用户名: 密码: 验证码:
2-芳基丙酸类含糖大分子药物的制备及其释药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,含有生物活性成分的大分子药物日益受到研究者们的关注。将小分子药物和生物活性成分(如糖,叶酸等)引入大分子前药,可以达到药物缓释的作用、提高药物的选择性和生物相容性、降低小分子药物的毒性和提高药物的靶向性等。同时高分子载体将药物输送到靶位点释放药物后,可被机体吸收或通过尿液等排出,不会在体内长时间积累。
     文章以2-芳基丙酸类药物(布洛芬Ibuprofen、萘普生Naproxen、酮洛芬Ketoprofen)为药物模型,它们属于非甾体抗炎药(nonsteroidal anti-inflammatory drugs, NSAIDs),具有抗炎、止痛和解热作用,临床上用于减轻或控制由炎症引起的症状和体征,如痛经、急慢性附件炎、盆腔炎所致的腰腹部疼痛、术后疼痛、关节或软组织的疼痛。但是小分子原药对胃肠道有较强的刺激性,体液中溶解性差、半衰期短等缺点限制了它们的临床应用。为了提高药物的生物利用度,必须降低其副作用,延长药物的作用时间。
     本论文用化学法和酶促法合成了三种可聚合的药物乙烯酯和不同糖的乙烯酯衍生物,通过两类聚合单体的自由基聚合反应制备了一系列含糖聚合物前药。产物经红外光谱(FT-IR)、核磁共振(1HNMR, 13CNMR)和凝胶渗透色谱(GPC)等表征手段,确认其结构和分子量。
     其中,本论文研究了不同聚合条件对聚合物前药性质的影响,如聚合反应单体摩尔比(1:1,1:2,2:1,4:1,mol/mol)、引发剂AIBN含量(1%,2%,4%,w/w)等。研究结果表明,当引发剂AIBN含量为2%时,聚合物分子量较高;增加反应中AIBN含量,聚合物分子量降低,大分子中的载药量增加;随着药物乙烯酯单体在聚合反应投料中比例的增加,聚合物的分子量逐渐下降,大分子药物的载药量则逐步增加;两种聚合单体的摩尔比例为1:1时,得到的聚合物前药分子量较大。
     另外,论文系统考察了聚合物前药的体外药物释放行为和释放动力学。研究结果表明将酮洛芬、布洛芬和萘普生制备成含糖大分子药物可以有效避免小分子药物的暴释现象,能够达到药物缓释的效果,提高药物的利用率。
     药物释放曲线表明,含双糖残基的聚合物前药的药物释放速率较快,10d内酮洛芬的累积释放量为60%,含单糖侧链的聚合物前药释放速率较双糖的低,酮洛芬均聚物前药的药物释放速率最慢,10d药物的累积释放量仅为22%;糖侧链与高分子主链间的连接臂链长较短的聚合物前药释放速率较快,链长较长的药物释放速率则较慢;聚合物中糖残基含量越高,药物释放速率越快;聚合物载药量越高,药物释放速率越慢。
     聚合物前药在不同条件下的体外药物释放曲线显示释放介质的pH和温度对药物释放的影响比较明显。释放介质的pH越大、温度越高,药物释放速率越快。以酮洛芬含糖聚合物前药为例,其在pH10.0.0.5M NaOH溶液和温度为50℃时12h的药物累积释放量分别达到42.3%,87%,15.8%,而在pH 1.2、0.5N HCl溶液和温度为25℃时12h的药物累积释放量分别为2.5%,2.5%,2.2%;离子强度对药物释放亦有微弱影响,随着溶液离子强度的增加,药物释放速率缓慢增大,聚合物在去离子水中12h的药物释放量为1.5%,而相同时间内在0.5M NaCl溶液中为5.6%。对药物释放曲线的动力学方程模拟结果显示,不同条件下的药物释放遵循不同的动力学方程模型。
     实验通过静电纺丝方法,以DMF/C2H5OH (1/1, v/v)为溶剂,将酮洛芬聚合物前药与聚乙烯吡咯烷酮(PVP)制备成纳米载药纤维。由于纤维表面积的快速增大和PVP良好的水溶性等性质,使得聚合物前药载药纤维的药物释放速率大大加快,同时纳米载药纤维还保持了聚合物前药的药物缓释作用。因此制备大分子药物的纳米载药纤维具有一定的意义。
Studies on macromolecules containing saccharide as selective drug delivery system have been developed for biomedicinal application. It has been reported that these systems provide many advantages including prolonged drug release, changed biodistribution, reduced toxicity and increased patient acceptance.
