用户名: 密码: 验证码:
机翼形量水槽水力特性试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渠道量水是灌溉用水管理的基本条件,是一项基础且关键性的技术,对灌区节水、实现水资源高效可持续利用具有重要意义。研究具有结构简单、操作简便、水头损失小、量水精度高、流量计算公式简明的渠道量水设备,是灌区迫切需要的灌溉管理实用技术之一。由于灌区条件比较复杂,很难应用统一的量水设施,目前已有的槽类量水设施还不能满足灌区量水的要求。因此研究开发适合我国灌区目前经济发展状况以及能满足特定量水要求的量水设施和测流技术是当前灌区量水研究的着眼点。特别是针对末级渠系只中面广量大的斗、农渠以及缓坡渠道量水设施的研究,应是目前研究工作的重点方向。
     具有流线形特征的机翼形量水槽结构简单、过流平顺、流态稳定,可作为新型的量水结构加以研究。本文在初步研究的基础上,按照理论分析、试验研究、数值计算与灌区现场实验相结合的研究思路和方法,对机翼形量水槽的各项水力特性进行了深入系统的研究与分析。主要研究内容与结论如下:
     1、总结了灌区量水技术与设施特别是量水槽的最新发展,详细阐述了临界水深类量水槽的测流原理。并采用量纲分析法及传统水力学基础理论分别推导U形渠道、矩形渠道、梯形渠道机翼形量水槽过流的水位流量关系,得出了流量计算公式,并加以试验验证。结果表明,采用两种方法得到的流量计算公式简明实用,测流精度都符合量水规范对灌区量水设施的要求。
     2、以矩形渠道机翼形量水槽为例,对过槽水流从流态上进行了定性的讨论和总结,为深入理解流经机翼形量水槽等短喉道类量水槽的水流流态提供参考依据,并以期指导量水槽设计。对于水平渠道机翼形量水槽而言,在理想状态下临界流发生在渠道侧向收缩达到极小值的断面,即喉口断面。通过一定的工程措施促使量水槽断面收缩比从大到小变化,则过槽水流便可依次呈现出缓流、临界流、急流三种流态。只要控制量水槽内的水流为急流,就可以获得较高的临界淹没度。
     3、通过室内试验研究了三种渠道机翼形量水槽的各项水力特性,包括临界淹没度、壅水高度及上游断面佛汝德数,为量水槽在灌区应用提供技术参数。U形渠道、矩形渠道、梯形渠道机翼形量水槽的临界淹没度都较高,因此在平原灌区,也可保证量水槽上游水位在大范围内不易受下游水位的影响。与其他两种渠道机翼形量水槽相比,矩形渠道机翼形量水槽的上游水面波动一般很小,流速分布比较均匀,槽前佛汝德数也相对较小。试验得到的机翼形量水槽在各种渠道中的壅水高度都能满足灌区要求。
     4、分析了机翼形量水槽过流水头损失的机理及影响因素。量水槽过槽水流水头损失包括槽前收缩段、下游扩散段以及从扩散段到槽后一定距离内的水跃段水头损失三部分。将过槽水头损失全部看作局部水头损失,经数据分析得到局部水头损失系数与过槽流量、断面收缩比以及淹没度的关系。U形渠道、梯形渠道机翼形量水槽的水头损失系数变化规律类似,但与矩形渠道机翼形量水槽的明显不同。
     5、研究了数值计算中网格大小、湍流模型对数值模拟结果的影响,为后续数值模拟选定了合理的模拟参数及数学模型。以U形渠道机翼形量水槽为例对量水槽三维水流运动进行了数值计算。重点关注在自由出流时,不同收缩比及流量下水面线的变化,再现过槽水流流线及速度场,以及在下游水位得到控制时的量水槽淹没度。通过非稳态数值计算,得出量水槽过流过程及水位的瞬态变化。对比验证计算与试验,结果表明:采用CFD模拟技术可以较好地模拟量水槽三维水流现象。在此基础上对物理试验模型之外的机翼形量水槽过流进行了预测模拟,从而突破物理模型在尺寸及研究范围上的限制,进一步拓宽了量水槽研究的范围。
     6、分别在内蒙古鄂尔多斯黄河南岸灌区和引大入秦输水干渠上进行了U形渠道与矩形渠道机翼形量水槽的应用实验研究。结果证明,机翼形量水槽水头损失小,临界淹没度高,便于施工。总结了机翼形量水槽在灌区应用中包括设计、修建及率定等各个环节的实践经验,并为机翼形量水槽在灌区的大范围推广给出了合理建议。
     通过对机翼形量水槽在三种渠道上的试验以及现场实验研究表明,机翼形量水槽可以代表灌区量水槽新的发展方向,有较好的推广价值和应用前景。
Water gauging in canals is a foundation of the water management and a critical technique. It is of great significance for water saving and water utilization in irrigation districts efficiently and sustainably. Studying the water measuring facility with simple structure, easy operation, low head loss, high accuracy and clear discharge formula is one of the irrigation management techniques urgently needed in irrigation districts. Because of the complicated conditions in the irrigation districts, it is difficult to apply a uniform water measuring facility. At present, water-measuring flumes cannot fulfill the demand of water gauging in irrigation districts. Developing water measuring facility and technique suited to current economic development level and specific requirements to meet the water-gauging demand, therefore, is the springboard of the research, especially for a large number of sublateral and farm canals and gentle slope canals. The streamlined Airfoil-shaped measuring flume, which is characterized by its simple structure and smooth flow, can be studied as a new water-measuring device. According to indoor experiments in accordance with theoretical analysis, numerical calculations and irrigation field tests, hydraulic characteristics of Airfoil-shaped measuring flume are studied systemically based on the preliminary studies.
     1. This article summarizes the facility and technique of water gauging in irrigation districts including the latest developments of water measuring flume, and describes the water-gauging principle of critical water-depth flume in details. It also obtains discharge formula by the method of dimensional analysis and traditional hydraulics in the U-shaped, rectangular and trapezoidal canal and compares it with the experiment data. Simple, clear and practical discharge formula obtained by the two methods can meet the demand of the accuracy requirement.
