用户名: 密码: 验证码:
SnS及SnS/C复合纳米结构的可控制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锡基材料由于较高的理论容量成为极具发展潜力和应用前景的新型离子电池负极材料。但其在充放电过程中产生的巨大的体积膨胀以及较大的首次不可逆容量限制了锡基负极材料在商业化生产中的应用。将锡基材料纳米纳米化及与碳基材料复合能有效改善其作为锂离子电池负极材料的性能,并有望代替碳作为成为下一代锂离子负极材料。
     本论文以SnS及SnO2为研究目标,主要针对其作为锂离子电池的负极材料的性能的改善,进行了两方面的努力:①对SnS纳米材料的可控制备。通过简单的溶剂热法制备了SnS复杂纳米结构,在研究了形成机理的基础之上对其形貌进行了调控,探索了纳米结构对其作为锂离子负极材料的性能的影响。②通过与碳基材料,包括MWCNTs、GO、非晶碳的复合,制备了一系列碳SnS、SnO2复合材料,改善其性能。本论文主要做了如下几方面的工作:
     采用溶剂热法在乙二醇溶剂中,成功制备了SnS纳米片构成的空心纳米花,其形成机理主要是奥氏熟化。在深入的研究了其形成机理的基础上,通过引入柠檬酸或柠檬酸钠来影响反应前期乙二醇与Sn2+的配位反应,成功达到了对SnS纳米结构进行调控的目的。电化学测试表明,由鳞片状SnS超薄纳米片组装而成的SnS多孔球相比于其他结构的SnS纳米花具有明显的性能优势,在100mA/g的电流密度下,其可逆容量达到了762mAh/g,这主要是由于其超薄的纳米片厚度和独特的多孔结构造成的。上述研究不仅有助于设计和制备各种特殊形貌的SnS纳米结构,而且对于纳米结构与其性能之间的联系具有重要意义。
     为了改善SnS作为锂离子电池的负极材料的性能,我们首次制备了SnS/MWCNTs复合纳米结构。并且,对复合材料的纳米结构进行调控,研究了结构对其性能的影响。相对于纯的SnS纳米结构,MWCNTs的加入改善了电极材料的导电性,同时有效地提高了充放电过程中电荷转移的速率,从而使得复合纳米结构具有较好的循环性能和倍率充放电性能。同时,SnS NSs/MWCNTs相对于SnS NPs/MWCNTs复合纳米结构在性能方面具有明显的改善,这主要是由于其特殊的结构所造成的。相对于纳米颗粒,SnS超薄纳米片更利于锂离子的进入和传输。另外,SnS纳米片具有了极大的比表面积,这些开放的边缘可以使锂离子在活性材料中更快地扩散,较大的比表面积也能让锂离子更易结合到活性物质当中,从而提高其容量及循环稳定性。本文的研究结果为其它高性能碳纳米管复合电极材料的设计和制备提供了依据。
     采用溶剂热法设计制备出SnS纳米片/石墨烯复合材料。探讨了这种特殊的复合纳米结构的形成机理及电化学性能。结果表明,SnS-GO纳米复合材料作为锂离子电池负极材料的性能得到了明显提高,这主要是由于SnS-GO的特殊的结构所造成的。超薄SnS纳米片更利于锂离子的进入和传输,并且较高SnS的含量保证了其高的可逆容量。超薄的SnS纳米片平铺在氧化石墨烯的表面的独特结构可以尽可能的增大石墨烯与SnS的接触面积,有利于电荷的快速运动,而且可以防止SnS的粉化及从石墨烯表面脱落有效的缓解体积膨胀,从而使得复合纳米结构具有较好的循环性能和倍率充放电性能。这对石墨烯基复合电极材料的设计和制备具有指导意义。
     在上面研究的基础上,以C@SnS多孔球为原料在葡萄糖的水溶液中制备了多孔非晶碳骨架负载SnO2纳米颗粒的复合纳米结构。这种复杂的复合纳米结构的形成主要是由于非晶碳层的模板作用和葡萄糖相关的氧化过程的共同作用的结果。电化学测试表明,我们制备的C/SnO2复合纳米材料作为锂离子电池的负极材料表现出高的可逆容量、优异的循环稳定性及倍率性能,这主要是由于其独特的结构决定的。该方法有望在其他新型复合电极材料的设计制备中得到应用。
Tin-based materials as a new type of anode material for lithium-ion batteries have tremendous development and application prospect because of its hight theoretical capacity. However, the large volume change and the huge initial irreversible capacity in the proeess of charging and disecharging limit the application of tin-based anode materials in commercial production to instead of carbon. Recent research indicated that the use of tin-based nanostructure and tin/carbon-based hybrids can avoid the above-mentioned problems, which is expected to replace carbon in lithium-ion battery as anode material to improve performance of battery.