     Ibuprofen, naproxen and ketoprofen are used as model drug. They are a commonly 2-Arylpropionic acid used as non-steroidal anti-inflammatory drugs (NSAIDs) and widely applied to alleviate pain and inflammation associated with tissue injury. However, the drugs are poorly soluble in aqueous media and cause irritant side effects especially on the gastro-enteric mucosal membranes. Therefore, polymeric prodrugs with saccharide through chemical bond can be designed to overcome such problems and merging the relative advantages of saccharide and macromolecules into a single system. This system can be useful to both increase drug stability and avoid the rapid release.
     In this paper, a facile and efficient enzymatic and polymerization process was used to prepare polymeric drug-saccharide conjugates with 2-Arylpropionic acid pendants. A series of polymeric prodrugs with different saccharide branches were synthesized and the structures and molecular weight were confirmed by FT-IR, NMR and GPC.
     Firstly, the paper investigated the influence of various factors to preparation of polymeric prodrugs, such as the molar ratio of drug vinyl ester and sugar vinyl ester (1:1,1:2,2:1,4:1, mol/mol), and the mass of initiator (AIBN,1%,2%,4%, w/w). The obersevations suggested that the molecular weight was influenced by the saccharides variation. Polymeric prodrug with lactose pendant had the highest molecular weight, with Mn of 7.527×104. By increasing saccharide derivatives in raction feed, it caused a decrease in molecular weight of the polymeric prodrugs. For example, the loading capacity of ketoprofen in the polymeric prodrug was only 22.74% (w/w) when glucose vinyl ester was 67% (mol/mol) in the feed, while it reached 42.28% (w/w) when it was 20% in the feed. A reduction of molecular weight was noted by increasing the ratio of initiator. The results suggested that the molecular weight and conversion of the polymeric prodrugs were greatly influenced by the concentration of initiator and the molar ratio of monomers.
     And then, factors to the in vitro drug release were systematically studied, such as the effects of different saccharides with varying carbon chain length, drug carrier, pH, temperature, ionic strength and solution variation.
     The drug release profiles could be influenced by the characteristics of these polymers. Among the polymeric conjugates, drug from prodrug with disaccharide pendant was released rapidly. It implied that the type of saccharide branch influenced release capabilities of polymeric prodrugs. The structures of monosaccharides appeared having a little influence on the drug release. The release of drugs was seen to decrease along with increasing the length of spacer bond between saccharide and polymer main chain. The release rate of drug from polymeric prodrugs increased with the raising of saccharide pendants in the macromoleculars.
     Drug release also could be affected by environmental conditions. It was concluded that different release profiles occurred and these fitted to various kinetic models that were dependent on variations on temperature and pH. It was released rapidly in higher pH, temperature solution. The cumulative drug released in pH 10.0,0.5M NaOH and 50℃solution after 12h reached 42.3%,87%,15.8%, respectively. While it reached 2.5%,2.5%,2.2% after 12h, respectively in pH 1.2,0.5N HC1 and 25℃solution. Ionic strength of the medium appears to have only a minor effect on drug release and higher ionic strength induced a faster drug release. Cumulative drug released was only 1.5% after 12h in distilled water; while it reached 5.6%in 0.5M NaCl.lt was apparent that the polymeric drug-saccharide conjugate had the potential to be developed as a system that enhanced drug delivery.
