用户名: 密码: 验证码:
多相液膜流动的计算流体力学建模与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规整填料塔分离效率的预测是提高该单元操作经济效益的一个关键。影响塔效率的因素是多尺度的,既包括宏观的操作变量如进料量、进料成分、塔内压强与温度等,也包含了微观的液相局部流态与分布。尤其是在实际流程工业中,难以避免的会出现汽-液-液三相精馏,液相间的相互影响使得液相的流动形态呈现多样性和随机性,从而使塔的分离效率也呈现很大的不确定性。因此,有必要从微观尺度上来研究流体的流动形态及影响塔效率的相关因素。
     从控制和操作角度讲,为提高规整填料塔的分离效率,就必须增加气液传质面积和停留时间。已经知道,在精馏过程中当液相以封闭液膜方式流动时,气液相间的接触面积是最大的。为此,就需要找出影响封闭液膜流动的因素。而这也正是本文的研究重点之一。
     由于规整填料塔内液相流动形态的改变往往只发生在几英寸大小的填料片上,所以本文以简化的规整填料片(倾斜板)为对象,采用计算流体力学(Computational Fluid Dynamics, CFD)的方法对倾斜板上的局部气-液、气-液-液流动进行了三维建模与仿真,通过对流体流动特点的研究来寻找影响其流动形态的主要因素。研究结果表明,对气-液流动而言,影响封闭液膜流动的因素包括液相负载、液相表面张力(包括接触角的影响)以及气液逆流时的相间曳力。这几个因素相互耦合,相互制约:液相负载越大,尽管可以使液相以封闭液膜方式流动,但液相的流速也会相应变大,从而会使得气液相间的接触时间减小;相间曳力越大,尽管可以减小液相的流动速度,但会使低液体负载区产生液泛,所以通气量又必须与液相负载量相对应;表面张力越小(接触角越小),可以使液相以封闭液膜方式流动,但液相越不稳定,受曳力影响越明显,甚至会产生液泛、夹带。对气-液-液流动而言,除了上面的影响因素外,液相的进料次序也是影响其流动形态的一个重要因素。这些影响因素的研究,对规整填料塔的优化设计、过程控制提供了直接的理论指导。
     本文是以递进方式进行研究的,论文的主要研究结果包括:
     1.基于CFD的流体体积法(Volume of Fluid, VOF),并结合Brackbill提出的连续表面力方法(Continnum Surface Force, CSF),对倾斜板上的单液相流动(气-液两相流)进行三维建模与仿真。研究了倾斜板上单液相的流动形态,包括封闭液膜流动、液膜破裂及溪流和滴流的形成,并指出液相负载及表面张力(包括接触角)对液相流动形态的影响。另一方面,也开展了相应的实验研究,来确定模型参数、验证模型的有效性。
     2.利用压力降模型,将气-液逆流下的相间曳力引入到VOF模型中,从而建立了气-液两相逆流下的数学模型。采用该改进的模型,对逆流操作下、倾斜板上的单液相流动进行了三维仿真,研究了逆向气流对板上的封闭液膜流动及溪流流动的影响,并指出当前的最大有效气速(uge=5.0m/s)下,可减小水相的流动速度且保证其流动形态不发生变化,从传质传热角度讲,是有利的。另外,也给出了与文献中实验数据的对比,从而验证该改进模型的可行性。
     3.在改进的VOF模型基础上初步建立了逆流操作下的气-液两相吸收传质模型。采用该吸收传质模型,研究了垂直光滑平板上、封闭液膜的瞬态流体力学参数与传质的特点。研究结果与文献中的实验观察定性一致。另外,也开展了相应的实验,通过测量和分析出口处的浓度来验证该吸收传质模型是有效的。
     4.将确定参数的VOF模型进行扩展,对倾斜板上的气-液-液三相流体流动进行了三维建模与仿真,研究了互不相溶的两液相并流情况下的流动形态与特点。研究结果表明,互不相溶的多液相流动是集合了溪流、滴流和封闭液膜流动的复杂流动:一液相以近似封闭液膜状流动,而另一液相则以溪流或滴流的方式流动;两液相中不同的进料次序可得到不同的流动形态,有可能会导致夹带的产生;对近似封闭液膜相而言,第二个液相的引入可降低封闭液膜相的流动速度。另外,也开展了相应的实验研究,通过图形与参数的仿真和实验对比,从定性和定量两个角度来验证该扩展模型是可行的。
     5.将改进的VOF模型进行扩展,通过与压力降模型的结合,建立了逆流操作下的气-液-液三相流体流动的数学模型。采用该模型,数值研究了逆向气流对两两互不相溶的液相流体流动的影响。研究结果表明,不同的进料次序,会导致气相对两液相的影响不同、相间的稳定性不同;同液体流量下的单液相流动与两液相流动相比较而言,逆向气流对两液相流动下的影响要小很多,从而表明液-液相间存在很强的相互作用。但是这些结论还有待于进一步的实验验证。
The prediction of the separation efficiencies for the structured packed columns is the key to improve the economic benefit of the unit operations. There are many factors to affect the separation efficiencies of packed columns, including the macroscopic variables (e.g.the feed rate, the material, the pressure, the temperature) and the microscopic liquid flow behavior and distribution. Especially in the process industries, the appearance of the second liquid is inevitable. Due to the interaction between the two liquids, the liquid flow behavior is diverse and time-varying which leads to the uncertainties of the separation efficiencies for the structured packed columns. Therefore, it is necessary to investigate the local flow behavior of the liquid phase and the influencing factors of the separation efficiencies.