     2. This article, taking the Airfoil-shaped measuring flume that used in rectangular canal for example, qualitatively discusses and summarizes flow pattern of flow passing through the flume. It provides theoretical basis to understand short-throat flume's flow pattern and guides the design of the water-measuring flume. As for the Airfoil-shaped measuring flume built in the even canal, the critical flow occurs at the throat inlet cross section, which has the minimum local contraction. Certain engineering measures can be taken to make the cross section's ratio of local contraction changed from big to small values, then the flow in the flume can present a sub-critical, critical or super-critical flow patterns successively. Provided that flow in the water measuring flume can be controlled to be a super-critical flow, a high critical submergence will be obtained.
     3. The laboratory tests on various water measuring characteristics of the Airfoil-shaped measuring flume built in the three different canals are conducted. Critical submergence, backwater height and Froude number of the upstream cross section are analyzed to provide technical parameters for the application of water measuring flume in the irrigation districts. The critical submergence of the Airfoil-shaped measuring flume built in the three different canals is high enough so that the flume can work under free flow condition over a considerable extent even in the plain irrigation districts. Compared with the others, the upstream water of Airfoil-shaped measuring flume built in the rectangular canal is fluctuant more smoothly Meanwhile velocity distribution is more evenly and upstream Froude number is small relatively. The backwater heights obtained among the laboratory tests can fulfill the demand of the irrigation districts.
     4. This article analyzes the mechanism and effect factors of the head loss of the flow passing through the Airfoil-shaped measuring flume. The head loss includes losses of the contraction section in the upstream、expansion section in the downstream and the hydraulic jump section. The total head loss can be taken as local head loss. The relation between the local head loss coefficient and the discharge, cross section contraction ratio and submergence is obtained by the data analysis. The change laws of head loss coefficient of Airfoil-shaped measuring flume in the U-shaped and trapezoidal canals are similar, but significant different from that of flume in rectangular canal.
     5. A serial of calculations also are performed on how the meshes, turbulence models influence the numerical simulation. It provides reasonable simulation parameters and mathematic models for the later numerical simulations. The 3D water flow numerical calculations are carried out on the Airfoil-shaped measuring flume in the U-shaped canal. It mainly focuses on the change of water surface curves, streamlines, velocity field and submergence which controlled by the downstream water level under the free flow. The unsteady numerical simulations also are run to simulate the flow in the measuring flume and the instant change of water level. Compared the numerical simulation results with the experiment data, it is concluded that the CFD simulation technique can simulate the flow in the measuring flume so that forecast simulation also can be run to simulate flow in other Airfoil-shaped measuring flumes which have different sizes. It breaks the restraint of physical model test and expands the study extent.
