Journal of American Chemistry Society,1997,99:4667-4672.
    [95]Frank S N,Bard A J.Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO_2 Powder.Journal of American Chemistry Society,1977,99:303-310.
    [95]Frank S N,Bard A J.Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders.Journal of Physical Chemistry,1977,81:1484-1488.
    [96]方佑龄,赵文宽,尹少华等.纳米TiO_2在空心陶瓷微球上的固定化以及光催化分解辛烷.应用化学,1997,14(2):81-89.
    [97]方佑龄,赵文宽,赵国华等.用浸涂法制备漂浮负载型TiO_2薄膜光催化降解辛烷.环境化学,1997,16(5):413-417.
    [98]陈天虎,史晓莉,彭书传.凹凸棒石-TiO_2纳米复合材料制备和表征.硅酸盐通报,2005,(1):112-114.
    [99]刘秀兰,孙汗文,庞秀言等.铝片TiO_2薄膜在降解4BS染料中的应用.河北大学学报(自然科学版),2005,25(2):161-164.
    [100]仇雁翎,马俊华,赵建夫等.石英棒负载TiO_2光催化膜的制备,表征与降解性能.环境污染治理技术与设备,2005,6(1):36-39.
    [101]陈小泉,刘焕彬.陶瓷基纳米二氧化钛膜的制备与性能研究.现代化工,2005,25(3):34-36.
    [102]魏宏斌,严煦世,徐迪民.二氧化钛膜固定相光催化氧化法深度处理自来水.中国给水排水,1996,12(6):10-16.
    [103]Kim Y,Yoon M.TiO_2/Y-Zeolite Encapsulating Inramolecular Charge Transfer Molecules:a New Photocatalyst for Photoreduction of Methyl Orange in Aqueous Medium.Journal of Molecular Catalysis A:chemical,2001,168(1-2):257-266.
    [104]吴海宝.TiO_2光催化降解染料废水的研究.中国环境科学,1997,17(1):93-97.
    [105]Kikuchi E,Magrini W.Improving catalyst performance for the solar-based photocatalytic reducing Na_2SeO_3.Shigen to Kankyo,1997,6(2):173-178.
    [106]李晓红,颜秀茹,张月萍等.TiO_2/SnO_2复合光催化剂的制备及光催化降解敌敌畏.应用化学,2001,18(1):32-38.
    [107]Liu A R,Wang S M,Zhao Y R,et al.Low-temperature preparation of nanocrystalline TiO_2photocatalyst with a very large specific surface area.Materials chemistry and physics,2006,99:131-134.
    [108]Herman S M,Carolina M S,Adriana N S,et al.FFIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde.Materials science & engineering C,2008,28:539-548.
    [109]刘泽华,赵玉红,双金玲等.阳离子淀粉固载β-环糊精用于废水处理.China Pulp&Paper,2007,26(7):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700