用户名: 密码: 验证码:
基于第二代小波变换的各向异性参数反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过长期的实际勘探和实验测试后发现地壳中大多数岩石对地震勘探是各向异性的,所谓各向异性是指当地震波在地球介质中传播时,地震波速度、偏振方向、振幅和衰减等物理性质都具有方向性特征,这一现象称为地震各向异性效应,相应的介质称为各向异性介质。一直以来把地球介质假设为各向同性的在油气田勘探中取得了瞩目的成绩,但是随着隐蔽油气藏勘探难度的日益加大,反演各向异性参数,精细描述油藏是目前油气勘探急需解决的问题。
     各向异性参数反演的方法有很多种,其中利用波动方程的波形反演更多的利用了地震波的运动学和动力学的信息,能获得较好的效果。波形反演分为线性地震波形反演和非线性地震波形反演,在线性地震波形反演中,观测地震数据和速度的关系被近似线性化,非线性地震波形反演将反演问题转化为一个非线性问题,更接近于实际情况。由于目标函数中存在大量局部极小点,在处理合成数据和实际数据时,该方法效果很差。同时,利用波动方程的波形反演由于在反演过程中不断的重复正演算法,计算量较大。
     小波分析被应用到波动方程反演问题中取得了较好的效果。小波分析是一种多分辨(多尺度)分析方法,将问题放在一系列嵌套空间中进行分析。由于较粗尺度下目标函数呈现较强的凸性及较少的局部极值,很有利于收敛至优化解。因此可先在粗尺度上迭代反演,得到一个较好的参数估计,再将这个估计作为较精细尺度的初值进行反演,直至原问题的全局最优解。另外,小波变换具有分解和恢复的快速算法,当计算量很大时,可以明显提高运算的效率。
     本文利用有限元数值模拟的方法,实现了VTI介质的二维有限元正演模拟;利用正演模拟结果,将第二代小波变换和时间域叠前全波场各向异性参数反演方法相结合,实现了VTI介质各向异性参数的反演。
     模拟算例表明将第二代小波变换应用于各向异性参数的反演方法提高了反演的效率和精度。并指出将最优估计理论应用于第二代小波变换将是本方法下一步的研究方向。
Most kinds of rocks are anisotropic to the seismic exploration, which has been discovered during long term of actual exploration and test. When seismic wave propagating in the mediums of earth, physical properties of it such as velocity,polarization direction,amplitude and attenuation all have directional properties, which is called seismic anisotropy and relevant mediums are called anisotropic mediums. The method to assume the medium of earth to be isotropic has benefited a lot to the field exploration all the times. However , as the exploration of subtle reservoir becoming more difficult ,to invert anisotropic parameters and describe reservoir delicatly has been the problem of subtle reservoir exploration activities that need to be solved now.
     There are many methods to invert anisotropic parameters, among which waveform inversion based on wave equation uses more seismic wave information of kinematics and kinetics so it can get better effect. Waveform inversion includes lineal seismic waveform inversion and nonlinear seismic waveform inversion.In the lineal seismic waveform inversion the relationship between observed seismic data and velocity is linearized approximlately. And nonlinear seismic waveform inversion transforms inversion problem to nonlinear problem which is more close to reality. Because there are many local minimum points in objective function waveform inversion’s effectiveness is weak when processing anamorphic data and actual data. At the same time the calculated amount of waveform inversion using wave equation is big comparatively because it constantly repeats forward modeling algorithm in the inversion course .
     The result is better when theory of wavelet analysis is used in the problem of wave equation inversion. Wavelet analysis is one kind of multiscale analysis method which analyses matters in a series of nesting air space. Objective function presents comparatively strong convexity and lesser local extreme values on wide scale which is favour of converging to optimized values . So firstly to get a better estimation of parameter using iterate inversion on wide scale , then using this estimation as initial value on mini scale till to get global optimum of original problem. Furthermore, wavelet analysis has fast algorithm of decomposition and reconstitution and this is can improve efficiency apparently when calculated amount is very big .
     This paper realizes 2-D wavefield simulation of VTI medium by the finite element numerical simulation analysis. According to the results of forward modeling, combining the theory of second generation wavelet transforms with the method of the time domain pre-stack full-wave field parameters inversion, anisotropic parameters inversion of VTI medium are performed perfectly.