     In this work, we reported our research achievements of nanomaterial (SnS、SnO2) synthesis, their growth mechanism, and the performance as an anode material for lithium-ion batteries. SnS/carbon-based materials hybrid is expected to show good performance as anode materials of lithium-ion batteries, since the synergy between the functions of the two materials, high capacity of SnS, good electronic conductivity and large surface area carbon-based materials such as amorphous carbon, MWCNT, Graphene, can be exploited in the SnS/C hybrids to yield high performance anodes in lithium-ion batteries.
     SnS hollow micro-flowers assembled from nanosheets have been successfully prepared by a citric acid assisted solvothermal method for the first time. It was found that the formation of the SnS hollow micro-flowers based on an inside-out Ostwald ripening mechanism. A series of SnS3D-hierarchical nanostructures with tunable morphology and sheet thickness have been synthesized by introducing additives to the solution. The electrochemical tests with the prepared SnS nanomaterials show that the SnS porous sphere built with scale-like ultrathin nanosheets exhibited the best performance and could retain a reversible capacity of762mAh/g at a current density of100mA/g. This performance is directly brought by faster ion diffusions and better stability owing to the ultrathin thicknesses as well as the unique porous structures.
     A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li+ions diffusion and large electrode-electrolyte contact area for high Li+ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries.
     A SnS nanosheet-graphene oxide nanosheet hybrid was synthesized by a facile one-step solvothermal route. Ultrathin SnS nanosheets with a lateral size of5-10nm are anchored on graphene nanosheets forming a unique sheet-on-sheet structure. The electrochemical tests showed that the nanohybrid exhibits a remarkably enhanced cycling stability and rate capability compared with bare SnS nanosheets. The excellent electrochemical properties of SnS/GO could be ascribed to the in situ introduced graphene matrix which offers two-dimensional conductive networks, disperses and immobilizes SnS nanosheet, buffers the volume changes during cycling, and directs the growth of SnS nanosheets with a favorable orientation.
     A novel hierarchical3D porous C/SnO2nanocomposite was synthesized by a facile, two-step hydrothermal growth method used porous C@SnS nanospheres as precursor. The SnO2interconnected nanoparticles10-20nm and homogeneously distributed on3D carbon framework. The formation of C/SnO2nanocomposites is mainly due to a cooperative process of an amorphous carbon layers template and glucose-related oxidation process. The cooperative effect of the high theoretical lithium storage capacities of SnO2and excellent electric conductivity of amorphous carbon framework make the as-synthesized3D composite as an excellent anode material for lithium-ion batteries with enhanced capacity and cycling property. Our results suggest that3D porous C/SnO2nanocomposite may serve as a promising anode material for high-power lithium-ion battery.
引文
[1]倪星元,姚兰芳,沈军,周军,纳米材料制备技术,化学工业出版社[M],2007.
    [2]张立德,牟季美.纳米材料和纳米结构.科学出版社[M].2001.
    [3]Asbrink S, Norrby L J. A refinement of the crystal structure of copper (Ⅱ) oxide with a discussion of some exceptional esd's[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1970,26(1):8-15.
    [4]G. R. Patzke, Y. Zhou, R. Kontic, and F. Conrad, Oxide Nanomaterials:Synthetic Developments, Mechanistic Studies, and Technological Innovations, Angew. Chem. Int. Ed. 2010,49,2-36
    [5]Goesmann H, Feldmann C. Nanoparticulate functional materials[J]. Angewandte Chemie International Edition,2010,49(8):1362-1395.
    [6]Iijima S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    [7]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792.
    [8]Zhang Q, Huang J Q, Qian W Z, et al. The Road for Nanomaterials Industry:A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage[J]. Small,2013,9(8):1237-1265.
    [9]De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon nanotubes:present and future commercial applications[J]. Science,2013,339(6119):535-539.
    [10]Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials,2007,6(3):183-191.
    [11]Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of modern physics,2009,81(1):109.
    [12]Mnyusiwalla A, Daar A S, Singer P A.'Mind the gap':science and ethics in nanotechnology[J]. Nanotechnology,2003,14(3):R9.
    [13]Poole C P, Owens F J. Introduction to nanotechnology[J].2003.
    [14]Mitra S B, Wu D, Holmes B N. An application of nanotechnology in advanced dental materials[J]. JOURNAL-AMERICAN DENTAL ASSOCIATION,2003,134(10):1382-1390.
    [15]Dreher K L. Health and environmental impact of nanotechnology:toxicological assessment of manufactured nanoparticles[J]. Toxicological Sciences,2004,77(1):3-5.
    [16]Ferrari M. Cancer nanotechnology:opportunities and challenges[J]. Nature Reviews Cancer, 2005,5(3):161-171.
    [17]Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery[J]. ACS nano,2009, 3(1):16-20.
    [18]Nie S, Xing Y, Kim G J, et al. Nanotechnology applications in cancer[J]. Annu. Rev. Biomed. Eng.,2007,9:257-288.
    [19]Williams K A, Veenhuizen P T M, Beatriz G, et al. Nanotechnology:carbon nanotubes with DNA recognition[J]. Nature,2002,420(6917):761-761.
