用户名: 密码: 验证码:
禽病原性大肠杆菌与尿道致病性大肠杆菌相关铁摄取系统与调控蛋白RfaH及荚膜致病作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌是寄居在哺乳动物和禽类肠道中正常菌群之一,这一物种由非致病性菌株和具有不同致病潜能的致病菌株组成。少数致病性菌株,可引起机体肠道感染和肠道外感染两大类疾病。致肠道外感染的大肠杆菌,如尿道致病性大肠杆菌(Uropathogenic E.coli, UPEC),新生儿脑膜炎大肠杆菌(Neonatal meningitis-associated E.coli, NMEC)和败血症大肠杆菌(Sepsis-causing E.coli, SEPEC)己被Johnson和Russo归为一种新型致病性大肠杆菌—肠道外致病性大肠杆菌(Extraintestinal pathogenic E.coli, ExPEC)。另外,引起家禽局部或全身性感染的禽病原性大肠杆菌(Avian pathogenic E.coli, APEC)与引起人类感染的ExPEC (NMEC和UPEC)具有某些相似的致病因子,如1型菌毛、P菌毛、荚膜、铁摄取系统、侵袭素IbeA等。有假设认为禽可能是UPEC的主要携带者,或者APEC可能是UPEC毒力基因的贮库。
     本研究主要通过探讨荚膜、铁摄取系统、转录调控蛋白RfaH对APEC和UPEC致病性的影响,比较两者毒力因子和致病机理的相似性,从而加深我们对APEC. UPEC毒力基因的形成、演化、致病机制的理解,强化我们对APEC作为UPEC毒力基因贮库这一推断的认识,为深入研究尿道感染(Urinary tract infections, UTIs)和禽大肠杆菌病的致病机理和特异防制措施奠定基础。
     1.铁摄取系统对肠道外致病性大肠杆菌毒力的影响
     APEC和UPEC都含有多种铁摄取系统,包括血红素和铁结合性复合物。本研究以血红素、沙门菌素和气杆菌素三种铁摄取系统为研究对象,分别选取其摄铁相关基因chuT、 iroD、iucD,运用λRed重组系统构建APEC E058和UPEC U17基因缺失株,进行了多项体外及体内试验,评价其致病性,旨在探究铁摄取系统与APEC和UPEC致病性之间的关系,并比较两者毒力因子之间的相似性,为深入研究APEC和UPEC的致病机理和特异性防制措施奠定基础。研究结果显示,在SPF鸡感染模型中,沙门菌素缺失株E058ΔiroD和U17ΔiroD与野生株相比,致病力显著下降,气杆菌素缺失株E058ΔiucD和U17ΔiucD在部分脏器中定植能力下降,而血红素缺失株E058ΔchuT和U17ΔchuT未见致弱。三基因缺失株E058ΔchuTΔiroDΔiucD和U17ΔchuTΔiroDΔiucD致弱程度最为显著。组织病理学结果显示,野生株感染鸡的脏器病变程度较ΔiroD, ΔiucD及三基因缺失株感染情况更为严重,而ΔchuT缺失株感染鸡的脏器病变程度与野生株相似。但是,体外试验结果显示,突变株与野生株在抗血清补体杀菌、HD-11细胞吞噬和胞内增殖,及在富铁或缺铁培养基中生长情况等方面都没有显著差异。SPF鸡致病试验表明介导沙门菌素摄铁的iroD基因和编码气杆菌素合成的iucD基因与APEC和UPEC致病性有较强的相关性,而介导血红素摄铁基因chuT对其致病性影响不大。APEC和UPEC具有相似的摄铁机制和致病能力,同时还可以看出沙门菌素铁结合性复合物在鸡体内摄铁方面起着更为重要的作用,但这些摄铁系统之间的关系是相互独立还是存在依赖关系还不清楚,有待于进一步研究。
     2.调控蛋白RfaH调控相关基因表达情况及对肠道外致病性大肠杆菌毒力的影响
     RfaH在大肠杆菌和鼠伤寒沙门氏菌中是一种重要的调控蛋白,能够增强某些细菌相关毒力因子的表达,如荚膜、脂多糖、溶血素、铁摄取系统等。它对于APEC毒力的直接影响至今还未见报道。本研究发现rfaH基因的缺失能显著降低APEC E058和UPEC U17的致病力。1日龄雏鸡致病性试验结果显示rfaH基因突变株E058ΔrfaH和U17ΔrfaH对鸡失去致病力,35日龄SPF鸡体内动态分布和竞争试验显示ArfaH突变株在鸡体内定殖能力显著下降;血清杀菌学试验表明突变株抗血清补体杀菌能力显著下降;鸡巨噬细胞HD-11吞噬和细菌胞内定殖试验结果显示,突变株抗吞噬和胞内生存能力明显致弱。对突变株进行rfaH基因回复能够使其恢复到野生株的毒力水平。同时,荧光定量PCR试验结果显示rfaH基因缺失能显著降低荚膜转运相关基因kpsM和kpsE、血红素受体基因chuA、抗血清补体相关基因traT和iss,及肠菌素ColicinV合成基因cvaC的表达量。上述结果表明,RfaH是肠道外致病性大肠杆菌的一种重要的毒力因子,对其致病性起着关键的作用。
     3.肠道外致病性大肠杆菌荚膜缺失株的构建及其致病性研究
     荚膜在大肠杆菌抗血清补体和细胞吞噬方面发挥着重要的作用,利用λRed重组系统分别构建APEC E058和UPEC U17荚膜转运基因kpsED双基因缺失株E058ΔkpsED和U17ΔkpsED,并成功将抗性基因去除,研究其生物学特性,为弱毒疫苗的开发提供条件。生物学试验结果显示,kpsED双基因缺失株的生长速度较野生株没有明显差异,但缺失株抗血清补体杀菌能力和抗鸡巨噬细胞HD-11细胞吞噬能力显著下降。kpsED双基因的缺失能显著降低APEC E058和UPEC U17的致病力。1日龄雏鸡LD50致病性试验结果显示,突变株E058ΔkpsED和U17ΔkpsED对鸡失去致病力,35日龄SPF鸡体内动态分布和竞争试验显示ΔkpsED突变株在鸡体内定殖能力和竞争性生长能力显著下降,提示其有可能作为弱毒疫苗候选菌株。
Escherichia coli commonly colonize the mammalian and avian gastrointestinal tract or other mucosal surfaces. While most of these strains are commensal, certain few pathogenic strains can cause intestinal or extraintestinal infection. E.coli strains isolated from infections outside of the intestinal tract, e.g., uropathogenic E.coli (UPEC), neonatal meningitis-associated E.coli (NMEC) and sepsis-causing E.coli (SEPEC) have been grouped as extraintestinal pathogenic E.coli (ExPEC) by Johnson and Russo. In addition, strains which cause systemic infection in poultry, avian pathogenic E.coli (APEC), resemble certain human-pathogenic ExPEC variants. Virulence determinants common to APEC and UPEC have been identified, such as the type1and P fimbriae, the K1capsule, iron acquisition system, IbeA. It is proposed that APEC could be a vehicle or even a reservoir for human ExPEC strains, such as NMEC and UPEC.