     Numerical examples demonstrate that combining the theory of second generation wavelet transforms with the inversion method of anisotropic parameters is valuable for the improvement of efficiency and precision of inversion. The next step of the study in this field which is pointed out is to use the theory of second generation wavelet transforms with the idea of optimization.
引文
[1] Seismic technology: evolution of a vital tool for reservoir engineers .JPT, 1999; 51(1):22-28
    [2] Thomson, W. (Lord Kelvin). Elements of a mathematical theory of elasticity, Part 1, On stresses and strains, Philosophical Transactions of the Royal Society, 1856; 146(21): 481-498
    [3] Christoffel, E. B. Uber die fortpflanzung yon St ssen durch elastische feste K rper[J]. Annali di Matematica, 1877; 8: 193-243
    [4] Bruggeman, D. A. D.. Berechnung verschiedener physikalisher konstanten vonheterogenen Substantzen[J]. Annalen der Physik, 1935; 24: 636-664
    [5] Backus, G. E.. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 1962; 67: 4427-4440
    [6] Backus, G. E.. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res., 1965; 70: 3429-3439
    [7] Crampin, S.. Seismic wave propagation through a cracked solid:polarization as a possible dilatancy diagnostic. Geophys. J. R. astr. Soc. 1978; 53: 467-496
    [8] Crampin, S., A review of wave motion in anisotropic and cracked elastic-media. Wave motion. 1981; 3: 343-391
    [9] Crampin, S., Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. astr. Soc., 1984; 76: 135-145
    [10] Byun, B. S., Seismic parameters for transversely isotropic media. Geophysics, 1984; 49: 1908-1914
    [11] Tanimoto, T., Surface-wave ray tracing equations and Fermat’s principle in an anisotropic earth. Geophys. J. R. astr. Soc., 1987; 88: 231-240
    [12] Shearer, P. M., Chapman, C. H., Ray tracing in azimuthally anisotropic media II: Results for models of aligned cracks in the upper crust. Geophys. J., 1989; 96: 51- 64
    [13] Chapman, C. H., Sheerer, P. M., Ray tracing in azimuthally anisotropic media II: Quasi-shear wave coupling. Geophys. J., 1989; 96: 65-83
    [14] Kosloff, D., Propagation modeling in elastic anisotropic media. Symposium of the SEG, 1989; 58, SM 1. 1
    [15] Carcione, J. M., Kosloff, D., et al.. A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media. Geophysics, 1992; 57: 1593-1607
    [16] Mora, P.. Modeling anisotropic saismic waves in 3-D. Ann. Mtg. Abstracts, Soc. ExplGeophys., 1989; 1039-1043
    [17] Tsingas, C., Vafidis, A., Elastic wave propagation in transversely isotropic media using finite differences. Geophys. Prose., 1990; 38: 933-949
    [18] Igel, H., Mora, P., Riollet, B., Anisotropic wave propagation through finite-difference grids. Geophysics. 1995; 60: 1203-1261
    [19] Dai, V., Vaficlis, A., Wave propagation in heterogeneous porous media: A velocity-stress, finite-difference method. Geophysics,1995; 60: 327-340