    [20]Roco M C. Nanotechnology:convergence with modern biology and medicine[J]. Current Opinion in Biotechnology,2003,14(3):337-346.
    [21]Shchukin V A, Ledentsov N N, Bimberg D, et al. NanoScience and Technology [J].
    [22]Muralidaran V S, Subramania A. Nanoscience & Technology[M]. Ane Books Pvt Ltd,2009.
    [23]Hochella Jr M F. Nanoscience and technology:the next revolution in the Earth sciences[J]. Earth and Planetary Science Letters,2002,203(2):593-605.
    [24]Huang C, Notten A, Rasters N. Nanoscience and technology publications and patents:a review of social science studies and search strategies[J]. The Journal of Technology Transfer, 2011,36(2):145-172.
    [25]Duo Y. Nano Science and Technology[J]. INFRARED TECHNOLOGY,1994:03.
    [26]Bimberg D. Semiconductor Nanostructures[M]. Springer,2008.
    [27]Cleemann L N, Buazar F, Li Q, et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes[J]. Fuel Cells,2013,13(5):822-831.
    [28]Swaminathan M, Muruganandham M, Sillanpaa M. Advanced Oxidation Processes for Wastewater Treatment[J]. International Journal of Photoenergy,2013,2013.
    [29]Yao H B, Ge J, Wang C F, et al. Pressure Sensors:A Flexible and Highly Pressure-Sensitive Graphene-Polyurethane Sponge Based on Fractured Microstructure Design[J]. Advanced Materials,2013,25(46):6691-6691.
    [30]Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature nanotechnology,2013,8(7):497-501.
    [31]Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of power sources,2013,226:272-288.
    [32]Wang B, Li X, Zhang X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS nano,2013,7(2): 1437-1445.
    [33]Elia G A, Panero S, Savoini A, et al. Mechanically milled, nanostructured SnC composite anode for lithium ion battery[J]. Electrochimica Acta,2013,90:690-694.
    [34]Hu Y Y, Liu Z, Nam K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature materials,2013.
    [35]He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS nano,2013,7(5):4459-4469.
    [36]孙玉秀,纳米材料的制备方法及其应用,中国纺织出版社[M],2010.
    [37]Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J]. Chemical Society Reviews,2013,42(13):5714-5743.
    [38]Li D, Qin Q, Duan X, et al. General One-Pot Template-Free Hydrothermal Method to Metal Oxide Hollow Spheres and Their Photocatahlytic Activities and Lithium Storage Properties[J]. ACS Applied Materials & Interfaces,2013,5(18):9095-9100.
    [39]Zeng X, Zhang X, Yang M, et al. A facile hydrothermal method for the fabrication of one-dimensional MoO3 nanobelts[J]. Materials Letters,2013,112:87-89.
    [40]Guo J, Zheng J, Song X, et al. Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method[J]. Materials Letters,2013,97:34-36.
    [41]Garcia A, Nieto A, Vila M, et al. Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method[J]. Carbon,2013,51: 410-418.
    [42]Hwang S H, Moon K J, Lee T I, et al. Controlling phosphorus doping concentration in ZnO nanorods by low temperature hydrothermal method[J]. Materials Chemistry and Physics,2014, 143(2):600-604.
    [43]Cao X, Shu Y, Hu Y, et al. Integrated process of large-scale and size-controlled SnO2 nanoparticles by hydrothermal method[J]. Transactions of Nonferrous Metals Society of China, 2013,23(3):725-730.
    [44]Byrappa K, Adschiri T, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials [J],53 (2007) 117-166
    [45]Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J]. Small,2005,1(5):566-571.
    [46]Lou X W D, Archer L A, Yang Z. Hollow Micro-/Nanostructures:Synthesis and Applications[J]. Advanced Materials,2008,20(21):3987-4019.
    [47]Chun Zeng H. Ostwald ripening:a synthetic approach for hollow nanomaterials[J]. Current Nanoscience,2007,3(2):177-181.
    [48]Sun Y, Rogers J A. Inorganic semiconductors for flexible electronics[J]. Advanced Materials, 2007,19(15):1897-1916.
    [49]Ah C S, Yun Y J, Park H J, et al. Size-controlled synthesis of machinable single crystalline gold nanoplates[J]. Chemistry of materials,2005,17(22):5558-5561.
    [50]Yang J, Zeng J H, Yu S H, et al. Formation process of CdS nanorods via solvothermal route[J]. Chemistry of materials,2000,12(11):3259-3263.
    [51]Tang K B, Qian Y T, Zeng J H, et al. Solvothermal route to semiconductor nanowires[J]. Advanced Materials,2003,15(5):448-450.
    [52]Chen X M, Tong M L. Solvothermal in situ metal/ligand reactions:a new bridge between coordination chemistry and organic synthetic chemistry [J]. Accounts of chemical research, 2007,40(2):162-170.