     6. Application research also are conducted in the irrigation districts that located at the south of Huang-river in the city of Erdos, Inner Mongolia and main channel of diversion project from Daqing river to Qinwangchuan. The result verifies that the Airfoil-shaped measuring flume has a small water head loss, high critical submergence and it is easy to be constructed. The article summarizes the practical experience on the design, construction and calibration, and then gives reasonable advice to the application of Airfoil-shaped measuring flume.
     The indoor experiments of Airfoil-shaped measuring flume that constructed in three different canals and the field test indicate that the Airfoil-shaped measuring flume can guide the new developmental direction of the measuring flume in the irrigation districts.
引文
[1]钱正英,张光斗.中国可持续发展水资源战略研究[M].北京:水利水电出版社,2001.
    [2]汪恕诚,翟浩辉,冯广志.农业节水探索[M].北京:水利水电出版社.
    [3]陈志恺.中国水资源的可持续利用问题[J].水文,2003,(1):1-5.
    [4]翟浩辉.加大灌区改造力度,保障国家粮食安全[J].求是,2004,(6):1-6.
    [5]中国节能发展网.中国节水技术政策大纲.http://www.energy-conservation.cn.
    [6]周明耀,陶长生.灌区管理工作手册[M].南京:河海大学出版社.
    [7]蔡勇,周明耀.灌区量水实用技术指南[M].北京:中国水利水电出版社,2001.
    [8]U.S Department of the Interior Bureau of Reclamation. Water Measurement Manual[M].3d edition. Washington:U.S. Government Printing Office,2001, ISBN:0-16-061763-4.
    [9]郝树荣,任瑞英,郝树刚.灌区量水技术的发展与展望.人民黄河,2003,25(11):41-43.
    [10]陈毓陵,王靖波.灌区量水方法及应用对策.水利水电科技进展,2000,20(6):39-42.
    [11]ISO标准手册16.明渠水流测量[M].北京:中国标准出版社,1986.
    [12]王长德.量水技术与设施[M].北京:中国水利水电出版社,2005.
    [13]SL20-92水工建筑物测流规范[S].北京:水利电力出版社,1992.
    [14]SL24-91堰槽测流规范[S].北京:水利电力出版社,1991.
    [15]俞双恩,左晓霞,赵伟.我国灌区量水现状及发展趋势[J].节水灌溉,2004,(4):35-37.
    [16]蔡勇,李同春.灌区量水设施分析研究[J].中国农村水利水电,2005,(2):13-15.
    [17]陈梦华,韩克敏,宋向荣.灌区量水技术的研究进展[J].中国农村水利水电,2001,(9):44-45.
    [18]吉庆丰,沈波,李国安.灌区量水设施研究开发进展[J].灌溉排水学报,2001,20(4):65-68.
    [19]Wright S J, Taheri B. Correction to parshall flume calibrations at low discharge [J]. Journal of Irrigation and Drainage Engineering, ASCE,1991,117(5):800-804.
    [20]Abt S, Genovez A. Florentin B. Correction settlement in submerged parshall flume[J]. Journal of Irrigation and Drainage Engineering, ASCE,1994,120(3):676-682.
    [21]Abt S, Florentin B, Genovez A, et al. Settlement and submergence adjustments for parshall flume[J]. Journal of Irrigation and Drainage Engineering, ASCE,1995,121(5):317-321.
    [22]Marais G, Haandel A. Design of grit channels controlied by parshall flume[J]. Water Science and Technology,1996,33(3):195-210.
    [23]Abt S, Skowronn E. Revising the cutthroat flume settlement rating adjustment procedure[J]. Journal of Irrigation and Drainage Engineering, ASCE,2001,127(1):54-58.
    [24]Weber R C, Merkley G P, Skogerboe G Impoved calibration of cutthroat flumes[J]. Irrigation Science, 2007,25:361-373.
    [25]Manekar V, Porey P, Ingle R. Discharge relation for cutthroat flume under free-flow condition[J]. Journal of Irrigation and Drainage Engineering, ASCE,2007,133(5):495-499.
    [26]Hager W H. Modified venturi channel[J]. Journal of Irrigation and Drainage Engineering, ASCE, 1985, 111(1):19-35.