     In this study, the role of capsule, iron acquisition system and regulatory protein RfaH in virulence of APEC and UPEC were focused on. The similarity of virulence factors and pathogenic mechanism between these two type strains were compared, so as to deepen our understanding of virulence genes formation, evolution, and mechanism of pathogenesis. It is becoming more and more apparent that the common presence of a set of virulence associated genes among APEC and UPEC strains as well as similar disease patterns indicate a genetic relationship between APEC and UPEC isolates. The hypothesis of APEC could be a vehicle or even a reservoir for human ExPEC strains should be fully considered.
     1. Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli
     APEC and UPEC are the two main subsets of ExPEC. Both types have multiple iron acquisition systems, including heme and siderophores. Although iron transport systems involved in the pathogenesis of APEC or UPEC have been documented individually in corresponding animal models, the contribution of these systems during simultaneous APEC and UPEC infection is not well described. To determine the contribution of each individual iron acquisition system to the virulence of APEC and UPEC, isogenic mutants affecting iron uptake in APEC E058and UPEC U17were constructed and compared in a chicken challenge model. Salmochelin-defective mutants E058△iroD and U17AiroD showed significantly decreased pathogenicity compared to the wild-type strains. Aerobactin defective mutants E058△iucD and U17△iucD demonstrated reduced colonization in several internal organs, whereas the heme defective mutants E058AchuT and U17△AchuT colonized internal organs to the same extent as their wild-type strains. The triple mutant AchuT△iroDAiucD in both E058and U17showed decreased pathogenicity compared to each of the single mutants. The histopathological lesions in visceral organs of birds challenged with the wild-type strains were more severe than those from birds challenged with AiroD, AiucD or the triple mutants. Conversely, chickens inoculated with the AchuT mutants had lesions comparable to those in chickens inoculated with the wild-type strains. However, no significant differences were observed between the mutants and the wild-type strains in resistance to serum, cellular ingestion and intracellular survival in HD-11, and growth in iron-rich or iron-restricted medium. Results indicated that APEC and UPEC utilize similar iron acquisition mechanisms in chickens. Both salmochelin and aerobactin systems appeared to be important in APEC and UPEC virulence, while salmochelin contributed more to the virulence. Heme bounded by ChuT in the periplasm appeared to be redundant in this model, indicating that other periplasmic binding proteins likely contributed to the observed no phenotype for the heme uptake mutant.
     2. Regulatory protein RfaH regulates the expression of related genes and the role in virulence of extraintestinal pathogenic Escherichia coli
     In E. coli and many other bacterial species, a regulatory protein RfaH acts as a transcriptional antiterminator that reduces the polarity of long operons encoding cell components. RfaH was shown to be essential for the expression of cell components encoded on long operons in E. coli, including the expression of F plasmid, different capsules, and hemin uptake receptor, as well as the toxins alpha-hemolysin and cytotoxic necrotizing factor1. The direct effect of RfaH on virulence of APEC has not been investigated so far. Our results showed that the inactivation of rfaH significantly decreased the virulence of APEC E058and UPEC U17. The attenuation was assessed by in vivo and in vitro assays, including chicken infection assays, ingestion and intracellular survival assay, and bactericidal assay with serum complement.1-day-old bird lethal test showed that loss of rfaH resulted in abolishment of virulence of E058and U17in birds. Our results demonstrated that the resistance to serum and phagocytosis was impaired through the inactivation of the rfaH. Meanwhile, the results of the qRT-PCR analysis demonstrated that the inactivation of rfaH decreased the transcription level of virulence genes involved in the capsule, hemin uptake, serum resistance and colicin V synthesis, which may contribute to the reduced colonization and proliferation capacities of APEC E058and UPEC U17.
     3. Construction of capsule transport double mutant of APEC E058and UPEC U17and evaluation of their pathogenesis in chickens
     Capsule plays an important role in serum complement resistance and cell phagocytosis resistance for E.coli. Thus, capsule transport associated genes kpsE and kpsD were chosen for double gene deletion. The clean kpsE and kpsD double gene deletion mutant of APEC E058and UPEC U17were created using the lambda red recombinase method. The characterization of mutant strains and wild type strains were compared and analyzed. The results showed that the deletion of kpsED significantly decreased the virulence of APEC E058and UPEC U17. The attenuation was assessed by in vivo and in vitro assays, including bactericidal assay with serum complement, ingestion and intracellular survival assay, and chicken infection assays. The growth curves in LB showed that the deletion of kpsED did not affect growth kinetics of APEC E058and UPEC U17. The abilities of resistance to serum and killing by chicken macrophages were significantly impaired. LD50results showed that the double mutants completely abolished the virulence, and the colonization and coinfection model demonstrated that the deletion of kpsED leads to attenuation of virulence, since the double mutant showed significantly decreased colonization compared with the wild type strains in all organs tested in birds, indicting that double gene mutant strain would be a candidate for the attenuated live vaccine.
引文
[1]Kohler CD, Dobrindt U (2011) What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642-647.
    [2]Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123-140.
    [3]Russo TA, Johnson JR (2000) Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli:ExPEC. J Infect Dis 181:1753-1754.
    [4]Belanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, et al. (2011) Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol 62:1-10.
    [5]Clermont O, Olier M, Hoede C, Diancourt L, Brisse S, et al. (2011) Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect Genet Evol 11: 654-662.
    [6]Zhao L, Gao S, Huan H, Xu X, Zhu X, et al. (2009) Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 155:1634-1644.
    [7]Shpigel NY, Elazar S, Rosenshine I (2008) Mammary pathogenic Escherichia coli. Curr Opin Microbiol 11:60-65.
    [8]Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, et al. (2010) Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One 5:e9192.