     Then, the homopolymer and copolymer of ketoprofen were prepared to nanofibers through electrospinning. The drug release behavior revealed that both polymer drugs and electrospun fibers could prolong the drug release. While, the electrospun fibers had a different drug release mechanism, and the drug release rate was higher than that of polymer particles. The release profiles also suggested that it was possible to control the drug release rate by changing the concentration of polymer drug conjugates in the solution for electrospinning. Over all, the electrospun fibers prepared by electrospinning could increase drug release rate effectively, and also maintain the drug sustained release characteristics.
引文
[1]Albert A. Chemical aspects of selective toxity [J]. Nature,1958,182 (4633): 421-423.
    [2]Gros L, Ringsdorf H, Helmut. Polymeric antitumor agents on a molecular and on a cellular level? [J]. Polymer Science and Technology,1983,23:23-32.
    [3]Gros L, Ringsdorf H, Schupp H. Polymeric antitumor agents on a molecular and on a cellular [J]. Angewandte Chemie-International Edition in English,1981,20 (4):305-325.
    [4]Duncan R. The dawning era of polymer therapeutics [J]. Nature Reviews Drug Discovery,2003,2 (5):347-360.
    [5]Vandermeulen G W M, Tziatzios C, Duncan R. PEG-based hybrid block copolymers containing alpha-helical coiled coil peptide sequences:Control of self-assembly and preliminary biological evaluation [J]. Macromolecules,2005, 38 (3):163-204.
    [6]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of prederined specificity [J]. Nature,1975,256 (5517):495-497.
    [7]Ringsdorf H. Structure and properties of pharmacologically active polymers [J]. Journal of Polymer Science, Polymer Symposia,1975,51:135-153.
    [8]Haag R, Kratz F. Polymer therapeutics:Concepts and applications [J]. Angewandte Chemie-International Edition,2006,45 (8):1198-1215.
    [9]Kopecek, J; Kopeckova, P. HPMA copolymers:Origins, early developments, present, and future [J]. Advanced Drug Delivery Reviews,2010,62 (2):122-149.
    [10]Torchilin V P. Drug targeting [J]. European Journal of Pharmaceutical Sciences, 2000,11:81-91.
    [11]Li J S, Xiao H N, Li J H. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers [J]. International Journal of Pharmaceutics,2004,278 (2):329-343.
    [12]Yang L, Chen L Q, Zeng R. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug:Chitosan-O-isopropyl-5 '-O-d4T monophosphate conjugate [J]. Bioorganic & Medicinal Chemistry,2010,18 (1): 117-123.
    [13]Lee E, Kim H, Lee I H. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration [J]. Jounal of Controlled Release,2009,140 (2):79-85.
    [14]Yang L, Zeng R, Li C. Novel synthesis and in vitro drug release of polymeric prodrug:Chitosan-O-isopropyl-5 '-O-d4T monophosphate conjugate [J]. Bioorganic & Medicinal Chemistry Letters,2009,19 (9):2566-2569.
    [15]Petersson K, Larsen C. Alginate-based in situ gelling suspensions and emulsions comprising N-4-alkyloxycarbonyl derivatives of cytosine:Zero-order release and effect of physicochemical properties [J]. Drug Development and Industrial Pharmacy,2005,31 (7):667-675.
    [16]Castro G R, Kamdar R R, Panilaitis B. Triggered release of proteins from emulsan-alginate beads [J]. Journal of Controlled Release,2005,109 (1-3): 149-157.
    [17]王爱勤,李平.甲壳素及其衍生物在药物制剂中的应用进展[J].中国药房,1994,5(6):33-34.
    [18]楼文晖,秦新裕,吴肇光.海藻酸-壳聚糖-聚乙烯乙二醇微囊化异种胰岛移植治疗小鼠糖尿病.中华实验外科杂志[J],2001,5:233-235.