    [27]Hager W H. Mobile flume for circular channel[J]. Journal of Irrigation and Drainage Engineering, ASCE,1987,114(3):520-534.
    [28]吴高巍,周子奎.柱形量水槽的研制及应用[J].灌溉排水学报,1991,10(3):46-51.
    [29]Samani Z, Magallanez H. Measuring water in trapezoidal canals[J]. Journal of Irrigation and Drainage Engineering, ASCE,1993,119(1):181-186.
    [30]蔡勇,李同春,吉庆丰,等.梯形渠道圆柱形量水槽的试验研究[J].中国农村水利水电,2005(8):63-66.
    [31]何武全,王玉宝,蔡明科.U形渠道圆柱体量水槽研究[J].水利学报,2006,37(5):573-577.
    [32]吉庆丰,何钟宁,龚懿,等.U形渠道圆柱形量水槽的试验研究[J].灌溉排水学报,2007,26(6): 30-33.
    [33]Samani Z, Magallanez H. Simple flume for flow measurement in open channel[J]. Journal of Irrigation and Drainage Engineering, ASCE,2000,126(2):127-129.
    [34]Vito Ferro. Discussion of "Simple Flume for Flow Measurement inOpen Channel" by Samani Z, Magallanez H[J]. Journal of Irrigation and Drainage Engineering, ASCE,2002,128(2):129-131.
    [35]吕宏兴,余国安,陈俊英,赵延风.矩形渠道半圆柱形简易量水槽试验研究[J].农业工程学报,2004,20(6):81-84.
    [36]Baiamonte G, Ferro V. Simple flume for flow measurement in sloping open channel[J]. Journal of Irrigation and Drainage Engineering, ASCE,2007,126(2):127-129.
    [37]Stefano C D, Piazza G V D, Ferro V. Field testing of a simple flume(SMBF) for flow measurement in open channels[J]. Journal of Irrigation and Drainage Engineering, ASCE,2008,134(2):235-240.
    [38]张鲁婧,吕宏兴,张晓斐.矩形渠道半圆柱形量水槽试验研究[J].节水灌溉,2008,11:46-50.
    [39]潘志宝,吕宏兴,魏溪.灌区量水槽的应用研究现状与进展[J].西北农林科技大学学报(自然科学版),2007(4):213-217.
    [40]尚民勇.U形长喉道量水槽的试验研究及其应用[J].陕西水利,1991(3):41-44.
    [41]张志昌,张漫丽,王开民.U形(圆底形)长喉道测流槽水力特性的研究[J].陕西水利发电,2000,16(2):5-8.
    [42]张志昌,张宗孝,刘亚菲.U形渠道直壁槽式量水堰的研究与应用[J].陕西水利,1992(1):29-34.
    [43]张志昌,刘亚非.有坎缺口式量水槽的流量系数和水力计算[J].陕西水力发电,1993(3):43-49.
    [44]张志昌,刘松舰,刘亚非.抛物线形渠道长喉道测流槽的水力设计方法[J].西安理工大学学报,2003,19(1):51-55.
    [45]吴高巍,葛淑芳.灌溉渠道上一种新型简易量水槽[J].灌溉排水学报,1985,4(2):14-20.
    [46]Clemmens A J, Bos M G Critical depth relations for flow measurement design[J]. Journal of Irrigation and Drainage Engineering, ASCE,1990,123(3):640-644.
    [47]陈建康,沈波.长喉道量水槽的应用研究[J].灌溉排水学报,2001,20(4):26-29.
    [48]张志昌,刘亚非.U形渠道便携式测流槽的研究[J].陕西水利,1995(1):31-33.
    [49]王智,朱凤书,刘晓明.平底抛物线形无喉段量水槽试验研究[J].水利学报,1994(7):12-23.
    [50]Peruginelli A, Bonacci F. Mobile prisms for flow measurement in rectangular channels[J]. Journal of Irrigation and Drainage Engineering, ASCE,1997,123(3):520-534.
    [51]洪成,吕宏兴.U形渠道机翼形量水槽试验研究[J].灌溉排水学报,2005,24(1):63-65.
    [52]吕宏兴,刘焕芳,朱晓群,潘志宝.机翼形量水槽的试验研究[J].农业工程学报,2006,22(9):119-123.
    [53]戚玉彬,吕宏兴,张宽地.底坎式机翼形量水槽试验研究[J].灌溉排水学报,2007,26(5):97-99.