    [9]Johnson JR, Owens K, Gajewski A, Clabots C (2008) Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J Infect Dis 197:218-224.
    [10]Mokady D, Gophna U, Ron EZ (2005) Extensive gene diversity in septicemic Escherichia coli strains. J Clin Microbiol 43:66-73.
    [11]Smith JL, Fratamico PM, Gunther NW (2007) Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 4:134-163.
    [12]Johnson JR, Kuskowski MA, Smith K, O'Bryan TT, Tatini S (2005) Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 191:1040-1049.
    [13]Johnson JR, Russo TA (2005) Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295:383-404.
    [14]Brzuszkiewicz E, Gottschalk G, Ron E, Hacker J, Dobrindt U (2009) Adaptation of Pathogenic E. coli to Various Niches:Genome Flexibility is the Key. Genome Dyn 6: 110-125.
    [15]Schubert S, Darlu P, Clermont O, Wieser A, Magistro G, et al. (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5:el000257.
    [16]Escobar-Paramo P, Sabbagh A, Darlu P, Pradillon O, Vaury C, et al. (2004) Decreasing the effects of horizontal gene transfer on bacterial phylogeny:the Escherichia coli case study. Mol Phylogenet Evol 30:243-250.
    [17]Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295:405-418.
    [18]Stenutz R, Weintraub A, Widmalm G (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382-403.
    [19]Boyd EF, Hartl DL (1998) Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 180:1159-1165.
    [20]Selander RK, Levin BR (1980) Genetic diversity and structure in Escherichia coli populations. Science 210:545-547.
    [21]Jenke C, Harmsen D, Weniger T, Rothganger J, Hyytia-Trees E, et al. (2010) Phylogenetic analysis of enterohemorrhagic Escherichia coli 0157, Germany,1987-2008. Emerg Infect Dis 16:610-616.
    [22]Lindstedt BA (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26:2567-2582.
    [23]Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, et al. (1998) Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140-3145.
    [24]Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207-217.
    [25]Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75:5298-5304.
    [26]Ewers C, Li G, Wilking H, Kiessling S, Alt K, et al. (2007) Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli:how closely related are they? Int J Med Microbiol 297:163-176.
    [27]Johnson JR, Kaster N, Kuskowski MA, Ling GV (2003) Identification of urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli isolates from dogs with urinary tract infection. J Clin Microbiol 41:337-345.
    [28]Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, et al. (2005) Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151:2097-2110.
    [29]Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26-38.
    [30]Blanco JE, Blanco M, Mora A, Jansen WH, Garcia V, et al. (1998) Serotypes of Escherichia coli isolated from septicaemic chickens in Galicia (northwest Spain). Vet Microbiol 61: 229-235.
    [31]Bidet P, Mahjoub-Messai F, Blanco J, Dehem M, Aujard Y, et al. (2007) Combined multilocus sequence typing and O serogrouping distinguishes Escherichia coli subtypes associated with infant urosepsis and/or meningitis. J Infect Dis 196:297-303.
    [32]Orskov F, Orskov I (1992) Escherichia coli serotyping and disease in man and animals. Can J Microbiol 38:699-704.
    [33]Allen PM, Roberts I, Boulnois GJ, Saunders JR, Hart CA (1987) Contribution of capsular polysaccharide and surface properties to virulence of Escherichia coli K1. Infect Immun 55: 2662-2668.
    [34]Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS (2003) The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol 5:245-252.
    [35]Pourbakhsh SA, Boulianne M, Martineau-Doize B, Fairbrother JM (1997) Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol 58:195-213.
    [36]Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2004) Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother 48:1503-1508.
    [37]Mellata M, Dho-Moulin M, Dozois CM, Curtiss R,3rd, Brown PK, et al. (2003) Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun 71:536-540.
    [38]Mellata M, Dho-Moulin M, Dozois CM, Curtiss R,3rd, Lehoux B, et al. (2003) Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun 71:494-503.
    [39]Lane MC, Alteri CJ, Smith SN, Mobley HL (2007) Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 104:16669-16674.
    [40]Orndorff PE, Bloch CA (1990) The role of type 1 pili in the pathogenesis of Escherichia coli infections:a short review and some new ideas. Microb Pathog 9:75-79.
    [41]Dozois CM, Pourbakhsh SA, Fairbrother JM (1995) Expression of P and type 1 (Fl) fimbriae in pathogenic Escherichia coli from poultry. Vet Microbiol 45:297-309.
    [42]Dozois CM, Chanteloup N, Dho-Moulin M, Bree A, Desautels C, et al. (1994) Bacterial colonization and in vivo expression of F1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli. Avian Dis 38:231-239.
    [43]Bahrani-Mougeot FK, Buckles EL, Lockatell CV, Hebel JR, Johnson DE, et al. (2002) Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45:1079-1093.
    [44]Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, et al. (2002) Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44: 903-915.
    [45]Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803-2812.
    [46]Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9: 2230-2241.
    [47]Hultgren SJ, Porter TN, Schaeffer AJ, Duncan JL (1985) Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun 50:370-377.
    [48]Lund B, Marklund BI, Stromberg N, Lindberg F, Karlsson KA, et al. (1988) Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. MolMicrobiol 2:255-263.
    [49]Dozois CM, Fairbrother JM, Harel J, Bosse M (1992)pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun 60:2648-2656.
    [50]Karr JF, Nowicki BJ, Truong LD, Hull RA, Moulds JJ, et al. (1990) pap-2-encoded fimbriae adhere to the P blood group-related glycosphingolipid stage-specific embryonic antigen 4 in the human kidney. Infect Immun 58:4055-4062.
    [51]Kallenius G, Mollby R, Svenson SB, Helin I, Hultberg H, et al. (1981) Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet 2:1369-1372.
    [52]La Ragione RM, Sayers AR, Woodward MJ (2000) The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78:K80 in the day-old-chick model. Epidemiol Infect 124:351-363.
    [53]Barasch J, Mori K (2004) Cell biology:iron thievery. Nature 432:811-813.
    [54]Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215-237.
    [55]Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509-518.
    [56]Dozois CM, Daigle F, Curtiss R,3rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A100:247-252.
    [57]Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D (2004) Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev 68:692-744.
    [58]Marrs CF, Zhang L, Foxman B (2005) Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett 252: 183-190.
    [59]Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80-128.
    [60]Bhakdi S, Mackman N, Menestrina G, Gray L, Hugo F, et al. (1988) The hemolysin of Escherichia coli. Eur J Epidemiol 4:135-143.