    [53]Li Y, Liao H, Ding Y, et al. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod[J]. Inorganic Chemistry,1999,38(7):1382-1387.
    [54]施尔畏,陈之战,元如林,郑燕青.水热结晶学.科学出版社[M],2004.
    [55]Voorhees P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics,1985, 38(1-2):231-252.
    [56]van Huis M A, Kunnema n L T, Overgaag K, et al. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy [J]. Nano letters,2008,8(11):3959-3963.
    [57]Cargnello M, Doan-Nguyen V V T, Gordon T R, et al. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts[J]. Science,2013,341(6147): 771-773.
    [58]Evans J E, Jungjohann K L, Browning N D, et al. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy [J]. Nano letters,2011,11(7): 2809-2813.
    [59]Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J]. Chemical Society Reviews,2013,42(13):5714-5743.
    [60]Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies[J]. Science,1995,267(5201):1138-1143.
    [61]Liu Q, Liu H, Han M, et al. Nanometer-Sized Nickel Hollow Spheres[J]. Advanced Materials, 2005,17(16):1995-1999.
    [62]Li B, He J. Multiple effects of dodecanesulfonate in the crystal growth control and morphosynthesis of layered double hydroxides[J]. The Journal of Physical Chemistry C,2008, 112(29):10909-10917.
    [63]Cao M, Hu C, Wang E. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers[J]. Journal of the American Chemical Society,2003,125(37):11196-11197.
    [64]Li Y, Liu J, Huang X, et al. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres[J]. Crystal growth & design,2007,7(7):1350-1355
    [65]Zhang L, Wang W, Zhou L, et al. Bi2WO6 Nano-and Microstructures:Shape Control and Associated Visible-Light-Driven Photocatalytic Activities[J]. Small,2007,3(9):1618-1625.
    [66]Chen G Y, Dneg B, Cai G B, et al. The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures[J]. The Journal of Physical Chemistry C,2008,112(3):672-679.
    [67]Du Y, Yin Z, Zhu J, et al. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals[J]. Nature communications,2012,3:1177.
    [68]Tavakkoli K G, Nicaise S M, Hannon A F, et al. Sacrificial-Post Templating Method for Block Copolymer Self-Assembly[J]. Small,2013.
    [69]Zhang H, Cao G, Wang Z, et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage[J]. Nano letters,2008,8(9):2664-2668.
    [70]Sun S H, Yang D Q, Villers D, et al. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires[J]. Advanced Materials,2008,20(3):571-574.
    [71]Narayanaswamy A, Xu H, Pradhan N, et al. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers:hydrolysis and alcoholysis vs pyrolysis[J]. Journal of the American Chemical Society,2006,128(31):10310-10319.
    [72]Liu Y, Deng Y, Sun Z, et al. Hierarchical Cu2S Microsponges Constructed from Nanosheets for Efficient Photocatalysis[J]. Small,2013,9(16):2702-2708.
    [73]Zhang L, Zhang F, Yang X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific reports,2013,3.
    [74]Sattayasamitsathit S, Gu Y, Kaufmann K, et al. Highly ordered multilayered 3D graphene decorated with metal nanoparticles[J]. Journal of Materials Chemistry A,2013,1(5): 1639-1645.
    [75]Liu Y, Tang H, Lv H, et al. Self-assembled three-dimensional hierarchical Bi2WO6 microspheres by sol-gel-hydrothermal route[J]. Ceramics International,2014,40(4): 6203-6209.
    [76]Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters,2001,78(6):718-720.
    [77]Ashoka S, Nagaraju G, Tharamani C N, et al. Ethylene glycol assisted hydrothermal synthesis of flower like ZnO architectures[J]. Materials Letters,2009,63(11):873-876.
    [78]Yang L X, Zhu Y J, Li L, et al. A Facile Hydrothermal Route to Flower-Like Cobalt Hydroxide and Oxide[J]. European journal of inorganic chemistry,2006,2006(23):4787-4792.
    [79]Yang L X, Zhu Y J, Tong H, et al. Hierarchical β-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks[J]. Crystal Growth and Design,2007,7(12):2716-2719.
    [80]Nie P, Shen L, Zhang F, et al. Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries[J]. CrystEngComm,2012,14(13): 4284-4288.
    [81]Li S, Zhang H, Wu J, et al. Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures[J]. Crystal growth & design,2006,6(2):351-353.
    [82]Zhong L S, Hu J S, Liang H P, et al. Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Advanced Materials,2006,18(18):2426-2431.
    [83]Cao C Y, Guo W, Cui Z M, et al. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes[J]. Journal of Materials Chemistry,2011,21(9):3204-3209.
    [84]Yoshio M, Brodd R J, Kozawa A. Lithium-Ion Batteries[M]. Springer,2009.
    [85]Wang Y. Lithium-ion batteries[M]. Imperial college press,2004.
    [86]Scrosati B. Recent advances in lithium ion battery materials[J]. Electrochimica Acta,2000, 45(15):2461-2466.