    [54]潘志宝,吕宏兴,雒天峰,敬向锋.闸墩式量水槽试验研究[J].节水灌溉,2009,9:20-23.
    [55]Genovez A, Steven R A, Florentin C B. Correction for settlement of parshall flume[J]. Journal of Irrigation and Drainage Engineering, ASCE,1993,119(6):1080-1091.
    [56]Steven R A, Bryan C R, Skowron E M. Rating adjustment for settlement of cutthroat flumes[J]. Journal of Irrigation and Drainage Engineering, ASCE,1998,124(6):311-313.
    [57]Bos M G, Replogle J A, Clemmens A J. Flow measuring flumes for open channel[M]. New York: John Wiley and Sons,1984.
    [58]吕宏兴,朱风书,董鹏.抛物线形喉口式量水槽的简化流量公式[J].西北农林科技大学学报(自然科学版),2000,28(3):107-110.
    [59]张志昌.U形渠道测流[M].西安:西北工业大学出版社,1997.
    [60]马孝义,王文娥,吕宏兴.U形渠道量水槽的性能分析与筛选研究[J].农业工程学报,2002,18(4):44-48.
    [61]阮新建,王长德,柳树票.明渠测流长喉槽结构优化及设计理论研究[J].农业工程学报,2001,17(5):22-26.
    [62]Bos M G, Reinink Y. Required head loss over long-throated flumes[J]. Journal of Irrigation and Drainage Engineering, ASCE,1981,107(1):87-102.
    [63]王长德,管光华,崔巍,等.长喉槽水头损失公式的修正[J].武汉大学学报:工学版,2005,38(2):1-5.
    [64]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [65]Rizza A, Engquist B. Selected topics in the theory and practic of CFD [J]. Journal of Computational Physics,1987,72:1-69.
    [66]John D, Anderson JR. Computational Fluid Dynamics. The Basics With Applications [M]. New York: Mcgraw-Hill, Inc,1995.
    [67]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(2):115-117.
    [68]李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介[J].广东造船,2004,3:5-8.
    [69]崔建华.计算流体力学的通用软件[J].河北科技大学学报,2005,26(2):160-165.
    [70]Chen Q, Dai G Q, Liu H W. Volume of fluid model for turbulence numerical simulation of stepped spillway overflow[J]. Journal of Hydraulic Engineering,2002,128(7):683-688.
    [71]张挺,伍超,卢红等.X型宽尾墩+阶梯溢流坝流场三维数值模拟[J].水利学报,2004,(8):15-20.
    [72]陈大宏,陈娓.溢流堰水流的三维模拟[J].武汉大学学报(工学版),2005,38(5):54-56.
    [73]Mazen Tabbara, Jean Chatila, Rita Awwad. Computational simulation of flow over stepped spillways[J]. Computer and Structure,2005,83:2215-2214.
    [74]李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用[J].水力发电学报(工学版),2007,26(2):83-87.
    [75]Rodi W. Turbulance models and their applications in hudraulics-A State of Art View. University of Karlsruhe, Germany,1984.
    [76]陈永军,徐成伟.用湍流模式模拟丁坝绕流[J].水利学报,1991,3.
    [77]周宜林.淹没丁坝附近三维水流运动大涡数值模拟[J].长江科学院院报,2001,18(5):28 -36.
    [78]李志勤,李红,李嘉,等.溢流丁坝附近自由水面的实验研究与数值模拟[J].水利学报,2003,8:53-58.
    [79]Wang X,Cheng L. Three-dimensional simulation of a side discharge into a cross channel flow[J]. Computers and Fluids,2000,29:415-433.
    [80]Huang J, Weber L J, Lai Y GThree-dimentional numerical study of flow in open-channel junction[J]. Journal of Hydraulic Engineering, ASCE,2002,128(3):268-280.
    [81]WU R, MAO Z. Numerical simulation of open channel flow in 90-degree combining junction[J]. Tsinghua Science and Technology,2003,8(6):713-718.
    [82]曹继文,陈惠泉,贺益英.明渠岸边横向取水口的三维数值计算[J].水利学报,2004,2:119-124.
    [83]赵升伟,茅泽育,罗异,等.等宽明渠交汇水流数值计算[J].河海大学学报(自然科学版),2005,33(5):494-499.