    [61]Hamon MA, Batsche E, Regnault B, Tham TN, Seveau S, et al. (2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A 104: 13467-13472.
    [62]Ratner AJ, Hippe KR, Aguilar JL, Bender MH, Nelson AL, et al. (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem 281:12994-12998.
    [63]Wiles TJ, Dhakal BK, Eto DS, Mulvey MA (2008) Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell 19:1427-1438.
    [64]Mansson LE, Kjall P, Pellett S, Nagy G, Welch RA, et al. (2007) Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. Infect Immun 75:997-1004.
    [65]Koschinski A, Repp H, Unver B, Dreyer F, Brockmeier D, et al. (2006) Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells--the pore is on its own. FASEB J 20:973-975.
    [66]Restieri C, Garriss G, Locas MC, Dozois CM (2007) Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. Appl Environ Microbiol 73:1553-1562.
    [67]Parreira VR, Gyles CL (2003) A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun 71:5087-5096.
    [68]Guyer DM, Radulovic S, Jones FE, Mobley HL (2002) Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539-4546.
    [69]Maroncle NM, Sivick KE, Brady R, Stokes FE, Mobley HL (2006) Protease activity, secretion, cell entry, cytotoxicity, and cellular targets of secreted autotransporter toxin of uropathogenic Escherichia coli. Infect Immun 74:6124-6134.
    [70]Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19:2645-2655.
    [71]Mashburn-Warren LM, Whiteley M (2006) Special delivery:vesicle trafficking in prokaryotes. Mol Microbiol 61:839-846.
    [72]Balsalobre C, Silvan JM, Berglund S, Mizunoe Y, Uhlin BE, et al. (2006) Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59:99-112.
    [73]Davis JM, Carvalho HM, Rasmussen SB, O'Brien AD (2006) Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 74: 4401-4408.
    [74]Lemonnier M, Landraud L, Lemichez E (2007) Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 31: 515-534.
    [75]Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629-635.
    [76]Bower JM, Eto DS, Mulvey MA (2005) Covert operations of uropathogenic Escherichia coli within the urinary tract. Traffic 6:18-31.
    [77]Rippere-Lampe KE, O'Brien AD, Conran R, Lockman HA (2001) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69:3954-3964.
    [78]Mills M, Meysick KC, O'Brien AD (2000) Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68:5869-5880.
    [79]Doye A, Mettouchi A, Bossis G, Clement R, Buisson-Touati C, et al. (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553-564.
    [80]Ohnishi S, Kameyama K, Takagi T (1998) Characterization of a heat modifiable protein, Escherichia coli outer membrane protein OmpA in binary surfactant system of sodium dodecyl sulfate and octylglucoside. Biochim Biophys Acta 1375:101-109.
    [81]Korn A, Rajabi Z, Wassum B, Ruiner W, Nixdorff K (1995) Enhancement of uptake of lipopolysaccharide in macrophages by the major outer membrane protein OmpA of gram-negative bacteria. Infect Immun 63:2697-2705.
    [82]Koga-Ban Y, Mutoh N, Inokuchi K, Mizushima S (1983) Mutation causing overproduction of outer membrane protein OmpF and suppression of OmpC synthesis in Escherichia coli. J Bacteriol 155:1110-1115.
    [83]Bolin CA, Jensen AE (1987) Passive immunization with antibodies against iron-regulated outer membrane proteins protects turkeys from Escherichia coli septicemia. Infect Immun 55:1239-1242.
    [84]Weiser JN, Gotschlich EC (1991) Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59:2252-2258.
    [85]Moll A, Manning PA, Timmis KN (1980) Plasmid-determined resistance to serum bactericidal activity:a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infect Immun 28:359-367.
    [86]Johnson TJ, Giddings CW, Home SM, Gibbs PS, Wooley RE, et al. (2002) Location of increased serum survival gene and selected virulence traits on a conjugative R plasmid in an avian Escherichia coli isolate. Avian Dis 46:342-352.
    [87]Nolan LK, Giddings CW, Home SM, Doetkott C, Gibbs PS, et al. (2002) Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avian Dis 46:386-392.
    [88]Vidotto MC, Muller EE, de Freitas JC, Alfieri AA, Guimaraes IG, et al. (1990) Virulence factors of avian Escherichia coli. Avian Dis 34:531-538.
    [89]Germon P, Chen YH, He L, Blanco JE, Bree A, et al. (2005) ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology 151:1179-1186.
    [90]Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, et al. (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189: 3228-3236.
    [91]Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S, et al. (2007) Extraintestinal pathogenic Escherichia coli strains of avian and human origin:link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 45:3366-3376.
    [92]Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK (2005) Characterizing the APEC pathotype. Vet Res 36:241-256.
    [93]Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM, et al. (2006) Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E, coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun 74:6287-6292.
    [94]Heimer SR, Rasko DA, Lockatell CV, Johnson DE, Mobley HL (2004) Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect Immun 72:593-597.
    [95]Guyer DM, Henderson IR, Nataro JP, Mobley HL (2000) Identification of Sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38: 53-66.
    [96]Otto BR, van Dooren SJ, Dozois CM, Luirink J, Oudega B (2002) Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun 70:5-10.
    [97]Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, et al. (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105-107.
    [98]Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329.
    [99]Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, et al. (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333-1338.
    [100]Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69:4572-4579.
    [101]Mysorekar IU, Hultgren SJ (2006) Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A 103: 14170-14175.
    [102]Schilling JD, Lorenz RG, Hultgren SJ (2002) Effect of trimethoprim-sulfameth-oxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70:7042-7049.
    [1]Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881-941.
    [2]Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215-237.
    [3]Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:el000949.
    [4]Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-451.
    [5]Braun V, Braun M (2002) Iron transport and signaling in Escherichia coli. FEBS Lett 529: 78-85.
    [6]Raymond KN, Dertz EA, Kim SS (2003) Enterobactin:an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100:3584-3588.
    [7]Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212-6219.
    [8]Sabri M, Caza M, Proulx J, Lymberopoulos MH, Bree A, et al. (2008) Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli 078 strain chi7122. Infect Immun 76:601-611.
    [9]Torres AG, Redford P, Welch RA, Payne SM (2001) TonB-dependent systems of uropathogenic Escherichia coli:aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179-6185.
    [10]Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71:79-91.
    [11]Francis J, Madinaveitia J, et al. (1949) Isolation from acid-fast bacteria of a growth-factor for Mycobacterium johnei and of a precursor of phthiocol. Nature 163:365.
    [12]Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, et al. (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189: 3228-3236.