    [87]Han S, Jang B, Kim T, et al. Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes[J]. Advanced Functional Materials,2005,15(11): 1845-1850.
    [88]He B L, Dong B, Li H L. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-I on battery[J]. Electrochemistry communications,2007, 9(3):425-430.
    [89]Kim D K, Muralidharan P, Lee H W, et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes[J]. Nano letters,2008,8(11):3948-3952.
    [90]Fan Z, Yan J, Ning G, et al. Porous graphene networks as high performance anode materials for lithium ion batteries[J]. Carbon,2013,60:558-561.
    [91]van Schalkwijk, Walter, and Bruno Scrosati, eds. Advances in lithium-ion batteries. Springer, 2002.
    [92]Zhou X, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J]. Chemical Communications,2012,48(16):2198-2200.
    [93]Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. Journal of Power Sources,1997,68(1):87-90.
    [94]Li N, Martin C R, Scrosati B. Nanomaterial-based Li-ion battery electrodes[J]. Journal of Power Sources,2001,97:240-243.
    [95]Wang Y, Cao G. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries[J]. Advanced Materials,2008,20(12):2251-2269.
    [96]Sides C R, Li N, Patrissi C J, et al. Nanoscale materials for lithium-ion batteries[J]. Mrs Bulletin,2002,27(08):604-607.
    [97]Jiao F, Bruce P G. Mesoporous Crystalline β-MnO2 a Reversible Positive Electrode for Rechargeable Lithium Batteries[J]. Advanced Materials,2007,19(5):657-660.
    [98]Lin J, Peng Z, Xiang C, et al. Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries[J]. ACS nano,2013,7(7):6001-6006.
    [99]Zou Y, Zhou X, Yang J. Corn-like Graphene-SnO2-carbon nanofibers composite as high-performance Li-storage material[J]. Journal of Materials Chemistry A,2014.
    [100]Li H, Shi L, Wang Q, et al. Nano-alloy anode for lithium ion batteries[J]. Solid State Ionics, 2002,148(3):247-258.
    [101]Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24.
    [102]Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical reviews,2013,113(7):5364-5457.
    [103]Hu R Z, Liu H, Zeng M Q, et al. Progress on Sn-based thin-film anode materials for lithium-ion batteries[J]. Chinese Science Bulletin,2012,57(32):4119-4130.
    [104]Wang C M, Xu W, Liu J, et al. In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation[J]. Nano letters,2011,11(5):1874-1880.
    [105]Price L S, Parkin I P, Hardy A M E, et al. Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass[J]. Chemistry of materials,1999,11(7): 1792-1799.
    [106]Radovsky G, Popovitz-Biro R, Staiger M, et al. Synthesis of copious amounts of SnS2 and SnS2/SnS nanotubes with ordered superstructures[J]. Angewandte Chemie International Edition,2011,50(51):12316-12320.
    [107]Patra B K, Sarkar S, Guria A K, et al. Monodisperse SnS Nanocrystals:In Just 5 Seconds[J]. The Journal of Physical Chemistry Letters,2013,4(22):3929-3934.
    [108]Deng Z, Cao D, He J, et al. Solution Synthesis of Ultrathin Single-Crystalline SnS Nanoribbons for Photodetectors via Phase Transition and Surface Processing[J]. ACS nano, 2012,6(7):6197-6207.
    [109]Zhang Y, Lu J, Shen S, et al. Ultralarge single crystal SnS rectangular nanosheets[J]. Chemical Communications,2011,47(18):5226-5228.
    [110]Lu J, Nan C, Li L, et al. Flexible SnS nanobelts:Facile synthesis, formation mechanism and application in Li-ion batteries[J]. Nano Research,2013,6(1):55-64.
    [111]Vaughn D D, Hentz O D, Chen S, et al. Formation of SnS nanoflowers for lithium ion batteries[J]. Chemical Communications,2012,48(45):5608-5610.
    [112]Kang J G, Park J G, Kim D W. Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries[J]. Electrochemistry Communications,2010,12(2):307-310.
    [113]Zhang W M, Hu J S, Guo Y G, et al. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries[J]. Advanced Materials,2008,20(6):1160-1165.
    [114]Wang Z, Zhang H, Li N, et al. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries[J]. Nano Research,2010, 3(10):748-756.
    [115]Chen J S, Archer L A, Lou X W D. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries[J]. Journal of Materials Chemistry,2011,21(27):9912-9924.
    [116]Seo J, Jang J, Park S, et al. Two-Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Advanced Materials,2008,20(22): 4269-4273.
    [117]Kim H S, Chung Y H, Kang S H, et al. Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries[J]. Electrochimica Acta,2009,54(13):3606-3610.
    [118]Zai J, Wang K, Su Y, et al. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries[J]. Journal of Power Sources,2011,196(7):3650-3654.
    [119]Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale,2012,4(8):2526-2542.