    [19]Giunchedi P, Genta I, Conti B. Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres [J]. Biomaterials, 1998,19(1-3):157-161.
    [20]王俊,裴元英.用聚乙二醇修饰大分子药物的研究进展[J].中国医药工业杂志,2004,35.
    [21]Roberts M J, Bentley M D, Harris J M. Chemistry for peptide and protein PEGylation [J]. Advanced Drug Delivery Reviews,2002,54 (4):459-476.
    [22]印春华,张敏.蛋白质和多肽类药物的聚乙二醇结合物-一种新型给药系统[J].中国药学杂志,2001,36(5):292-296.
    [23]姜忠义,高蓉,许松伟,王艳强.药物蛋白的聚乙二醇修饰[J].中国药学杂志,2002,37(6):409-412.
    [24]Pepinsky R B, Lepage D J, Gill A. Improved pharmacokinetic properties of a polyethylene glycol-modified form of interferon-beta-1a with preserved in vitro bioactivity [J]. Journal of Pharmacology and Experimental Therapeutics,2001, 297(3):1059-1066.
    [25]Cohen O, Kronman C, Chitlaru T. Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity [J]. Biochemical Journal,2001,357 (3):795-802.
    [26]Tsutsumi Y, Onda M, Nagata S. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97 (15):8548-8553.
    [27]蒋福升,丁志山,吕圭源.聚乙二醇前药的研究进展[J].中国药学杂志,2007,12:881-885.
    [28]Zacchigna M, Di Luca G, Cateni F. New MultiPEG-conjugated theophylline derivatives:Synthesis and pharmacological evaluations [J]. European Journal of Pharmaceutical Sciences,2007,30 (3-4):343-350.
    [29]Zhao Y J, Wei W, Su Z G. Poly (ethylene glycol) prodrug for anthracyclines via N-Mannich base linker:design, synthesis and biological evaluation [J]. International Journal of Pharmaceutics,2009,379 (1):90-99.
    [30]Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy-mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs [J]. Cancer Research,1986,46 (12):6387-6392.
    [31]Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review [J]. Journal of Controlled Release,2000,65 (1-2):271-284.
    [32]Jain R. K. Transport of molecules in the tumor interstitium-A review [J]. Cancer Research,1987,47 (12):3039-3051.
    [33]Jain R. K. Transport of molecules across tumor vasculature [J]. Cancer and Metastasis Reviews,1987,6 (4):559-593.
    [34]Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs [J]. Critical Reviews in Therapeutic Drug Carrier Systems, 1989,6 (3):193-210.
    [35]Etrych T, Chytil P, Mrkvan T, Sirova M, Rihova B, Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting [J]. Journal of Controlled Release,2008,132 (3):184-192.
    [36]E. Segal, H. Pan, P. Ofek, T. Ugadawa, P. Kopec kova, J. Kopecek, R. Satchi-Fainaro, Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics, PLoS ONE 4 (4) (2009) e5233.
    [37]Yuan W W, Yang J Y, Kopeckova P, Kopecek J. Smart hydrogels containing adenylate kinase:translating substrate recognition into macroscopic motion [J], Journal of the American Chemical Society,2008,130 (47):15760-15761.
    [38]Chytil P, Etrych T, Konak C, Sirova M, Mrkvan T, Boucek J, Rihova B, Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting [J]. Journal of Controlled Release,2008,127(2):121-130.
    [39]Janoria K G, Mitra A K. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres [J]. International Journal of Pharmaceutics,2007,338 (1-2): 133-141.
    [40]Chen H W, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z G, Guo Y J, Zhong Y Q. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy [J]. Journal of Controlled Release,2008,128 (3): 209-216.
    [41]Cai X Q, Wang N, Lin X F. Chemo-enzymatic synthesis of optically active polymeric prodrug of naproxen, ketoprofen and ibuprofen [J]. Polymer,2006,47 (19):6491-6495.