    [84]冯亚辉,郭维东.Y型明渠交汇水流数值计算[J].水利水运工程学报,2006,4:34-40.
    [85]Ramamurthy A S, Qu Junying, Zhai Chao.3D simulation of combining flows in 90° Rectangular closed conduits [J]. Journal of Hydraulic Engineering, ASCE,2006,132(2):214-218.
    [86]高学平,叶飞,宋慧芳.侧式进/出水口水流运动的三维数值模拟[J].天津大学学报,2006,39(5):518-522.
    [87]茅泽青,赵雪峰,许昕,等.交汇水流三维数值模型[J].科学技术与工程,2007,38(5):800-805.
    [88]张光碧,邓军,张法星,等.VOF模型在有支流汇入的河道复杂流场中的应用[J].河海大学学报(自然科学版),2007,35(5):592-595.
    [89]郭维东,梁岳,冯亚辉,等.Y形明渠交汇水流分离区的数值分析[J].水利水电科技进展,2007,27(6):49-52.
    [90]Wang Xiaogang, Yan Zhongmin. Three-dimensional simulation for effects of bed discordance on flow dynamics at Y-shaped open channel confluences[J]. Journal of Hydrodynamics,2007,19(5): 587-593.
    [91]Kesserwani G, Ghosetine R., Vazquez J, et al. Simulation of subcritical flow at open-channel junction[J]. Advances in Water Resources,2008,31:287-297.
    [92]张挺,许唯临,伍平,等.90明渠交汇口三维水力特性数值模拟[J].水利学报,2009,40(1):52-59.
    [93]Ye Jian, McCorquodale J A. Simulation of curved open channel flow by 3D hydrodynamic model [J]. Journal of Hydraulic Engineering, ASCE,1998,124(7):687-698.
    [94]蒋莉,王少平,沈孟育,等.应用RNG κ-ε湍流模式数值模拟90弯曲槽道内的湍流流动[J].水动力学研究与进展,A辑,1998,13(1):8-13.
    [95]韩龙喜,WAI Wing-hong.加长型环形水槽水流特性的数值模拟[J].河海大学学报(自然科学版),2003,31(6):639-643.
    [96]周勤,伍超,赵元弘等.“S”型溢洪道水流特性试验与数值模拟研究[J].水利发电学报,2005,24(3):88-92.
    [97]叶春明,吴文权.数值模拟圆柱绕流旋涡生成、分离及演化[J].华东工业大学学报,1995,17(4):25-30.
    [98]万德成.用水深平均雷诺方程模拟有限长直立圆柱绕流[J].上海大学学报,1995,1(3):259-268.
    [99]叶春明,吴文权.数值模拟圆柱绕流旋涡运动及尾流不稳定性分析[J].工程热物理学报,1997,18(2):169-72.
    [100]苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟[J].力学学报,1999,31(1):100-105.
    [101]Tseng MingHseng, Yen Chinlien, Song CCS. Compution of three-dimensional flow around square and circular peiers[J]. International Journal for Numerical Methods in Fluids,2000,34:207-227.
    [102]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报,2001,35(10):1464-1469.
    [103]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964-969.
    [104]Salaheldin T M, Imran Jasim, Chaudhry M H. Numerical modeling of three-dimensional flow field around circular peiers[J]. Journal of Hydraulic Engineering,2004,130 (2):91-99.
    [105]杨永全,许唯临.水垫塘淹没射流的数值模拟[J].水动力学研究与进展.1991,(6):36-54.
    [106]刁明军,杨永全,王玉蓉等.挑流消能水气二相流数值模拟[J].水利学报,2003,(9):77-82.
    [107]杨忠超,邓军,杨永全等.多股多层水平淹没射流数值模拟研究[J].水利学报,2004,(5):31-38.
    [108]韩国其,汪德爟,许协庆.天然水流三维数值模拟的进展[J].河海大学科技情报,1989,9(1):13-22.
    [109]韩国其,汪德爟.宽浅型明渠非定常流的数值模拟[J].河海大学学报,1990,18(3):40-46.
    [110]韩国其,汪德爟,许协庆.三维明渠流动数值模型[J].水动力学研究与进展(A辑),1990,5(3):41-48.
    [111]Yasuyuki Shimizu, Hajime Yamaguchi, Tadaoki Itakura. Three-dimensional computation of flow and bed deformation[J]. Journal of Hydraulic Engineering,1990,116 (9):1090-1108.