    [20] Juhlin, C., Finite-difference elastic wave propagation in 2D heterogeneous transversely isotropic media. Geophys. prosp., 1995; 43: 843-858
    [21]滕吉文张中杰杨顶辉各向异性介质中三分量弹性波场叠前偏移.中国地球物理学会年刊,1994;160-160
    [22]滕吉文张中杰杨顶辉等各向异性介质中褶积微分算子法三分量地震资料的数字仿真石油物探199534(3):14-220
    [23]滕吉文,王光杰,杨顶辉等.地球各向异性介质中地震波动理论、检测与应用研究.地学前缘,1998;5(12):83-90
    [24]张中杰,何樵登.含裂隙介质中地震运动学问题正演模拟.石油地球物理勘探,1989;24(3):290-300
    [25]张中杰,滕吉文,万志超.二维各向异性介质中地震波前面参数方程的建立.科学通报,1994;39(15):1399-1402
    [26]张中杰,滕吉文.各向异性介质中界面上改进型斯奈尔定律.科学通报,1995;90(2):1724-1728
    [27]张秉铭.各向异性介质中弹性波数值模拟与偏移研究:[博士学位论文],中国科学院地球物理研究所,1997
    [28]汪和杰,董敏毓.由裂隙引起的三分量资料中的泛张各向异性.石油地球物理勘探,1998;33(2):185-190
    [29]魏修成.双相各向异性介质中的地震波场研究:[博士学位论文],石油大学,1995
    [30]张秉铭.各向异性介质中多波多分量地震资料的正演模拟以及介质弹性参数直接反演方法的研究:[博士后研究报告],石油大学,1999
    [31]刘洋.裂缝性油气藏多波多分量地震勘探方法研究:[博士学论文],石油大学,北京,1998
    [32]牛滨华,孙春岩.方位界面及其波场数值模拟.石油地球物理勘探,1994;29(6):685-694
    [33]牛滨华,何樵登,孙春岩.裂隙各向异性介质波场VSP多分量记录的数值模拟.地球物理学报,1995;38(4):519-527
    [34]牛滨华,王海君,沈操等.实用P波速度各向异性提取的一种方法研究.地震各向异性学术研讨会论文摘要集,1998;73-74
    [35]姚陈,王培德,陈运泰.卢龙地区横波偏振与上地壳裂隙各向异性.地球物理学报,1992;35(3):305-315
    [36]徐果明,李跃,李光品.横向各向同性介质的传播矩阵及其应用.中国地球物理学会年刊,1994:169-169
    [37]阴可,杨慧珠.各向异性介质中的AVO.地球物理学报,1998; 41(3):382-391
    [38]高原,李世愚,周慧兰等.大理岩的剪切波分裂对差应力变化响应的实验研究.地球物理学报,1999;42(6):778-784
    [39]李传亮,张茂林,梅海燕.双重各向异性介质的数值模拟方法研究.中国海上油气(地质),2000;14(1):55-57
    [40]张光莹,曾新吾.伪谱法模拟各向异性/非均匀介质中弹性波的传播.国防科技大学学报,2002;24(3):18-22
    [41]裴正林,王尚旭.任意倾斜各向异性介质中弹性波波场交错网格高阶有限差分法模拟.地震学报,2005;27(4):441-451
    [42]陈天胜,魏修成,刘洋.一种新的各向异性弹性阻抗近似公式.石油物探,2006;45(6):563-569
    [43] Crampin S and Bamford D.Inversion of P-wave velocity anisotropy.Geophys J R astr Soc,1977,49,123~132
    [44] Crampin S.Evaluation of anisotropy by shear-ware splitting. Geophysics,1985, 50(1):37~48
    [45] Meadows M and Coen S. Exact inversion of plane-layered isotropic and anisotropic elastic media by the state-space approach . Geophysics ,1986,51(11):2031~2050
    [46] Lyakhovitskiy F M. Determination of elastic parameters of transversely isotropic media by seismic technigues.Geophys J R astrSoc ,1987,91,439~447
    [47] Byun B S and Corrigan O.Seismic traveltime inversion for transverse isotropy.Geophysics,1990,55(2):192~200
    [48] MacBeth C.Inversion for subsurface anisotropy using estimates of shear-wave splitting. Geophys J Int,1991,107(2)
    [49] Sena A G. Seismic traveltime equations for azimuthally anisotropic and isotropic media :estimation of interval elastic properties. Geophysics,1991,56(12):2090~2101
    [50] Hake H, et al. . Three-term Taylor series for t 2 ? x2 curves of P-wave and S-wave over layered transversely isotropic ground. Geophysical Prospecting ,1984,32:828~850.
    [51] Taner M T , Koehler F. Velocity spectrum computer derivation and application of velocity function . Geophysics,1969 34:859~881.
    [52] Tsvankin L,Thomsen L. Inversion of reflection traveltimes for transverse isotropic media .Geophysics ,1995,59:1290~1340.