     From the viewpoint of control and operation, the interfacial area for mass transfer and the residence time should be increased in order to improve the separation efficiencies of the structured packed columns. It has been known that the film flow provides a maximum interfacial area between the gas and liquid phases comparing to the other flow behavior in distillations. Therefore, a better knowledge on the influencing factors for the liquid flow behavior is needed, which is one of the focuses of this dissertation.
     Since the liquid flow behavior such as film flow, film breakup with rivulet and droplet flow takes place only in a few inches inside packings, first investigations are carried out on an inclined plate. In this dissertation, three-dimensional modeling and simulation are conducted to investigate the liquid flow behavior for gas-liquid and gas-liquid-liquid flows. The results show that the liquid flow rate, the surface tension (including the contact angle) and the drag force between a liquid and a counter-current gas phases play major roles for film flow in the case of gas–liquid flow. Furthermore, they are mutually related to each other and mutually restrict each other. In the case of gas-liquid-liquid flow, the feed sequence is another important factor for the liquid flow behavior besides the influencing factors above. The investigations on these factors provide the theoretical guidance for the optimization design and process control of the structured packed columns.
     The main contributions of this dissertation including:
     1. A basic CFD model, VOF model, is applied to investigate the flow behavior of a liquid phase flowing on an inclined plate in the case without a counter-current gas flow. Simulations are carried out in three-dimension to describe the film flow and the film breakup with rivulets or droplets flow. The results show that the liquid flow rate and the surface tension (including the contact angle) have an important influence on the liquid flow behavior. On the other hand, experiments are performed to validate the model.
     2. A drag force between a liquid phase and a counter-current gas flow derived from the pressure drop model is included in the VOF model. With the developed model, the influences of a gas phase on a liquid phase including film flow and rivulet flow are investigated in three-dimension. The results show that the current gas velocity will not change the liquid flow behavior but could decrease the liquid velocity, which are beneficial for the mass transfer in structured packed columns. In addition, the developed model is further validated with the experimental data found in the literature.
     3. A three-dimensional CFD model taking the local absorption mechanism into account is developed for a film flow on a vertical plate with a counter-current gas flow. With the model, the instantaneous hydrodynamics and mass transfer characteristics of the liquid phase are investigated quantitatively. Experiments are carried out with the same geometry and operation system used in simulations. A comparison of the outlet concentration between the experimental data and simulation results is presented to validate the model.
     4. An extension of the VOF model is considered to investigate the flow behavior of two liquids flowing on an inclined plate in the case without a counter-current gas flow. The results show that one liquid forms a film on the plate, the other one forms rivulet or droplet and moves below or above the film surface. It also illustrate that the feed sequence is another important factor for the multi-liquid flow behavior. Besides, the appearance of the second liquid phase could reduce the velocity of the film flow. Experiments are carried out to validate the extension of the VOF model.
     5. An extension of the developed model based on the VOF model and pressure drop model is performed to numerically investigate the influence of the gas phase on the two liquid phases. The simulation results illustrate that the feed sequence could affect the flow characteristic and stability of the two liquid phases. For the same the liquid flow rate, the influence of the counter-current gas phase on the liquid phase in the case of two liquids flow is smaller than that in the case of one liquid flow. However, the simulation results need to be validated with the experimental data in the future.
引文
[1] Iliuta I, Petre CF, Larachi F. Hydrodynamic continuum model for two-phase flow structured-packing-containing columns. Chem Eng Sci, 2004, 59 (4): 879-888
    [2]陈敏恒,丛德滋,方图南,齐鸣斋.化工原理.北京:化学工业出版社, 2006.
    [3]董谊仁,裘俊红,侯章德.填料塔的流体力学和传质.化工生产与技术, 1997, 13(1): 1-9.
    [4]张秀莉,李然,李锡源,麦本熙.填料层液体分布的理论及数学模型.吉林工学院学报, 2001, 3(1): 7-10.
    [5]喻冬秀,程江,杨卓如.填料塔的理论研究.石油化工设备, 2003, 32 (4): 46-50.
    [6] Tour RS, Lerman F. The unconfined distribution of liquid in tower packing. Trans AIChE, 1939, 35: 719-726.
    [7] Cihla Z, Schmidt O. Behavior of liquids tricking through the packing in a cylindrical column. Coll Czech Chem Comm, 1957, 22 (3): 896-907.
    [8] Porter KE, Jones MC. Theoretical prediction of liquid distribution in packed column with wall effect. Trans Inst Chem Engres, 1963, 41 (1): 240-247.
    [9] Kolar V, Stanek V. Distribution of liquid over random packing. Coll Czech Chem Comm, 1965, 30(6):1045-1054.
    [10] Dutkai E, Ruckenstein E. Liquid distribution in packed column. Chem Eng Sci, 1968, 23(3):1365-1373.