    [112]Sanjiv K Sinha, Fotis Sotiropoulos, A Jacob Odgaard. Three-dimensional numerical model for flow through natural rivers[J]. Journal of Hydraulic Engineering,1998,124 (1):13-24.
    [113]Nicholas A P, Smith G A S. Numerical simulation of three-dimensional flow hydraulics in a braided channle[J]. Hydrological Processes,1999,13:913-929.
    [114]Fischer Antze T, Stoesser T, Bates P, et al.3D numerical modelling of open-channel flow with submerged vegetation[J]. Journal of Hydraulic Reserach,2001,39 (3):303-310.
    [115]戴春胜.河道三维流场数值模拟计算[J].黑龙江水利科技,2003,4:1-3.
    [116]张光碧,邓军,刘超,等.河道水流三维流速场的数值模拟研究[J].四川大学学报(工程科学版),2007,39(1):58-62.
    [117]Akihiro Tominaga, Iehisa Nezu. Turbulent structure in compound open-channle flows [J]. Journal of Hydraulic Engineering, ASCE,1991,117(1):21-41.
    [118]林斌良,Shiono K.矩形明渠三维湍流的数值模拟[J].水利学报,1994,3:47-56.
    [119]林斌良,KShiono.复式断面明渠三维湍流的数值模拟[J].水利学报,1995,(3):52-41.
    [120]谭立新,许唯临,杨永全.明渠水气两相流数值模拟[J].四川联合大学学报(工程科学版),1999,3(1):93-97.
    [121]李然,李洪,李嘉,等.气液两相流理论在明渠水气界面计算中的应用[J].水动力学研究进展:A辑,2002,17(1):77-83.
    [122]Giuseppe Pezzinga. Velocity distribution in compound channel flows by numerical modeling [J]. Journal of Hydraulic Engineering, ASCE,1994,120(10):1176-1198.
    [123]槐文信,陈文学,董汉毅,等.漫滩恒定明渠水流的三维数值模拟[J].水科学进展,2003,14(1):15-19.
    [124]蔡甫款,胡云进,毛根海.梯形断面明渠三维湍流数值模拟[J].中国农村水利水电,2006,10:92-94.
    [125]刘士和,黄伟,罗秋实.复式明渠水流运动的数值模拟[J].武汉大学学报(工学版),2006,39(6):1-5.
    [126]张明亮,沈永明,吴修广,等.复式断面三维漫滩水流的数值模拟[J].水力发电学报,2006,25(5): 31-36.
    [127]苏华英,戴光清.灌区量水槽试验与数值模拟研究[D].四川大学,2005.
    [128]蔡勇.灌区新型量水槽结构形式优化及测流计算方法研究[D].河海大学,2005.
    [129]郝晶晶.U形渠道抛物线形量水槽数值模拟研究[D].西北农林科技大学,2008.
    [130]陈毓陵,王靖波.灌区量水方法及应用对策[J].水利水电科技进展,2000,20(6):39-42.
    [131]蔡勇,李同春.灌区量水设施分析研究[J].中国农村水利水电,2005(2):13-15.
    [132]俞双恩,左晓霞,赵伟.我国灌区量水现状及发展趋势[J].节水灌溉,2004(4):35-37.
    [133]郭鸿志.传输过程数值计算[M].北京:冶金工业出版社,1998.
    [134]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [135]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [136]Anderson J D. Computational Fluid Dynamics:The Basics with Application [M]. McGraw-Hill,1995,清华大学出版社,2002.
    [137]Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics,458:419-441,2002.
    [138]Wissink J G. DNS of separating low Reynold number flow in a turbine cascade with incoming wakes turbulent transport at low Prandtl numbers in a channel flow[J]. International Journal of Heat and Fluid Flow,24(4):626-635,2003.
    [139]刘学强,伍贻兆.用DES数值模拟具有横向喷流的湍流流场[J].航空学报,2004,25(3):209-213.
    [140]王扬平,姜培学.应该分离模型计算斜圆柱孔气膜冷却[J].工程热物理学报,2005,26(4):668-670.
    [141]王兴勇,索丽生,刘德有,等.Lattice Boltzmanm方法理论和应用的新进展[J].河海大学学报(自然科学版),2002,30(6):61-66.