    [120]Guo X W, Fang X P, Sun Y, et al. Lithium storage in carbon-coated SnO2 by conversion reaction[J]. Journal of Power Sources,2013,226:75-81.
    [121]Liu J, Li W, Manthiram A. Dense core-shell structured SnO/C composites as high performance anodes for lithium ion batteries[J]. Chemical Communications,2010,46(9): 1437-1439.
    [122]Nie A, Gan L Y, Cheng Y, et al. Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials[J]. ACS nano,2013,7(7):6203-6211.
    [123]Kim H W, Shim S H. Synthesis of tin-oxide one-dimensional nanomaterials and their characteristics[J]. JOURNAL-KOREAN PHYSICAL SOCIETY,2005,47(3):516.
    [124]Chen J S, Lou X W D. SnO2-Based Nanomaterials:Synthesis and Application in Lithium-Ion Batteries[J]. Small,2013,9(11):1877-1893.
    [125]SongaChen J, FengaNg M, BinaWu H. Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties[J]. CrystEngComm,2012, 14(16):5133-5136.
    [126]He M, Yuan L, Hu X, et al. A SnO2@ carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries[J]. Nanoscale,2013,5(8):3298-3305.
    [127]Yang S, Yue W, Zhu J, et al. Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries[J]. Advanced Functional Materials, 2013,23(28):3570-3576.
    [1]Du Y, Yin Z, Rui X, et al. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries[J]. Nanoscale,2013,5(4):1456-1459.
    [2]Mei L, Xu C, Yang T, et al. Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(30):8658-8664.
    [3]Li J, Wu P, Lou F, et al. Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries[J]. Electrochimica Acta,2013,111:862-868.
    [4]Sinsermsuksakul P, Hartman K, Kim S B, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer[J]. Applied Physics Letters,2013, 102(5):053901.
    [5]Schneikart A, Schimper H J, Klein A, et al. Efficiency limitations of thermally evaporated thin-film SnS solar cells[J]. Journal of Physics D:Applied Physics,2013,46(30):305109.
    [6]Reddy K T R, Nwofe P A, Miles R W. Determination of the minority carrier diffusion length of SnS using electro-optical measurements[J]. Electronic Materials Letters,2013,9(3):363-366.
    [7]Burton L A, Walsh A. Band alignment in SnS thin-film solar cells:Possible origin of the low conversion efficiency[J]. Applied Physics Letters,2013,102(13):132111.
    [8]Chen X, Hou Y, Zhang B, et al. Low-cost SnSx counter electrodes for dye-sensitized solar cells[J]. Chemical Communications,2013,49(51):5793-5795.
    [9]Sugiyama M, Shimizu T, Kawade D, et al. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy[J]. Journal of Applied Physics,2014,115(8):083508.
    [10]Liu S, Wang R, Liu M, et al. Fe2O3@ SnO2 Nanoparticles Decorated Graphene Flexible Films as High-performance Anode Material for Lithium-ion Batteries[J]. Journal of Materials Chemistry A,2014.
    [11]Xu Y, Liu Q, Zhu Y, et al. Uniform nano-Sn/C composite anodes for lithium ion batteries[J]. Nano letters,2013,13(2):470-474.
    [12]Liu C, Xue F, Huang H, et al. Preparation and Electrochemical properties of Fe-Sn(C) Nanocomposites as Anode for Lithium-ion Batteries[J]. Electrochimica Acta,2014.
    [13]Hou X, Jiang H, Hu Y, et al. In Situ Deposition of Hierarchical Architecture Assembly from Sn-Filled CNTs for Lithium-Ion Batteries[J]. ACS applied materials & interfaces,2013,5(14): 6672-6677.
    [14]Luo B, Fang Y, Wang B, et al. Two dimensional grapheme-SnS2 hybrids with superior rate capability for lithium ion storage[J]. Energy & Environmental Science,2012,5(1):5226-5230.
    [15]Momma T, Shiraishi N, Yoshizawa A, et al. SnS2 anode for rechargeable lithium battery[J]. Journal of power sources,2001,97:198-200.
    [16]Mukaibo H, Yoshizawa A, Momma T, et al. Particle size and performance of SnS2 anodes for rechargeable lithium batteries[J]. Journal of power sources,2003,119:60-63.
    [17]Voorhees P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics,1985, 38(1-2):231-252.
    [18]Voorhees P W. Ostwald ripening of two-phase mixtures[J]. Annual Review of Materials Science,1992,22(1):197-215.
    [19]Voorhees P W, Glicksman M E. Solution to the multi-particle diffusion problem with applications to Ostwald ripening-Ⅰ. Theory[J]. Acta metallurgica,1984,32(11):2001-2011.
    [20]Eberl D D, Srodon J, Kralik M, et al. Ostwald ripening of clays and metamorphic minerals[J]. Science,1990,248(4954):474-477.
    [21]Marqusee J A, Ross J. Kinetics of phase transitions:Theory of Ostwald ripening[J]. The Journal of chemical physics,1983,79(1):373-378.