    [11] Dutkai E, Ruckenstein E. New experiments concerning the distribution of a liquid in a packed column. Chem Eng Sci, 1970, 25(3): 483-488.
    [12] Onda K, Takeuchi N, Maeda Y. Liquid distribution in a packed column. Chem Eng Sci, 1973, 28 (9): 1677-1683.
    [13]袁孝竞,李富生,余国琮.大型填料塔内液相分布状态的研究.化工学报. 1989, 40(6): 686-692.
    [14] Le Goff P, Lespinasse B. Hydrodynamics of packed columns. Rev Inst France Pet, 1963, 17: 21.
    [15] Jameson GJ. A model for liquid distribution in packed columns and trakle-bed reactors. Trans Instn Chem Engrs, 1966, 44: T198.
    [16]徐崇嗣,娄建中,姜庆泉.金属波纹填料液流分布的研究.化工学报, 1986, 37 (4):402-411.
    [17]张泽庭,王树楹,余国琮.填料塔液相混合的研究(II)二维扩散模型.化工学报, 1988, 3: 292-298.
    [18]张泽庭,王树楹,余国琮.填料塔传质模型的研究—二维混合池随机模型.化工学报, 1989, 1: 53-59.
    [19] Hanley B, Dunbobbin, B, Bennet D. A unifined model for countercurrent vapor/liquid packed columns. 1. Pressure drop. Ind Eng Chem Res, 1994, 33 (5): 1208-1221.
    [20] Grosser K, Carbonell RG, Sundaresan S. Onset of pulsing in two-phase cocurrent downflow through a paced bed. AIChE J, 1988, 34 (11): 1850-1860.
    [21] Dankworth DC, Sundaresan S. Macroscopic model for countercurrent gas-liquid flow in packed columns. AIChE J, 1989, 35 (8): 1282-1292.
    [22] Ergun S. Fluid flow through packed columns. Chem Eng Progr, 1952, 48 (2): 89-94.
    [23] Stanek V, Szekely J. Three-dimensional flow of fluids through nonuniform packed beds. AIChE J, 1974, 20 (5): 974-980.
    [24]谷芳.规整填料局部流动与传质的计算流体力学研究. [博士学位论文].天津:天津大学, 2005.
    [25]王琨,张鹏,刘春江.计算流体力学在填料塔中的应用. 2004, 18 (6): 5-8.
    [26] Yu KT, Yuan XJ, Dong GQ. Two phase flow and heat transfer. ISME, 1992: 215.
    [27]张鹏,刘春江,成弘,余国琮,规整填料塔内流体流动研究进展及展望.化学工程, 2001, 29: 66-70.
    [28] Spiegel L, Knoche M. Influence of hydraulic conditions on separation efficiency of optiflow. Chem Eng Res Des, 1999, 77: 609-612.
    [29] Edwards DP, Krishnamurthy KR, Potthoff RW. Development of an improved method to quantify maldistribution and its effect on structrued packing column performance. Chem Eng Res Des, 1999, 77: 656-662.
    [30] Mahr B, Mewes D. Two-phase flow in structured packings: modelling and calculation on a macroscopic scale. AIChE J, 2008, 54(3): 614-626.
    [31] Hodson JS, Fletcher JP, Porter KE. Fluid mechanical studies of structured distillation packings. Institution of Chemical Engineers Symposium Series-- Dist and Absp, 1997, 2 (142): 999-1007.
    [32]陈强.喷射式并流填料塔板结构单元中流体力学行为和填料层内三维流场数值模拟的研究. [博士学位论文].天津:天津大学, 1998.
    [33] Van Gulijk C. Using computational fluid dynamics to calculate transversal dispersion in a structured packed bed. Comput Chem Eng, 1998, 22 (S1): S767-S770.
    [34] Van Baten JM, Ellenberger J, Krishna R. Radial and axial dispersion of the liquid phase within a KATAPAK-S structure: experiments vs. CFD simulation. Chem Eng Sci, 2001, 56 (3): 813-821.
    [35] Van Baten JM, Krishna R. Liquid-phase mass transfer within KATAPAK-S structures studied using computational fluid dynamics simulations. Catalysis Today, 2001, 69: 371-377.
    [36] Van Baten JM, Krishna R. Gas and liquid phase mass transfer within KATAPAK-S structures studied using CFD simulations. Chem Eng Sci, 2002, 57: 1531-1536.
    [37] Szulczewska B, Zbicinski I, Gorak A. Liquid flow on Strucured Pakcing: CFD Simulations and Experimental Study. Chem Eng Technol, 2003, 26: 584-590.
    [38] Gao D, Morley NB, Dhir V. Numerical simulation of wavy falling film flow using VOF method. J Comput Phys, 2003, 192(2): 624-642.
    [39] Lakehal D, Fulgosi M, Yadigaroglu G. Direct numerical simulation of turbulent heat transfer across a mobile, sheared gas-liquid interface. J Heat Trans, 2003, 125: 1129-1138.
    [40] Gu F, Liu CJ, Yuan XG. CFD Simulations of liquid film flow on inclined plates. Chem Eng Technol, 2004, 27(10): 1099-1104.