    [13]Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223-249.
    [14]O'Brien IG, Gibson F (1970) The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta 215:393-402.
    [15]Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 38:989-992.
    [16]Ozenberger BA, Brickman TJ, McIntosh MA (1989) Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol 171:775-783.
    [17]Liu J, Duncan K, Walsh CT (1989) Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes:identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J Bacteriol 171:791-798.
    [18]Rusnak F, Faraci WS, Walsh CT (1989) Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase:demonstration of enzyme-bound (2,3-dihydroxybenzoyl) adenylate product. Biochemistry 28:6827-6835.
    [19]Sakaitani M, Rusnak F, Quinn NR, Tu C, Frigo TB, et al. (1990) Mechanistic studies on trans-2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (Ent A) in the biosynthesis of the iron chelator enterobactin. Biochemistry 29:6789-6798.
    [20]Ehmann DE, Shaw-Reid CA, Losey HC, Walsh CT (2000) The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase:sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Proc Natl Acad Sci U S A 97: 2509-2514.
    [21]Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, et al. (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454: 903-906.
    [22]Gehring AM, Bradley KA, Walsh CT (1997) Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36: 8495-8503.
    [23]Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A 100:3677-3682.
    [24]Baumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, et al. (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207-213.
    [25]Baumler AJ, Norris TL, Lasco T, Voight W, Reissbrodt R, et al. (1998) IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol 180: 1446-1453.
    [26]Bachman MA, Miller VL, Weiser JN (2009) Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog 5:el000622.
    [27]Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, et al. (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189-198.
    [28]Yang F, Yang J, Zhang X, Chen L, Jiang Y, et al. (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33: 6445-6458.
    [29]Fischbach MA, Lin H, Liu DR, Walsh CT (2005) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci U S A 102:571-576.
    [30]Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, et al. (2004) The structure of salmochelins:C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471-481.
    [31]Caza M, Lepine F, Milot S, Dozois CM (2008) Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli 078 strain and in production of salmochelins. Infect Immun 76:3539-3549.
    [32]Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127: 11075-11084.
    [33]Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, et al. (1993) Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol Microbiol 8:397-408.
    [34]Miller MC, Fetherston JD, Pickett CL, Bobrov AG, Weaver RH, et al. (2010) Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis. Microbiology 156:2226-2238.
    [35]Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD (2010) The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 78:2045-2052.
    [36]Gibson F, Magrath DI (1969) The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochim Biophys Acta 192:175-184.
    [37]Carbonetti NH, Williams PH (1984) A cluster of five genes specifying the aerobactin iron uptake system of plasmid CoIV-K30. Infect Immun 46:7-12.
    [38]de Lorenzo V, Neilands JB (1986) Characterization of iucA and iucC genes of the aerobactin system of plasmid CoIV-K30 in Escherichia coli. J Bacteriol 167:350-355.
    [39]Thariath A, Socha D, Valvano MA, Viswanatha T (1993) Construction and biochemical characterization of recombinant cytoplasmic forms of the IucD protein (lysine:N6-hydroxylase) encoded by the pColV-K30 aerobactin gene cluster. J Bacteriol 175:589-596.
    [40]Coy M, Paw BH, Bindereif A, Neilands JB (1986) Isolation and properties of N epsilon-hydroxylysine:acetyl coenzyme A N epsilon-transacetylase from Escherichia coli pABN11. Biochemistry 25:2485-2489.
    [41]Oves-Costales D, Kadi N, Challis GL (2009) The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb):6530-6541.
    [42]Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA (2002) Export of the siderophore enterobactin in Escherichia coli:involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225-1234.
    [43]Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, et al. (2005) TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 187: 6701-6707.
    [44]Masi M, Vuong P, Humbard M, Malone K, Misra R (2007) Initial steps of colicin E1 import across the outer membrane of Escherichia coli. J Bacteriol 189:2667-2676.
    [45]Misra R, Bavro VN (2009) Assembly and transport mechanism of tripartite drug efflux systems. Biochim Biophys Acta 1794:817-825.
    [46]Piddock LJ (2006) Multidrug-resistance efflux pumps-not just for resistance. Nat Rev Microbiol 4:629-636.
    [47]Wandersman C, Delepelaire P (1990) ToIC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87:4776-4780.
    [48]Yamanaka H, Kobayashi H, Takahashi E, Okamoto K (2008) MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin Ⅱ. J Bacteriol 190:7693-7698.
    [49]Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC (2008) Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971-983.
    [50]Caza M, Lepine F, Dozois CM (2011) Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli. Mol Microbiol 80:266-282.
    [51]Brem D, Pelludat C, Rakin A, Jacobi CA, Heesemann J (2001) Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Microbiology 147:1115-1127.
    [52]Fetherston JD, Bertolino VJ, Perry RD (1999) YbtP and YbtQ:two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289-299.
    [53]Higgs PI, Larsen RA, Postle K (2002) Quantification of known components of the Escherichia coli TonB energy transduction system:TonB, ExbB, ExbD and FepA. Mol Microbiol 44:271-281.
    [54]Moeck GS, Coulton JW (1998) TonB-dependent iron acquisition:mechanisms of siderophore-mediated active transport. Mol Microbiol 28:675-681.
    [55]McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, et al. (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478-29486.
    [56]Ouyang Z, Isaacson R (2006) Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli. Infect Immun 74:6949-6956.
    [57]Ons E, Bleyen N, Tuntufye HN, Vandemaele F, Goddeeris BM (2007) High prevalence iron receptor genes of avian pathogenic Escherichia coli. Avian Pathol 36:411-414.
    [58]Chenault SS, Earhart CF (1991) Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5:1405-1413.
    [59]Shea CM, McIntosh MA (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system:homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5:1415-1428.
    [60]Koster W, Braun V (1990) Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. J Biol Chem 265:21407-21410.
    [61]Burkhardt R, Braun V (1987) Nucleotide sequence of the fhuC and fhuD genes involved in iron (III) hydroxamate transport:domains in FhuC homologous to ATP-binding proteins. Mol Gen Genet 209:49-55.
    [62]Wooldridge KG, Morrissey JA, Williams PH (1992) Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12:role of envelope-associated proteins and effect of endogenous siderophores. J Gen Microbiol 138:597-603.
    [63]Koster W, Braun V (1990) Iron(III) hydroxamate transport of Escherichia. coli:restoration of iron supply by coexpression of the N-and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids. Mol Gen Genet 223:379-384.