    [22]Wu C, Yu S H, Chen S, et al. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions[J]. Journal of Materials Chemistry,2006,16(32):3326-3331.
    [23]Xiong H, Shen W, Guo B, et al. Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly (ethylene glycol) chains[J]. Journal of Materials Chemistry,2011, 21(9):2845-2847.
    [24]Zebarjad S M, ShakhsEmampour J. A Study on the Role of Ethylene Glycol/Alcohol Ratio on Synthesis of Nano-Size SnO2[J]. Particulate Science and Technology,2013,31.
    [25]Yin Y X, Jiang L Y, Wan L J, et al. Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties[J]. Nanoscale,2011,3(4):1802-1806.
    [26]Pastoriza-Gallego M J, Lugo L, Legido J L, et al. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids[J]. Nanoscale research letters,2011,6(1):1-7.
    [27]Yue G, Ni H W, Chen R S, et al. Time-Dependent Growth of Hematiete (a-Fe2O3) Nanotube Arrays Produced by Iron Anodizing in Ethylene Glycol Solution[J]. Advanced Materials Research,2012,599:145-150.
    [28]Lockman Z, Anwar D M, Rozana M, et al. Formation of Anodic Oxide Nanotubes in H2O2-Fluoride Ethylene Glycol Electrolyte as Template for Electrodeposition of a-Fe2O3[J]. Advanced Materials Research,2014,832:333-337.
    [29]Levard C, Reinsch B C, Michel F M, et al. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution:impact on dissolution rate[J]. Environmental science & technology,2011,45(12):5260-5266.
    [30]Hitchman A, Sambrook Smith G H, Ju-Nam Y, et al. The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles[J]. Chemosphere,2013,90(2):410-416.
    [31]Blum A, Lee L, Eberl D. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption:A new method for quantifying illite and smectite abundance[J]. Clays and Clay Minerals,2011,59(2):212-213.
    [32]Zeng J, Tao J, Li W, et al. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions[J]. Chemistry-An Asian Journal,2011, 6(2):376-379.
    [1]Zhang C, Quince M, Chen Z, et al. Three-dimensional nanocarbon and the electrochemistry of nanocarbon/tin oxide for lithium ion batteries[J]. Journal of Solid State Electrochemistry,2011, 15(11-12):2645-2652.
    [2]Liao J Y, Higgins D, Lui G, et al. Multifunctional TiO2-C/MnO2 Core-Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries[J]. Nano letters,2013, 13(11):5467-5473.
    [3]Wang Y, Yu S F, Sun C Y, et al. MnO2/onion-like carbon nanocomposites for pseudocapacitors[J]. Journal of Materials Chemistry,2012,22(34):17584-17588.
    [4]Yin L, Wang J, Yang J, et al. A novel pyrolyzed polyacrylonitrile-sulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journal of Materials Chemistry,2011,21(19):6807-6810.
    [5]Yushin G. Nanoporous Li2S and MWCNT-Linked Li2S Powder Cathodes for Lithium-Ion Battery Chemistries[C]//225th ECS Meeting (May 11-15,2014). Ecs,2014.
    [6]Lin J Y, Liao J H, Hung T Y. A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells[J]. Electrochemistry Communications, 2011,13(9):977-980.
    [7]Shahmiri M R, Bahari A, Karimi-Maleh H, et al. Ethynylferrocene-NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen[J]. Sensors and Actuators B: Chemical,2013,177:70-77.
    [8]Reti B, Mogyorosi K, Dombi A, et al. Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts[J]. Applied Catalysis A:General,2014,469:153-158.
    [9]Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials,2008,20(11):3617-3622.
    [10]Fan Z, Chen J, Wang M, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials[J]. Diamond and related materials,2006,15(9): 1478-1483.
    [11]Zhang H, Cao G, Yang Y. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries[J]. Energy&Environmental Science,2009,2(9):932-943.
    [12]Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science,2009,2(6):638-654.
    [13]Wang K, Luo S, Wu Y, et al. Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries[J]. Advanced Functional Materials,2013, 23(7):846-853.
    [14]Hou X, Jiang H, Hu Y, et al. In Situ Deposition of Hierarchical Architecture Assembly from Sn-Filled CNTs for Lithium-Ion Batteries[J]. ACS applied materials & interfaces,2013,5(14): 6672-6677.
    [15]Wang K, Wu Y, Luo S, et al. Hybrid super-aligned carbon nanotube/carbon black conductive networks:A strategy to improve both electrical conductivity and capacity for lithium ion batteries[J]. Journal of Power Sources,2013,233:209-215.
    [16]Steichen M, Djemour R, Gutay L, et al. Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells[J]. The Journal of Physical Chemistry C,2013,117(9):4383-4393.
    [17]Umar A, Akhtar M S, Badran R I, et al. Electrical properties of solution processed p-SnS nanosheets/n-TiO2 heterojunction assembly[J]. Applied Physics Letters,2013,103(10): 101602.