    [41]翟建华,陈芳.精馏塔板上液相流场的实验研究.河北工业科技, 2006. 23 (6): 373-376.
    [42] Hoek PJ, Wesselingh JA, Zuiderweg FJ. Small scale and large scale liquid maldistribution in packed columns. Chem Eng Res Des, 1986, 64 (6):431-449.
    [43] Gunn DJ, AL-Saffar HBS. Liquid distribution in packed columns. Chem Eng Sci, 1993, 48 (22): 3845-3854.
    [44] Castellane FS, Friendman MI, Spencer JL. Characterization of mixing in reactor systems through analysis of regional tracer dilution data obtained with a gamma camera. AIChE J, 1984, 30 (2): 207-213.
    [45]余国琮,黄洁.大型塔板的模拟与板效率的研究(I)不均匀速度场的涡流扩散模型.化工学报, 1981a, 32(1): 11-18.
    [46] Porter KE, Yu KT, Chamhers S. Flow patterns and temperature profiles on a 2.44m diameter sieve tray. In: Int Chem E Symp Series 1, 1992, 128: A257-A276.
    [47]刘春江,袁希钢,王树楹,高扬,余国琮.精馏塔塔板两相流理论及实验研究.化学工程,2002, 30 (2) : 7-11.
    [48] Jensen KD. Flow measurements. J of the Braz Soc of Mech Sci & Eng, 2004, XXVI (4): 400-419.
    [49] Delhaye JM, Galaup JP. Hot-film anemometry in air-water flow. Symposium on Turbulence in Liquids, 4th. University of Missouri-Rolla, 1975, 83.
    [50]刘富善.塔板上两相流场测定及沟流的研究. [博士学位论文].天津:天津大学, 1995.
    [51]刘春江.蒸馏塔板上液相流速场的理论及实验研究. [博士学位论文].天津:天津大学, 1998.
    [52] Aksel N, Schmidtche M. Analysis of the overall accuracy in LDV measurement of film flow in an inclined channel. Meas Sci Technol, 1996, 7: 1140-1147.
    [53] Mudawar I, Houpt R. A measurement of mass and momentum transport in wavy-laminar falling liquid films. Int J Heat Mass Transfer, 1993, 36(17): 4151-4162.
    [54]王希麟,张大力,常辙,何崧.两相流场粒子成像测速技术(PTV-PIV)初探.力学学报, 1998, 30 (1): 121-125.
    [55]张明亮,陈刚,许联锋,邵建斌,李志高,黄兆伟.水气两相流中稀疏气泡流动速度场的数字图像测量初探.力学季刊, 2004, 25 (2): 208-212.
    [56] Ausner I, Hoffmann A, Repke J-U, Wozny G. Multiphase film flow investigations on inclined plates, 3rd International Berlin Workshop, 2005: 224-234.
    [57] Ausner I, Hoffmann A, Repke J-U, Auracher H, Wozny G. Two-liquid phase film flow over inclined plates. 7th World Congress of Chemical Engineering, 2005, Glasgow, 2005a, S. auf CD–ROM.
    [58] Ausner I, Hoffmann A, Repke J-U, Wozny G. Analyzing the velocity field of multiphase film flow– 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 2004.
    [59] Ausner I, Hoffmann A, Repke J-U, Wozny G. Experimentelle und numerische untersuchungen mehrphasiger Filmstr?mungen. Chemie Ingenieur Technik, 2005, 77(6): 735–741.
    [60] Paschke S, Repke J-U, Wozny G. A way to analyze liquid film flows on opaque plate materials, 4th International Berlin Workshop, Berlin, 2007: 143-154.
    [61] Paschke S, Ausner I, Hoffmann A., Xu YY, Repke J-U, Wozny G. Detailed investigations of two-liquid phase flows on a packing surface, 17th ESCAPE, 2007.
    [62] Paschke S, Thiele R, Repke J-U. Untersuchung des Stoffübergang-verhaltens dreiphsig betrieberne Fallfilmabsorber, Chemie Ingenieur Technik, 2009, 81(3): 297-304.
    [63] Zhao L, Cerro RL. Experimental characterization of viscous film flows over complex surfaces. Int J Multiphase Flow, 1992,18: 495-516.
    [64] Brauer H. Grundlagen der einphasen- und mehrphasenstr?munge. Aarau und Frankfurt: Sauerl?nder, 1971.
    [65] Leuthner S, Auracher H. A high frequencz impedance probe for wave structure identification of falling films. Proccedings of the 35th Two Phase Flow Group Meeting. Brussels, Belgium, 1997.
    [66] Adomeit P, Renz U. Hydrodynamics of three-dimensional waves in laminar falling films. Int J Multiphase Flow, 2000, 25(7):1183-1208.
    [67] Miyara A. Numerical analysis on flow dynamics and heat transfer of falling liquid films with interfacial waves, Heat and Mass Trans, 1999, 35: 298-306.
    [68] Moran K, Inumaru J, Kawaji M. Instantaneous hydrodynamics of a laminar wave liquid film. Int J Multiphase Flow, 1999, 28(5): 731-755.