    [64]Williams PH, Carbonetti NH (1986) Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterochelin iron uptake systems in Escherichia coli. Infect Immun 51:942-947.
    [65]Langman L, Young IG, Frost GE, Rosenberg H, Gibson F (1972) Enterochelin system of iron transport in Escherichia coli:mutations affecting ferric-enterochelin esterase. J Bacteriol 112:1142-1149.
    [66]O'Brien IG, Cox GB, Gibson F (1971) Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim Biophys Acta 237:537-549.
    [67]Hantke K (1990) Dihydroxybenzoylserine-a siderophore for E. coli. FEMS Microbiol Lett 55:5-8.
    [68]Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363-2372.
    [69]Cornelissen CN (2003) Transferrin-iron uptake by Gram-negative bacteria. Front Biosci 8: d836-847.
    [70]Bracken CS, Baer MT, Abdur-Rashid A, Helms W, Stojiljkovic I (1999) Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor:histidine residues are essential for receptor function. J Bacteriol 181:6063-6072.
    [71]Burkhard KA, Wilks A (2007) Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae. Substrate specificity and identification of the heme protein ligands. J Biol Chem 282:15126-15136.
    [72]Liu X, Olczak T, Guo HC, Dixon DW, Genco CA (2006) Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 74:1222-1232.
    [73]Wandersman C, Stojiljkovic Ⅰ (2000) Bacterial heme sources:the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 3:215-220.
    [74]Mills M, Payne SM (1995) Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7. J Bacteriol 177:3004-3009.
    [75]Torres AG, Payne SM (1997) Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 23:825-833.
    [76]Burkhard KA, Wilks A (2008) Functional characterization of the Shigella dysenteriae heme ABC transporter. Biochemistry 47:7977-7979.
    [77]Suits MD, Pal GP, Nakatsu K, Matte A, Cygler M, et al. (2005) Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats. Proc Natl Acad SciUSA102:16955-16960.
    [78]Suits MD, Jaffer N, Jia Z (2006) Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193. J Biol Chem 281:36776-36782.
    [79]Lansky IB, Lukat-Rodgers GS, Block D, Rodgers KR, Ratliff M, et al. (2006) The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of Pseudomonas aeruginosa is an intracellular heme-trafficking protein to the delta-regioselective heme oxygenase. J Biol Chem 281:13652-13662.
    [80]Wilks A (2001) The ShuS protein of Shigella dysenteriae is a heme-sequestering protein that also binds DNA. Arch Biochem Biophys 387:137-142.
    [81]Wyckoff EE, Lopreato GF, Tipton KA, Payne SM (2005) Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658-5664.
    [82]Suits MD, Lang J, Pal GP, Couture M, Jia Z (2009) Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Sci 18:825-838.
    [83]Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561-585.
    [84]Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188-194.
    [85]Lavrrar JL, McIntosh MA (2003) Architecture of a fur binding site:a comparative analysis. J Bacteriol 185:2194-2202.
    [86]Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12:isolation of a constitutive mutant. Mol Gen Genet 182:288-292.
    [87]de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624-2630.
    [88]Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box:transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223-6229.
    [89]Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:4620-4625.
    [90]Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374-2383.
    [91]Salvail H, Lanthier-Bourbonnais P, Sobota JM, Caza M, Benjamin JA, et al. (2010) A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci U S A 107:15223-15228.
    [92]Furman M, Fica A, Saxena M, Di Fabio JL, Cabello FC (1994) Salmonella typhi iron uptake mutants are attenuated in mice. Infect Immun 62:4091-4094.
    [93]Benjamin WH, Jr., Turnbough CL, Jr., Posey BS, Briles DE (1985) The ability of Salmonella typhimurium to produce the siderophore enterobactin is not a virulence factor in mouse typhoid. Infect Immun 50:392-397.
    [94]Dozois CM, Daigle F, Curtiss R,3rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 100:247-252.
    [95]Fischbach MA, Lin H, Liu DR, Walsh CT (2006) How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2:132-138.
    [96]Coudevylle N, Geist L, Hotzinger M, Hartl M, Kontaxis G, et al. (2010) The v-myc-induced Q83 lipocalin is a siderocalin. J Biol Chem 285:41646-41652.
    [97]Johnson TJ, Siek KE, Johnson SJ, Nolan LK (2006) DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 188:745-758.
    [98]Feldmann F, Sorsa LJ, Hildinger K, Schubert S (2007) The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 75:3183-3187.
    [99]Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, et al. (2009) The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun 77:2272-2284.
    [100]Reigstad CS, Hultgren SJ, Gordon JI (2007) Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282:21259-21267.
    [101]Garcia EC, Brumbaugh AR, Mobley HL (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79: 1225-1235.
    [102]Hancock V, Ferrieres L, Klemm P (2008) The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 154:167-175.
    [103]Paauw A, Leverstein-van Hall MA, van Kessel KP, Verhoef J, Fluit AC (2009) Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One 4:e8240.
    [104]Dozois CM, Fairbrother JM, Harel J, Bosse M (1992)pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun 60:2648-2656.
    [105]Lafont JP, Dho M, D'Hauteville HM, Bree A, Sansonetti PJ (1987) Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun 55:193-197.
    [106]Konopka K, Bindereif A, Neilands JB (1982) Aerobactin-mediated utilization of transferrin iron. Biochemistry 21:6503-6508.
    [107]Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol 296:513-520.
    [108]Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL (2009) Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 5: el000586.
    [109]Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Olson R, et al. (2003) The Siderophore receptor IroN of extraintestinal pathogenic Escherichia coli is a potential vaccine candidate. Infect Immun 71:7164-7169.
    [1]Russo TA, Johnson JR (2000) Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli:ExPEC. J Infect Dis 181:1753-1754.
    [2]Marrs CF, Zhang L, Foxman B (2005) Escherichia coli mediated urinary tract infections:are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett 252:183-190.
    [3]Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli:focus on an increasingly important endemic problem. Microbes Infect 5: 449-456.
    [4]Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80-128.
    [5]Zhao L, Gao S, Huan H, Xu X, Zhu X, et al. (2009) Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 155:1634-1644.
    [6]Heinemann IU, Jahn M, Jahn D (2008) The biochemistry of heme biosynthesis. Arch Biochem Biophys 474:238-251.
    [7]Rouault TA (2004) Microbiology. Pathogenic bacteria prefer heme. Science 305:1577-1578.
    [8]Raymond KN, Dertz EA, Kim SS (2003) Enterobactin:an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100:3584-3588.