    [18]Raadik T, Grossberg M, Raudoja J, et al. Temperature-dependent photoreflectance of SnS crystals[J]. Journal of Physics and Chemistry of Solids,2013,74(12):1683-1685.
    [1]Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials,2007,6(3):183-191.
    [2]Katsnelson M I, Katsnel'son M I. Graphene:carbon in two dimensions[M]. Cambridge University Press,2012.
    [3]Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. nature,2005,438(7065):197-200.
    [4]Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [5]Su F Y, You C, He Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. Journal of Materials Chemistry,2010,20(43):9644-9650.
    [6]Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications,2011,13(8): 822-825.
    [7]Abouimrane A, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries[J]. The Journal of Physical Chemistry C,2010,114(29): 12800-12804.
    [8]Kheirabadi N, Shafiekhani A. Graphene/Li-ion battery[J]. Journal of Applied Physics,2012, 112(12):124323.
    [9]Song H, Li N, Cui H, et al. Enhanced capability and cyclability of SnO2-graphene oxide hybrid anode by firmly anchored SnO2 quantum dots[J]. Journal of Materials Chemistry A,2013, 1(26):7558-7562.
    [10]Lin J, Peng Z, Xiang C, et al. Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries[J]. ACS nano,2013,7(7):6001-6006.
    [11]Zhang Q, Li R, Zhang M, et al. SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance[J]. Electrochimica Acta,2014,115:425-433.
    [12]Yin J, Cao H, Zhou Z, et al. SnS2@ reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries[J]. Journal of Materials Chemistry,2012,22(45):23963-23970.
    [13]Chen P, Su Y, Liu H, et al. Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications[J]. ACS applied materials & interfaces,2013, 5(22):12073-12082.
    [14]Wang X, Cao X, Bourgeois L, et al. N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries[J]. Advanced Functional Materials,2012,22(13): 2682-2690.
    [15]Paek S M, Yoo E J, Honma Ⅰ. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters,2008,9(1):72-75.
    [16]Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS nano,2010,4(7):4324-4330.
    [17]Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41(2):782-796.
    [18]Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312-1314.
    [19]Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical review letters,2006,97(18):187401.
    [20]Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of modern physics,2009,81(1):109.
    [1]McGuire K B. Synthesis and characterization of nanomaterials:Nanotubes, nanowires, and nanobelts[M].2003.
    [2]Kim H W, Shim S H, Hwang H J, et al. SnO2 nanostructures synthesized on Co substrates[J]. Solid State Phenomena,2007,124:1289-1292.
    [3]Shukla G P, Bhatnagar M C. Effect of Substrate on the Morphology of SnO2Nanowire[J]. rn, 1000:2.
    [4]Li C, Zhu Y Q, Xia T C, et al. Solvothermal Synthesis of the SnO2 Nanomaterial for Highly Reversible Lithium Storage[J]. Advanced Materials Research,2011,295:341-344.
    [5]Fan C, Song X, Yin Z, et al. Preparation of SnO2 hollow nanospheres by a solvothermal method[J]. Journal of materials science,2006,41(17):5696-5698.
    [6]Wang C, Zhou Y, Ge M, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity[J]. Journal of the American Chemical Society,2009,132(1):46-47.
    [7]Liang J, Wei W, Zhong D, et al. One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries[J]. ACS applied materials & interfaces,2012,4(1):454-459.
    [8]Ye F, Zhao B, Ran R, et al. Facile Mechanochemical Synthesis of Nano SnO2/Graphene Composite from Coarse Metallic Sn and Graphite Oxide:An Outstanding Anode Material for Lithium-Ion Batteries[J]. Chemistry-A European Journal,2014.
    [9]Zhong Y, Wang X, Jiang K, et al. A facile synthesis and lithium storage properties of CO3O4-C hybrid core-shell and hollow spheres[J]. Journal of Materials Chemistry,2011,21(44): 17998-18002.
    [10]Lu Z, Wang H. Fluoride-assisted coaxial growth of SnO2 over-layers on multiwall carbon nanotubes with controlled thickness for lithium ion batteries[J]. CrystEngComm,2014,16(4): 550-555.
    [11]Wang W, Xiao Y, Zhao X, et al. Synthesis of Cd2SnO4-Sn02 hybrid micro-cubes with enhanced electrochemical performance for lithium-ion batteries[J]. CrystEngComm,2014, 16(5):922-929.
    [12]Zhao J, Shan W F, Xia X B, et al. SnO2-CuO/graphene nanocomposites for high performance Li-ion battery anodes[J]. Science China Technological Sciences,2014:1-4.
    [13]Zhao X, Liu B, Hu C, et al. In Situ Growth of Hierarchical SnO2 Nanosheet Arrays on 3D Macroporous Substrates as High-Performance Electrodes[J]. Chemistry-A European Journal, 2014,20(2):467-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700