    [142]冯亚辉,郭维东,李书友.Lattice Boltzmanm方法在计算流体力学中的应用[J].水利科技与经济,2006,12(9):588-592.
    [143]张勇,钟诚文.基于Lattice Boltzmanm方法的翼型绕流数值模拟[J].航空计算技术,2006,36(3):111-114.
    [144]Rollet-Miet P,Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow,20(3):241-254,1999.
    [145]Versteeg H K, Malalasekera W. An Introduction to Computional Fluid Dynamics:The finite Volume MethodfM]. New York:Wiley,1995.
    [145]Chen C J, Jaw S Y. Fundamentals of turbulence modeling[M]. Washington:Taylor and Francis,1998.
    [147]Carajilescov P, Todreas N E. Experimental and analytical study of axial turbulent flows in an interior subchannel of a bare rod bundle[J]. Journal of Heat Transfer,98:262-268,1976.
    [148]Rodi W, Spalding D B. A two-parameter model of turbulence and its application to separated and reatlached flow[J]. Numerical Heat Transfer,1984,7:59-75.
    [149]Farouk B, Guceri S I. Laminar and tubulent natural convection in the artrrulus between horizaontal concentric cylinders[J]. Journal of Heat Transfer,1982,104:631-636.
    [150]Yakhot V, Orszag S A. Renormalization group analysis of turbulence:basic theory[J]. Journal of Science Computing,1986,1(1):1-11.
    [151]Shih Tsan-Hsing, Liou Wiliam W, Shabbir A, et al. New eddy viscosity model for high Reynolds number turbulent flows[J]. Computers and Fluids,1995,24(3):227-238.
    [152]Schlichting H, Gersten K. Boundary-layer Theory[M]. Springer-Verlag,2000.
    [153]Peyret R, Taylor T D. Computational Method for Fluid Flow[M]. Springer-verlag,1983.
    [154]Kwak D, Kiris C, Kim C S. Computational challenges of viscous incompressible flows[J]. Computers and Fluids,2005,34:283-299.
    [155]Fletcber C A J. Computational technology for Fluid dynamics[M]. Springer-verlag,1988.
    [156]Harlow F H, Welch J F. Numerical calculation of time-inpendent viscous incompressible flow of fluid with free surface [J]. Physiscs of Fluids,1965,8(12):2182-2189.
    [157]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J]. Internal Journal of Heat Mass Transfer,1972,15:1787-1806.
    [158]Issa R I. Solution of implicitly discretized fluid flow equations by operator splitting[J]. Journal of Computational Physics,1986,62:40-65.
    [159]Hirt C W, Hihols B D. Volume of fluid (VOF) methodfor dynamics of free boundaries[J]. Computational Physics,1981,39:201-221.
    [160]Fluent Inc. FLUENT USER'S Guide. Fluent Inc.,2003.
    [161]陕西省水利水保厅.U形渠道[M].北京:水利电力出版社,1986.
    [162]梁国伟,蔡武昌.流量测量技术与仪表[M].北京:机械工业出版社,2005.
    [163]SL24-1991堰槽测流规范[S].
    [164]Hager W H. Modified venturi channel[J]. Journal of Irrigation and Drainage Engineering, ASCE, 1985,111(1):19-35.
    [165]吴持恭.水力学(第二版)[M].北京:高等教育出版社,1982.
    [166]高双聚,杨玲霞.变宽度明渠水面线的分析[J].郑州工学院学报,1994,15(3):41-44.
    [167]李梅华,李娴.局部水头损失对明渠非均匀流水面曲线的影响[J].黄河水利职业技术学院学报,2005,17(3):10-11.
    [168]杨奕翰.水力学(第一版)[M].北京:人民教育出版社,1981.
    [169]黄文锽.水力学(第一版)[M].北京:人民教育出版社,1980.
    [170]孔祥柏,程年生.丁、潜坝局部水头损失的试验研究[J].水利水运科学研究,1992,4:387-395.
    [171]贺益英,赵懿珺,孙淑卿,等.输水管线中弯管局部阻力的相邻影响[J].水利学报,2004,2:17-20.
    [172]秦志坚,庞明军,张锁龙,等.相邻过流截面突然缩小与扩大阻力相互影响的研究[J].江苏工业学院学报,2006,18(4):1-4.
    [173]雒天峰.U形渠道流速分布规律与测流技术研究[D].杨凌:西北农林科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700