    [69] Takahama H, Kato S. Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow. Int J Multiphase Flow, 1980, 6: 203-215.
    [70] Akio M. Numerical simulation of wavy liquid film flowing down on a vertical wall and an inclined wall. Int J Therm Sci, 2000, 39(9): 1015-1027.
    [71] Kumar R, Gottmann M, Sridhar KR. Film thickness and wave velocity measurements in a vertical duct. J Fluids Eng, 2002, 124: 634-642.
    [72] Plimon A. Velocity profiles in shear force driven wall films. Exp in Fluids, 1991, 11(5): 339-340.
    [73] Ambrosini W, Forgione N, Oriolo F. Statistical characteristics of a water film falling down a flat plate at different inclinations and temperatures. Int J Multiphase Flow, 2002, 28: 1521-1540.
    [74] Donied A. Laminar flow of a liquid down a vertical solid surface, maximum thickness of liquid rivulet. PCH Physicochemical hydrodynamics, 1984, 5(2): 143-152.
    [75] Johnso MFG, Schluter RA, Miksis MJ, Bankoff SG. Experimental study of rivulet formation on an inclined plate by fluorescent imaging. J Fluid Mech, 1999, 394: 339-354.
    [76] McCreery GE, McEligot DM. Transition to meandering rivulet flow in vertical paraller-platechannels. J Fluid Eng, 2004, 126(3): 498-499.
    [77] Myers TG,. Liang HX, Wetton B. The stability and flow of a rivulet driven by interfacial shear and gravity. Int J Non-linear Mech, 2004, 39: 1239-1249.
    [78] Hoffmann A, Ausner I, Repke J-U, Wozny G. Aufrei?end filmstr?mung auf geneigten oberfl?chen. Chemie Inginieur Technik, 2004, 76 (8): 1065-1068.
    [79] Hoffmann A, Ausner I, Repke J-U, Wozny G. Fluid dynamics in multiphase distillation processes in packed towers, Comput Chem Eng, 2005, 29: 1433-1437.
    [80] Hoffmann A, Ausner I, Repke J-U, Wozny G. Detailed investigation of multiphase (gas-liquid and gas-liquid-liquid) flow behavior on inclined plates, Chem.Eng & Des. 2006, 84 (A2): 147-154.
    [81] Repke J-U, Ausner I, Paschke S, Hoffmann A, Wozny G. On the track to understanding Three phases in one tower, Chem Eng & Des, 2007, 85: 50-58.
    [82] Nusselt W. Die oberfl?chenkondensation des wasserdampfes. VDI-Zeitschrift, 1916, 60 (27): 541-546.
    [83]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社, 2004.
    [84] Ferziger JH, Peric M. Computational methods for fluid dynamics-3rd Edition. New York: Springer-Verlag, 2003.
    [85] Ho FCK, Hummer RL. Average velocity distributions within falling liquid films. Chem Eng Sci, 1970, 25:1225-1237.
    [86] Karimi G, Kawaji M. An Experimental study of freely falling films in a vertical tube, Chem Eng Sci, 1997, 53(20): 3501-3512.
    [87] Karimi G, Kawaji M. Flow characteristics and circulatory motion in wavy falling films with and without counter-current gas flow. Int J Multiphase Flow, 1999, 25(20): 1305-1319.
    [88] Karimi G, Kawaji M. Flooding in vertical counter-current annular flow. Nuclear Eng Des, 2000, 200: 95-105.
    [89] YIH CS. Stability of parallel laminar flow with a free surface. Proceedings of the Second U. S. National congress on Applied Mechanics, 1954: 623-628.
    [90] YIH CS. Stability of liquid flowing down an inclined plane. Physics of Fluid 6, 1963: 321
    [91] Krantz WB, Goren SL. Stability of thin liquids films flowing down a plane. Chem Fundam, 1971, 10(1): 91-101.
    [92] Alekseenko SV, Nakoryokov VE, Pokuasev BG. Wave formation on vertical falling liquidfilm. Multiphase Flow, 1985, 11(5): 607-627.
    [93] Liu J, Gollub JP. Solitary wave dynamics of film flows. Phys Fluids, 1994, 6(16): 1702-1706.
    [94] Liu J, Schneider JB, Gollub JP. Three-dimenstional instabilites of film flows. Phys Fluids, 1995, 7(1): 55-59.
    [95] Brauner H. Str?mung und w?rmeübergang bei rieselfilmen. VDI-Forschungsh. 457, Düsseldorf, 1956.
    [96] Al-Sibai F. Experimentelle untersuchung der str?mungscharakteristik und des w?rmeübergangs bei welligen rieselfilmen. [Dissertation]. Aachen: RWTH-Aachen, 2005.
    [97] Saber HH, El-Genk MS. On the breakup of a thin liquid film subject to interfacial shear. J Fluid Mechanics, 2004, 500: 113-133.
    [98] Dussan, EB. On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annual Review of Fluid Mechanics, 1979, 11: 371-400.
    [99] Young T. An essay on the cohesion of fluids. Philos Trans R Soc, 1805, 95: 65-87.
    [100] Hartley DE, Murgatroyd W. Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces. Int J Heat Mass Transfer, 1964, 7: 1003-1015.