    [53] Sayers C M ,Rickett J E. Azimuthal variation in VAP response for fractured gas sands. Geophysical Prospecting , 1997,45(2):165~182
    [54] Tsvankin I, Thomsen L, Nonlherbolic reflection moveout in anisotropic media. Geophysics,1994,59(8):1290~1304
    [55] Tsvankin I, Thomsen L . Inversion of reflection traveltimes for transverse isotropy .Geophysics, 1995,60(4):1095~1107
    [56] Alkhalifah T, Tsvankin I. Velocity analysis for transversely isotropic media. Geophysics , 1995,60(5):1550~1566
    [57] Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media . Geophysics,1997, 62(8) :1839~1854
    [58] Grechka V, Tsvankin I . Feasibility of nonhyperbolic moveout inversion in transversely isotropic media .Geophysics. 1998,63(3):957~969
    [59] Grechka V, Tsvankin I . 3_D description of normal moveout in anisotropic inhomogeneous media . Geophysics ,1998,63(4):1097~1092
    [60] Li X Y .Fracture detection using azimuthal variation of P-wave moveout from orthogonal seismic survey line. Geophysics ,1999,64(4) :1193~1201
    [61] Grechka V ,Contreras P.Inversion of normal moveout for monoclinicmedia .Geophysical Prospecting ,2000,48(4):577~602
    [62]闫贫.横向各向同性介质中的地震波正反演初探,长春地质学院博士学位论文,1992
    [63]刘斌,徐文俊.轴对称各向异性介质中体波的传播及弹性参数反演,地球物理学报,1994,37(1)
    [64]何樵登,陶春辉.用遗传算法反演裂隙各向异性介质.石油物探,1995,34(3):46~50
    [65]周辉,何樵登.非线性各向异性波形反演方法.石油地球物理勘探,1995,30(6):725~735
    [66]张文生,何樵登.利用VSP和跨孔走时反演横向各向同性介质中的弹性常数.石油地球物理勘探,1997,32(3):345~356
    [67]董渊,杨慧珠.利用P波层间时差确定裂缝性地层的各向异性参数.石油地球物理勘探,1999,34(5):520~525
    [68]傅旦丹,何樵登,刘一峰等.一种新的全局最优化反演方法.石油地球物理勘探,2000,35(4):536~542
    [69]傅旦丹.正交各向异性介质弹性波动方程正演及非线性反演方法研究[博士论文].长春:长春科技大学地球物理系,1998
    [70]张文生,何樵登,张关泉.用Hopfield神经网络反演横向各向同性介质参数.石油地球物理勘探,1999,34(1)
    [71]杜丽英,杜丽娟,肖乾华,高金慧.VTI介质中弹性参数地震反演方法.石油勘探与开发.2002,29(3)
    [72]张世俊,杨慧珠,董渊,杜启振.遗传算法反演HTI介质各向异性参数.石油地球物理勘探,2002,37(1)
    [73]魏兵,葛德彪.单轴各向异性介质参数的遗传算法反演.西安电子科技大学学报,2002,29(5)
    [74]张美根,王妙月,李小凡等.时间域全波场各向异性弹性参数反演.地球物理学报,2003,46(1):94~100
    [75]杜启振,杨慧珠.方位各向异性介质的裂缝预测方法研究.石油大学学报,2003,27(4)
    [76]雍杨,李录明,罗省贤等.TI介质多波AVA方程及参数反演.石油物探,2004,43(1)
    [77]卢明辉,唐建侯,杨慧珠等.正交各向异性介质P波走时分析及Thomsen参数反演.地球物理学报,2005,48(5):1167~1171
    [78]王德利,何樵登,韩立国.单斜介质中方位NMO速度Thomsen参数反演方法研究.地球物理学报,2006,49(1):249~255
    [79] Thomsen L, Weak elastic anisotropy.Geophysics,1986,51,1954~1966
    [80] Gabor D. J of the IEEE , 1946 ,93 : 429
    [81] Sweldens V. The lifting scheme: a construction of second generation wavelet [J]. SIAM Journal on Mathematical Analysis , 1997(29): 511~546.
    [82]徐长发,李国宽,实用小波方法,华中科技大学出版社: 72
    [83] Stepin J, Zielinski T, Rumian R .Image denoising using scale adaptive lifting schemes[A]. Conference on Image Processing ,Vacouver,2000.
    [84] Courant, R.,“Variational Methods for the Solution of Problems of Equilibrium and Vibrations ,”Bulletin of the American Mathematical Society , Vol.49,pp. 1-23,1943.
    [85] Turner, M.J., Clough, R.W., Martin, H.C., and Topp, L.J.,“Stiffness and Deflection Analysis of Complex Structures ,”Journal of Aeronautical Sciences , Vol.23, No.9, pp.805-824,Sept.1956.
    [86] Clough ,R.W.,“The Finite Element Method in Plans Stress Analysis ,”Proceedings ,American Society of Civil Engineers , 2nd Conference on Electronic Computation, Pittsburgh, PA,pp.345-378,Sept.1960.
    [87]王勖成,邵敏有限单元法基本原理和数值方法,清华大学出版社,北京:1997
    [88]张美根.各向异性弹性波正反演问题研究,博士学位论文,中国科学院地质与地球物理研究所,北京:2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700