    [9]Braun V (2001) Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291:67-79.
    [10]Stojiljkovic I, Perkins-Balding D (2002) Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol 21:281-295.
    [11]Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-451.
    [12]Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, et al. (2009) Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5:el000305.
    [13]Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A100:3677-3682.
    [14]Baumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, et al. (1996) Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207-213.
    [15]Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, et al. (2004) The structure of salmochelins:C-glucosylated enterobactins of Salmonella enterica. Biometals 17: 471-481.
    [16]Negre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, et al. (2004) The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis. Infect Immun 72:1216-1220.
    [17]Bauer RJ, Zhang L, Foxman B, Siitonen A, Jantunen ME, et al. (2002) Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN(E. coli). J Infect Dis 185:1521-1524.
    [18]Kanamaru S, Kurazono H, Ishitoya S, Terai A, Habuchi T, et al. (2003) Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol 170: 2490-2493.
    [19]Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, et al. (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A 103: 16502-16507.
    [20]Johnson TJ, Siek KE, Johnson SJ, Nolan LK (2006) DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 188:745-758.
    [21]Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127: 11075-11084.
    [22]Zhu M, Valdebenito M, Winkelmann G, Hantke K (2005) Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363-2372.
    [23]Bindereif A, Neilands JB (1985) Aerobactin genes in clinical isolates of Escherichia coli. J Bacteriol 161:727-735.
    [24]Carbonetti NH, Williams PH (1984) A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infect Immun 46:7-12.
    [25]Gross R, Engelbrecht F, Braun V (1984) Genetic and biochemical characterization of the aerobactin synthesis operon on pColV. Mol Gen Genet 196:74-80.
    [26]Garenaux A, Caza M, Dozois CM (2011) The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol 153:89-98.
    [27]Song, G., Xiufan, L., RuKuan, Z., Xinan, J, et al. (1999) The isolation and identification of pathogenic Escherichia coli isolates of chicken origin from some regions in China. Acta. Vet. Et. Zootechnical Sinica 30:164-171.
    [28]Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645.
    [29]Chen X, Gao S, Jiao X, Liu XF (2004) Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Vet Microbiol 103:13-20.
    [30]Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123-140.
    [31]Mokady D, Gophna U, Ron EZ (2005) Extensive gene diversity in septicemic Escherichia coli strains. J Clin Microbiol 43:66-73.
    [32]Johnson JR, Owens KL, Clabots CR, Weissman SJ, Cannon SB (2006) Phylogenetic relationships among clonal groups of extraintestinal pathogenic Escherichia coli as assessed by multi-locus sequence analysis. Microbes Infect 8:1702-1713.
    [33]Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Bree A, et al. (2006) Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 44:3484-3492.
    [34]Levy SB, FitzGerald GB, Macone AB (1976) Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 260:40-42.
    [35]Linton AH, Howe K, Bennett PM, Richmond MH, Whiteside EJ (1977) The colonization of the human gut by antibiotic resistant Escherichia coli from chickens. J Appl Bacteriol 43: 465-469.
    [36]Ojeniyi AA (1989) Direct transmission of Escherichia coli from poultry to humans. Epidemiol Infect 103:513-522.
    [37]Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S, et al. (2007) Extraintestinal pathogenic Escherichia coli strains of avian and human origin:link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 45:3366-3376.
    [38]Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71:79-91.
    [39]Bonacorsi SP, Clermont O, Tinsley C, Le Gall I, Beaudoin JC, et al. (2000) Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect Immun 68:2096-2101.
    [40]Dozois CM, Daigle F, Curtiss R,3rd (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A100:247-252.
    [41]Feldmann F, Sorsa LJ, Hildinger K, Schubert S (2007) The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 75:3183-3187.
    [42]Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, et al. (2002) IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70:7156-7160.
    [43]Caza M, Lepine F, Milot S, Dozois CM (2008) Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli 078 strain and in production of salmochelins. Infect Immun 76:3539-3549.
    [44]Dozois CM, Fairbrother JM, Harel J, Bosse M (1992)pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun 60:2648-2656.
    [45]Lafont JP, Dho M, D'Hauteville HM, Bree A, Sansonetti PJ (1987) Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun 55:193-197.
    [46]Linggood MA, Roberts M, Ford S, Parry SH, Williams PH (1987) Incidence of the aerobactin iron uptake system among Escherichia coli isolates from infections of farm animals. J Gen Microbiol 133:835-842.
    [47]Caza M, Lepine F, Dozois CM (2011) Secretion, but not overall synthesis, of catecholate siderophores contributes to virulence of extraintestinal pathogenic Escherichia coli. Mol Microbiol 80:266-282.
    [48]Torres AG, Redford P, Welch RA, Payne SM (2001) TonB-dependent systems of uropathogenic Escherichia coli:aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179-6185.
    [1]Harel J, Martin C (1999) Virulence gene regulation in pathogenic Escherichia coli. Vet Res 30:131-155.
    [2]Lindberg AA, Hellerqvist CG (1980) Rough mutants of Salmonella typhimurium: immunochemical and structural analysis of lipopolysaccharides from rfaH mutants. J Gen Microbiol 116:25-32.
    [3]Bailey MJ, Hughes C, Koronakis V (1997) RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26:845-851.
    [4]Artsimovitch I, Landick R (2002) The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DN A strand. Cell 109:193-203.
    [5]Creeger ES, Schulte T, Rothfield LI (1984) Regulation of membrane glycosyltransferases by the sfrB and rfaH genes of Escherichia coli and Salmonella typhimurium. J Biol Chem 259: 3064-3069.
    [6]Sanderson KE, Stocker BA (1981) Gene rfaH, which affects lipopolysaccharide core structure in Salmonella typhimurium, is required also for expression of F-factor functions. J Bacteriol 146:535-541.
    [7]Clarke BR, Pearce R, Roberts IS (1999) Genetic organization of the Escherichia coli K10 capsule gene cluster:identification and characterization of two conserved regions in group III capsule gene clusters encoding polysaccharide transport functions. J Bacteriol 181: 2279-2285.
    [8]Rahn A, Whitfield C (2003) Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 47:1045-1060.
    [9]Stevens MP, Hanfling P, Jann B, Jann K, Roberts IS (1994) Regulation of Escherichia coli K5 capsular polysaccharide expression:evidence for involvement of RfaH in the expression of group II capsules. FEMS Microbiol Lett 124:93-98.
    [10]Nagy G, Dobrindt U, Kupfer M, Emody L, Karch H, et al. (2001) Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infect Immun 69:1924-1928.