    [42]Quan J, Wang N, Cai X Q, Wu Q, Lin X F. Controllable selective enzymatic synthesis of N-acyl and O-acylpropranolol vinyl esters and preparation of polymeric prodrug of propranolol [J]. Journal of Molecular Catalysis B-Enzymatic,2007,44 (1):1-7.
    [43]邹燕,史铁钧,宋海云.5-氨基水杨酸-聚乙二醇高分子前药的制备及其释放行为[J].化学与生物工程,2007,24(4):54-57.
    [44]李和平,阮建明,蔡红革,潘彤.壳聚糖-5-氟尿嘧啶高分子前药的合成与表征[J].长沙理工大学学报(自然科学版),2005,2(4):84-88.
    [45]Park J H, Saravanakumar G, Kim K, Kwon I C. Targeted delivery of low molecular drugs using chitosan and its derivatives [J]. Advanced Drug Delivery Reviews,2010,62(1):28-41.
    [46]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature:The key role of tumor-selective macromolecular drug targeting [J]. Advances in Enzyme Regulation,2001,41 (41):189-207.
    [47]Pasut G, Canal F, Via L D, Arpicco S, Veronese F M, Schiavon O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid [J]. Jounal of Controlled Release,2008,127 (3):239-248.
    [48]Katragadda S, Gunda S, Hariharan S. Mitra A K. Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber:Evaluation of their utility in treating ocular HSV infections [J]. International Journal of Pharmaceutics,2008,359 (1-2):15-24.
    [49]Esser N, Chun D, Graeser R, Jantscheff P, Schaechtele C, Kratz F. An albumin-binding prodrug of doxorubicin that is cleaved by prostate-specific antigen:Development and biological evaluation in an orthotopic mouse model [J]. European Journal of Cancer Supplements,2006,4 (12):160-166.
    [50]傅彩娥,李世和.非甾体抗炎药研究进展[J].云南医药,2002,23(3):248-250.
    [51]Margolin A L, Enzymes in the synthesis of chiral drugs [J]. Enzyme and Microbial Technology,1993,15 (4):266-280.
    [52]陈莉,张奕华.前药原理在非甾体抗炎药中的应用[J].中国药师,2003,6(1):50-52.
    [53]吕泽,王身国.高分子包囊药物释放体系[J].功能高分子学报,1997,10(3):429-435.
    [54]翟颐华,邹国林.高分子聚合物在药物上的应用[J].中国生化药物杂志,1996,17(6):267-269.
    [55]尤启冬主编.药物化学.化学工业出版社,北京,2004.
    [56]姚日生主编.药用高分子材料.化学工业出版社,北京,2003.
    [57]Fadl T A, Omar F A, Paracetamol (Acetaminophen) esters of some non-steroidal anti-inflammatory carboxylic acids as mutual prodrugs with improved therapeutic index [J]. Journal of Inflammopharmacology,1998,6 (2):143-157.
    [58]Mahfouz N M, Omar F A, Aboul-Fadl T. Cyclic amide derivatives as potential prodrugs Ⅱ:N-hydroxymethylsuccinimide-/isatin esters of some NSAIDs as prodrugs with an improved therapeutic index [J]. European Journal of Medicinal Chemistry,1999,34 (7-8):551-562.
    [59]Abordo E A, Bowden K, Huntinyton A P. Prodrugs-Part 3.2-formylphenyl eaters of indomethacin, ketoprofen and ibuprofen and 6-substituted 2-formyl and 2-acylphenyl esters of aspirin [J]. Farmaco,1998,53 (2):95-101.
    [60]Marfat, Anthony, US pat.85/4551452 (1985-11-05).
    [61]Robinson R P, Reiter L A, Barth W E. Discovery of the hemifumarate and (alpha-L-alanyloxy) methyl ether as prodrugs of an antirheumatic oxindole: Prodrugs for the enolic OH group [J]. Journal of Medicinal Chemistry,1996,39 (1):10-18.