    [101] Podgorski T, Flesselles JM, Limat L. Dry arches within flowing films. Physics of Fluids, 1999, 11: 845-852.
    [102] El-Genk MS, Saber HH. Minimum thickness of a flowing down liquid film on a vertical surface. Int J Heat Mass Transfer, 2001, 24: 2809-2825.
    [103] Towell GD, Rothfeld LB. Hydrodynamics of rivulet flow, AIChE J, 1966, 12: 972-980
    [104] Ataki A, Bart HJ. Experimental study of rivulet liquid flow on an inclined plate. Proceddings International Conference on Distillation and Absorption, 2002, Berlin, CD-ROM.
    [105] Doniec A. Laminar flow of a liquid down a vertical solid surface. Canadian J Chem Eng, 1991, 69: 198-202.
    [106] Young GW, Davis SH. Rivulet instabilities. J. Fluid. Mech. 1987, 176: 1-31.
    [107] Schmuki P, Laso M. On the stability of rivulet flow. J Fluid Mech, 1990, 215: 125-143.
    [108] Shetty S, Cerro RL. Spreading of liquid point sources over inclined solid surfaces. Ind Eng Chem Res, 1995, 34: 4078-4086.
    [109] Sikalo S, Tropea C, Ganic EN. Dynamic wetting angle of a spreading droplet. Exp Therm Fluid Sci, 2005, 29: 795-802.
    [110] Nicolaiewsky EMA, Tavares FW, Rajagopal K, Fair JR. Liquid film flow and area generationin structured packed columns. Powder Technol. 1999, 104(1): 84-94.
    [111] Ataki A, Bart H-J. The use of the VOF model to study the wetting of solid surfaces. Chem Eng Technol, 2004, 27: 1109-1114.
    [112] Ataki A, Bart H-J. Experimental and CFD simulation study for the wetting of structured packing elements with liquids. Chem Eng Technol, 2006, 29: 336-346.
    [113] Ataki A. Wetting of structured packing elements-CFD and experiment. Dissertation 2006.
    [114] Byers CH, King CJ. Gas-liquid mass transfer with a tangentially moving interface: part I: experimental studies. AIChE J, 1967, 13(4): 628-636.
    [115] Boyd DP, Marchello JM. Role of films and waves on gas absorption. Chem Eng Sci, 1966, 21: 769-776.
    [116] Nawrocki PA, Xu ZP, Chuang KT. Mass transfer in structured corrugated packing. Can J Chem Eng, 1991, 69: 1336-1343.
    [117] Littel RJ, Versteeg GF, van Swaaij WPM. Physical absorption of CO2 and propene Into toluene/water emulsions. AIChE J, 1994, 40(10): 1629-1638.
    [118] Tamburrino A, Gulliver JS. Free-surface turbulence and mass transfer in a channel flow. AIChE J, 2002, 48(12): 2732-2743.
    [119] Billet R, Schultes M. Predicting mass transfer in packed columns. Chem Eng Technol, 1993, 16: 1-9.
    [120] Billet R, Schultes M. Fluid dynamics and mass transfer in the total capacity range of packed columns up to the flood point. Chem Eng Technol, 1995, 18: 371-379.
    [121] Iliuta I, Larachi F. Mechanistic model for structured-packing-containing columns: irrigated pressure drop, liquid holdup, and packing fractional wetted area. Ind Eng Chem Res, 2001, 40: 5140-5146.
    [122] Oluji? ?. Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings. Chem Bio Eng Quarterly, 1997, 11(1): 31-46.
    [123] Adisorn A, Paitoon T. Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions. Chem Eng Sci, 2000, 55: 3651-3663.
    [124] Adisorn A, Amit C, Paitoon T, Aomornvadee V. Mathematical modeling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chem Eng Sci, 2003, 58: 4037-4053.
    [125] Kloker M, Kenig EY, Gorak A. On the development of new column internals for reactive separations via integration of CFD and process simulation. Catalysis Today, 2003, 79-80: 479-485.
    [126] Jepsen JC, Crosser OK, Perry RH. The effect of wave induced turbulence on the rate of absorption of gases in falling liquid films. AIChE J, 1966, 12(1): 186-192.
    [127] Caussade B, George J, Masbernat L. Experimental study and parameterization of interfacial gas absorption. AIChE J, 1990, 36(2): 265-274.
    [128] Wolff LM, Hanratty TJ. Instantaneous concentration profiles of oxygen accompanying absorption in a stratified flow. Exp In Fluids, 1994, 16: 385-392.
    [129] Yoshimura PN, Nosoko T, Nagata T. Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves—Some experimental observations and modelling. Chem Eng Sci, 1996, 51: 1231-1240.
    [130] Yu LM, Zeng AW, Yu KT. Effect of interfacial velocity fluctuations on the enhancement of the mass-transfer process in falling film flow. Ind Eng Chem Res, 2006, 45(3): 1201-1210.
    [131] McCready MJ, Vassihadou E, Hanratty TJ. Computer simulation of turbulent mass transfer at a mobile interface. AIChE J, 1986, 32: 1108-1115.