    [11]Bailey MJ, Koronakis V, Schmoll T, Hughes C (1992) Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol 6: 1003-1012.
    [12]Leeds JA, Welch RA (1996) RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol 178:1850-1857.
    [13]Landraud L, Gibert M, Popoff MR, Boquet P, Gauthier M (2003) Expression of cnfl by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Mol Microbiol 47:1653-1667.
    [14]Bailey MJ, Hughes C, Koronakis V (2000) In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element. Mol Gen Genet 262:1052-1059.
    [15]Song, G., Xiufan, L., RuKuan, Z., Xinan, J, et al. (1999) The isolation and identification of pathogenic Escherichia coli isolates of chicken origin from some regions in China. Acta. Vet. Et. Zootechnical Sinica 30:164-171.
    [16]Zhao L, Gao S, Huan H, Xu X, Zhu X, et al. (2009) Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 155:1634-1644.
    [17]Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645.
    [18]Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1-7.
    [19]La Ragione RM, Woodward MJ (2002) Virulence factors of Escherichia coli serotypes associated with avian colisepticaemia. Res Vet Sci 73:27-35.
    [20]Mellata M, Dho-Moulin M, Dozois CM, Curtiss R,3rd, Brown PK, et al. (2003) Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun 71:536-540.
    [21]Goldman RC, Joiner K, Leive L (1984) Serum-resistant mutants of Escherichia coli O111 contain increased lipopolysaccharide, lack an O antigen-containing capsule, and cover more of their lipid A core with O antigen. J Bacteriol 159:877-882.
    [22]Ngeleka M, Harel J, Jacques M, Fairbrother JM (1992) Characterization of a polysaccharide capsular antigen of septicemic Escherichia coli O115:K "V165":F165 and evaluation of its role in pathogenicity. Infect Immun 60:5048-5056.
    [23]Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307-1319.
    [24]Weiser JN, Gotschlich EC (1991) Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect Immun 59:2252-2258.
    [25]Nemeth J, Muckle CA, Lo RY (1991) Serum resistance and the traT gene in bovine mastitis-causing Escherichia coli. Vet Microbiol 28:343-351.
    [26]Nolan LK, Giddings CW, Home SM, Doetkott C, Gibbs PS, et al. (2002) Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli. Avian Dis 46:386-392.
    [27]Nolan LK, Home SM, Giddings CW, Foley SL, Johnson TJ, et al. (2003) Resistance to serum complement, iss, and virulence of avian Escherichia coli. Vet Res Commun 27: 101-110.
    [28]Mellata M, Dho-Moulin M, Dozois CM, Curtiss R,3rd, Lehoux B, et al. (2003) Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun 71:494-503.
    [29]Toth TE, Siegel P, Veit H (1987) Cellular defense of the avian respiratory system. Influx of phagocytes:elicitation versus activation. Avian Dis 31:861-867.
    [30]Pourbakhsh SA, Boulianne M, Martineau-Doize B, Fairbrother JM (1997) Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol 58:195-213.
    [1]陆承平.兽医微生物学.第四版.北京:中国农业出版社,2007:15-16.
    [2]Zapata G, Crowley JM, Vann WF (1992) Sequence and expression of the Escherichia coli Kl neuC gene product. J Bacteriol 174:315-319.
    [3]Boulnois GJ, Roberts IS (1990) Genetics of capsular polysaccharide production in bacteria. Curr Top Microbiol Immunol 150:1-18.
    [4]Pazzani C, Rosenow C, Boulnois GJ, Bronner D, Jann K, et al. (1993) Molecular analysis of region 1 of the Escherichia coli K5 antigen gene cluster:a region encoding proteins involved in cell surface expression of capsular polysaccharide. J Bacteriol 175:5978-5983.
    [5]Wunder DE, Aaronson W, Hayes SF, Bliss JM, Silver RP (1994) Nucleotide sequence and mutational analysis of the gene encoding KpsD, a periplasmic protein involved in transport of polysialic acid in Escherichia coli K1. J Bacteriol 176:4025-4033.
    [6]Boulnois GJ, Jann K (1989) Bacterial polysaccharide capsule synthesis, export and evolution of structural diversity. Mol Microbiol 3:1819-1823.
    [7]Roberts IS, Mountford R, Hodge R, Jann KB, Boulnois GJ (1988) Common organization of gene clusters for production of different capsular polysaccharides (K antigens) in Escherichia coli. J Bacteriol 170:1305-1310.
    [8]Pavelka MS, Jr., Wright LF, Silver RP (1991) Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli Kl. J Bacteriol 173: 4603-4610.
    [9]Smith AN, Boulnois GJ, Roberts IS (1990) Molecular analysis of the Escherichia coli K5 kps locus:identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol Microbiol 4:1863-1869.
    [10]Barrett B, Ebah L, Roberts IS (2002) Genomic structure of capsular determinants. Curr Top Microbiol Immunol 264:137-155.
    [11]Bliss JM, Garon CF, Silver RP (1996) Polysialic acid export in Escherichia coli K1:the role of KpsT, the ATP-binding component of an ABC transporter, in chain translocation. Glycobiology 6:445-452.
    [12]Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285-315.
    [13]Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307-1319.
    [14]Song, G., Xiufan, L., RuKuan, Z., Xinan, J, et al. (1999) The isolation and identification of pathogenic Escherichia coli isolates of chicken origin from some regions in China. Acta. Vet. Et. Zootechnical Sinica 30:164-171.
    [15]Zhao L, Gao S, Huan H, Xu X, Zhu X, et al. (2009) Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 155:1634-1644.
    [16]Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645.
    [17]Ramirez Santoyo RM, Moreno Sala A, Almanza Marquez Y (2001) Avian Escherichia coli virulence factors associated with coli septicemia in broiler chickens. Rev Argent Microbiol 33:52-57.
    [18]Siegfried L, Kmetova M, Puzova H, Molokacova M, Filka J (1994) Virulence-associated factors in Escherichia coli strains isolated from children with urinary tract infections. J Med Microbiol 41:127-132.
    [19]Howard CJ, Glynn A A (1971) Some physical properties of K antigens of Escherichia coli related to their biological activity. Infect Immun 4:6-11.
    [20]Howard CJ, Glynn AA (1971) The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology 20:767-777.
    [21]Goller CC, Seed PC (2010) Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection:contribution to intracellular biofilm development. Virulence 1:333-337.
    [22]Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA97:5978-5983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700