    [62]Davidsen S K, Summers J B, Albert D H. N-(Acyloxyalkyl) pyridinium salts as soluble prodrugs of a potent platelet-activating-factor antagonist [J]. Journal of Medicinal Chemistry,1994,37 (26):4423-4429.
    [63]Davies N M, McLachlan A L. Features and properties of nabumetone [J]. Drugs, 2000,59 (1):25-33.
    [64]Rothstein, Richard. Safety profiles of leading nonsteroidal anti-inflammatory drugs [J]. American Journal of Medicine,1998,105 (5):39-43.
    [65]Air Reduction Co. Inc:Method of preparing vinyl esters of carboxylic acids1961, Brit 869,828.
    [66]John E D M, Henry W S:Technology of the synthesis divinyl esters of dicarboxylic acids, Britain Patent 827 (1960), p.718.
    [67]Waller F J:Catalytic transvinylation of vinyl esters,1993, United States Patent,5, 214,172.
    [68]Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) [J]. Advanced Drug Delivery Reviews,2001,48 (2-3):139-157.
    [69]Yoshizawa T, Shin-Ya Y, Hong K J, Kajiuchi T. pH- and temperature-sensitive release behaviors from polyelectrolyte complex films composed of chitosan and PAOMA copolymer [J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,59 (2):307-313.
    [70]Babazadeh, M. Design, synthesis and in vitro evaluation of vinyl ether type polymeric prodrugs of ibuprofen, ketoprofen and naproxen. International Journal of Pharmaceutics,2008,356 (1-2):167-173.
    [71]Naseem A, Olliff C J, Martini L G, Lloyd A W. Effects of plasma irradiation on the wettability and dissolution of compacts of griseofulvin [J]. International Journal of Pharmaceutics,2004,269 (2):443-450.
    [72]Babazadeh M. Synthesis and study of controlled release of ibuprofen from the new acrylic type polymers [J]. International Journal of Pharmaceutics,2006,316 (1-2):68-73
    [73]Siepmann J, Gopferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems [J]. Advanced Drug Delivery Reviews,2001,48 (2-3):229-247.
    [74]Khan M S Y, Akhter M. Glyceride derivatives as potential prodrugs:synthesis, biological activity and kinetic studies of glyceride derivatives of rnefenamic acid [J]. Pharmazie,2005,60 (2):110-114.
    [75]Li Wan Po A, Wong L P, Gilligan C A. Characterisation of commercially available theophylline sustained-or controlled-release systems:In-vitro drug release profiles [J]. International Journal of Pharmaceutics,1990,66 (1-3): 111-130.
    [76]Babazadeh M. Synthesis and study of controlled release of ibuprofen from the new acrylic type polymers [J]. International Journal of Pharmaceutics,2006,316 (1-2):68-73.
    [77]Babazadeh M. Synthesis, characterization, and in vitro drug-release properties of 2-hydroxyethyl methacrylate copolymers [J]. Journal of Applied Polymer Science, 2007,104 (4):2403-2409.
    [78]Babazadeh M, Edjlali L, Rashidian L. Application of 2-hydroxyethyl methacrylate polymers in controlled release of 5-aminosalicylic acid as a colon-specific drug [J]. Journal of Polymer Research,2007,14 (3):207-213.
    [79]Stephens D, Li L, Robinson D, Chen S, Chang H, Liu R M, Tian Y, Ginsburg E J, Gao X, Stultz T. Investigation of the in vitro release of gentamicin from a polyanhydride matrix [J]. Journal of Controlled Release,2000,63 (3):305-317.
    [80]Modi S, Jain J P, Domb A J, Kumar N. Copolymers of pharmaceutical grade lactic acid and sebacic acid:Drug release behavior and-biocompatibility [J]. European Journal of Pharmaceitics and Biopharmaceutics,2006,64 (3):277-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700