    [132] Sideman S, Horn H, Moalem D. Tranparent characteristics of films flowing over horizontal smooth tubes. Int J Heat Mass Transfer, 1978, 21: 285-294.
    [133] Seban RA, Faghri A. Wave effects on the transport ot falling laminar liquid films. J Heat Transfer Trans, 1978, ASME 100: 143-147.
    [134] Brauer H. Stoff-austausch beim rieselfilm. Chem Ing Tech, 1958, 30(2): 75-84.
    [135] Fulford GD. The flow of liquids in thin films. Advances in Chemical Engineering, 1964, 5: 151-236.
    [136] Portalski S, Clegg AJ. Interfacial area increase in rippled film flow on wetted wall columns. Chem Eng Sci, 1971, 26(6): 773-784.
    [137] Stirba C, Hurt DM. Turbulence in faling liquid films. AIChE J, 1955:178-184.
    [138] Brauner N, Maron DM. Characteristics of inclined thin films, waviness and the associated mass transfer. Int J Heat Mass Transfer, 1982, 25(1): 99-110.
    [139] Brauner N, Maron DM. Modeling of wavy flow in inclined thin films. Chem Eng Sci, 1983, 38: 775-788.
    [140] Wasden FK, Dukler AE. A numerical study of mass transfer in free falling wavy films. AIChEJ, 1990, 36(9): 1379-1390.
    [141] Sisoev GM, Matar OK, Lawrence CJ. Absorption of gas into wavy falling film. Chem Eng Sci, 2005, 60: 827-838.
    [142] Atmakidis T, Kenig EY. A study on hydrodynamics and mass transfer of moving liquid layers using computation fluid dynamics. ESCAPE 17th, 2006.
    [143] Xu ZF, Khoo BC, Carpenter K. Scalar transfer across the air-water turbulent interface. AIChE, Annual Meeting, 2006.
    [144] Xu ZF, Khoo BC, Wijeysundera NE. Mass transfer across the falling film: simulations and experiments. Chem Eng Sci, 2008, 63: 2559-2575.
    [145]谷芳,刘春江,余黎明,周超凡,袁希钢,余国琮.气液两相降膜流动及传质过程的CFD研究.高校化学工程学报, 2005, 19(4): 438-443.
    [146] Rahimi M-R, Rahimi R, Shahraki F, Zivdar M. Prediction of temperature and concentration distributions of distillation sieve trays by CFD. Tankang J Sci Eng, 2006, 9 (3): 265-278.
    [147] Yin FH, Sun CG, Afacan A, Nandakumar K, Chuang KT. CFD modeling of mass-transfer processes in randomly packed distillation columns. Ind Eng Chem Res, 2000, 39: 1369-1380.
    [148] Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn, 1968, 1(1): 56-62.
    [149] Mittrovic J, Reimann E. Kondensation von dampfgemischen nicht mischbarer flüssigkeiten. Chemie Ingenieur Technik, 2001, 73(9): 1095-1115.
    [150] Harlow FH, Welch JF. Numerical calculations of time dependent viscous incompressible flow of fluid with free surface. Phys Fluids, 1965, 8(12): 2182-2189
    [151] Hirt CW, Nichols BD. Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys, 1981, 39(1): 201-225.
    [152]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社, 2001.
    [153] Youngs DL. Time-dependent multi-material flow with large fluid distortion. In Morton KW and Baines MJ (editors). Numerical Methods for Fluid Dynamics. Academic Press, 1982: 273-285.
    [154]王希麟,张大力,常辙,何崧.两相流场粒子成像测速技术(PTV-PIV)初探.力学学报, 1998, 30 (1): 121-125.
    [155]杨小林,严敬. PIV测速原理与应用.西安大学学报, 2005, 24 (1): 19-20.
    [156]杨延平,陆振华.汽油机冷起动附壁油膜研究.内燃机工程, 2008, 29 (5): 47-51.
    [157] Brackbill JU, Kothe DB, Zemach C. A continuum method for modelling surface tension. J Comput Phys. 1992, 100: 335– 354.
    [158] Handbook of FLUENT 6.3, ANSYS Inc., 2007
    [159] Omega Optical, www.omegafilters.com
    [160] Küster FW. Rechentafeln für die chemische anlytik-103. Auflage. Water de Gruyter-Verlag, Berlin, 1985. ISBN:3110105330.
    [161]李韬,邓康耀,程用胜.激光诱导荧光法测平板油膜厚度.中国内燃机学会第七届学术年会论文集, 2007: 392-395.
    [162]陆霄露,邓康耀.采用激光诱导荧光法测量油膜厚度的研究.内燃机学报, 2008, 26 (1): 92-95.
    [163] Vlachogiannis M, Bontozoglou V. Experiments on laminar film flow along a periodic wall. J Fluid Mech, 2002, 457: 133-156.
    [164] Iliuta I, Thyrion FC, Bolle L, Giot M. Comparison of hydrodynamic parameters for countercurrent and cocurrent flow through packed beds. Chem Eng Technol, 1997, 20: 171-181.
    [165] Woerlee GF, Berends J, Olujic Z, Graauw Jd. A comprehensive model for the pressure drop in vertical pipes and packed columns. Chem Eng J, 2001, 84 (3): 367-379.
    [166] Zapke A, Kr?ger DG. The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes. Int J Multiphase Flow, 1996, 22: 461-472.
    [167] Zapke A, Kr?ger DG. Countercurrent gas-liquid flow in inclined and vertical ducts—I: Flow patterns, pressure drops characteristics and flooding. Int J Multiphase Flow, 2000, 26: 1439-1455
    [168] Stockfleth R, Brunner G. Film thickness, flow regimes, and flooding in countercurrent annular flow of a falling film at high pressures. Ind Eng Chem Res, 2001, 40: 6014-6020.
    [169] Stephan M, Mayinger F. Experimental and analytical study of counter-current flow limitation in vertical gas/liquid flows. Chem Eng Technol, 1992, 15: 1-62.
    [170] Wallis GB. One dimensional two-phase flow. McGraw-Hill, New York. 1969
    [171] Maharudrayya S, Jayanti S. Investigation of postflooding conditions in countercurrent gas-liquid flow. AIChE J, 2002, 48(2): 212-220.
    [172] Bharathan D, Wallis GB, Richter HJ. Air-water countercurrent annular flow. 1979, Electric Power Research Institute Rep. EPRI-NP_1165, Palo Alto, CA.
    [173] Vijayan M, Jayanti S, Balakrishman AR. Effect of tube diameter on flooding. Int J Multiphase Flow, 2001, 27: 797-816.
    [174] Fore LB, Beus SG, Bauer RC. Interfacial friction in gas-liquid annular flow—analogies to full and transition roughness. Int J Multiphase Flow, 2000, 26: 1755-1769.
    [175] Henstock WH, Hanratty TJ. The interfacial drag and the height of the wall layer in annular flows. AIChE J, 1976, 22(6): 990-1000.
    [176] Asali JC. Entrainment in vertical gas-liquid annular flows, PhD Dissertation, University of Illinois. 1984.
    [177] Sudo Y. Mechanism and effects of predominant parameters regarding limitation of falling water in vertical counter-current two-phase flow. J Heat Transfer (Trans. ASME), 1996, 118: 715-724..
    [178] Drosos EIP, Paras SV, Karabelas AJ. Counter-current gas-liquid flow in vertical narrow channels-Film characteristics and flooding phenomena. Int J Multiphase Flow, 2006, 32(1): 51-81.
    [179] Roy RP, Jain S. A study of thin water film flow down an inclined plate without and with countercurrent air flow. Experiments in Fluids, 1989, 7: 318-328.
    [180] Culkin JB, David SH. Meandering of Water Rivulets. AIChE J., 1984, 30(2): 263-267.
    [181] Whitmann WG. The two-film theory of gas absorption. Int J Heat Mass Transfer, 1923, 5(5): 429-433.
    [182] Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans Am Inst Chem Eng, 1935, 31: 365-389.
    [183] Dankwerts PV. Significance of liquid-film coefficients in gas absorption. Ind Eng Chem, 1951, 43: 1460-1467.
    [184] Rukenstein E. A generalized penetration theory for unsteady convective mass transfer. Chem Eng Sci, 1968, 23: 363-371.
    [185] Oliver DR. Mass transfer to liquid films on an inclined plane. Chem Eng Sci, 1968, 23: 525-536.
    [186] McCready MA, Hanratty TJ. Effect of air shear on gas absorption by a liquid film. AIChE J, 1985, 34: 2066-2074.
    [187] Broecker HC, Petermann J, Siems J. The influence of wind on CO2-exchange in a wind-wave tunnel including the effects of monolayers. J Marine Res, 1978, 36: 595-610.
    [188] Liss PS. Process of gas exchange across an air-water interface, Dees-Sea Res, 1973, 20(3): 221-238.
    [189] J?hne B, Wais T, Memery L. He and Rn gas exchange experiments in the large wind wave facility of IMST. J Geophys Res, 1985, 90(C6): 11989-11997.
    [190] Brtko WJ, Kabel RL. Transfer of gases at natural air-water interfaces. J Phys Oceanography, 1978, 8: 543-556.
    [191] Yih SM, Kuo CC. Design and testing of a new type of falling film gas-liquid contacting device. AIChE J, 1988, 34(3): 499-501.
    [192] Fredecric KW, Dukler AE. A numerical study of mass transfer in free falling wave films. AIChE J, 1990, 36: 1379-1390.
    [193] Banerijje S. Turbulence structure and transport mechanisums at interfaces. Proc 9th International Heat Transfer Conf, 1991: 395-418.
    [194] Duffey RB, Hughes ED. Gas mass transfer for stratified flows. American Society of Mechanical Engineers, Fluid Endineering Division, 1995: 131-143.
    [195] Imashi N, Suzuki Y, Hozawa M, Fujinawa K. Interfacial turbulence in gas-liquid mass transfer. Int. Chem. Eng. 1982, 22(4): 659-665.
    [196] Vazquez G, Antorrena G, Navaza JM, Santos V. Absorption of CO2 by water and surfactant solutions in the presence of induced marangoni effect. Chem. Eng. Sci, 1996, 51(12): 3317-3324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700